• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Super-resolution of Solar Magnetograms Using Deep Learning

    2022-09-02 12:25:32FengpingDouLongXuZhixiangRenDongZhaoandXinzeZhang

    Fengping DouLong XuZhixiang RenDong Zhaoand Xinze Zhang

    1 State Key Laboratory of Space Weather,National Space Science Center,Chinese Academy of Sciences,Beijing 100190,China; lxu@nao.cas.cn

    2 University of Chinese Academy of Sciences,Beijing 100049,China

    3 Peng Cheng National Laboratory,Shenzhen 518000,China

    4 State Key Laboratory of Virtual Reality Technology and Systems,School of Computer Science and Engineering,Beihang University,Beijing 100191,China

    Abstract Currently,data-driven models of solar activity forecast are investigated extensively by using machine learning.For model training,it is highly demanded to establish a large database which may contain observations coming from different instruments with different spatio-temporal resolutions.In this paper,we employ deep learning models for super-resolution (SR) of magnetogram of Michelson Doppler Imager (MDI) in order to achieve the same spatial resolution of Helioseismic and Magnetic Imager(HMI).First,a generative adversarial network(GAN)is designed to transfer characteristics of MDI onto downscaled HMI,getting low-resolution HMI magnetogram in the same domain as MDI.Then,with the paired low-resolution and high-resolution HMI magnetograms,another GAN is trained in a supervised learning way,which consists of two streams,one is for generating high-fidelity image content,the other is explicitly optimized for generating elaborate image gradients.Thus,these two streams work together to guarantee both high-fidelity and photorealistic super-resolved images.Experimental results demonstrate that the proposed method can generate super-resolved magnetograms with perceptual-pleasant visual quality.Meanwhile,the best PSNR,LPIPS,RMSE,comparable SSIM and CC are obtained by the proposed method.The source code and data set can be accessed via https://github.com/filterbank/SPSR.

    Key words: techniques: image processing–Sun: magnetic fields–Sun: atmosphere

    1.Introduction

    Nowadays,more and more advanced solar Magnetographs are being developed to measure magnetic field strength and polarity of the Sun,for studying the source and evolution of solar magnetic field.However,different magnetographs have different resolutions,noises,saturation levels and other specifics.For example,the Helioseismic and Magnetic Imager(HMI;Scherrer et al.2012;Schou et al.2012) was operated since 2010 onboard the Solar Dynamics Observatory (SDO;Pesnell et al.2012).It can provide solar magnetogram of 05 per pixel resolution,magnetic intensity and vector magnetic field.The Michelson Doppler Imager (MDI;Scherrer et al.1995;Domingo et al.1995) was operated from 1995 to 2011 onboard the Solar and Heliospheric Observatory (SOHO),providing solar magnetogram of 2″per pixel resolution.These two magnetographs have different spatial resolutions,which impedes the joint application of them in the same forecasting task.Super-resolving the MDI magnetogram into the resolution of HMI magnetogram,we can obtain a solar flare database containing magnetograms for more than two decades,benefiting solar flare forecasting greatly.

    The region with stronger magnetic field than its surrounding region in the Sun is named active region(AR).The AR is the main source of of energetic phenomena (e.g.,solar flare and coronal mass ejection (CME)).High-resolution of AR is crucial for probing mechanism behind violent solar bursts which are of great interest to scientists.In addition,uniform resolution magnetogram across different telescopes is very beneficial to statistical modeling of solar activity forecasting.Thus,super-resolution (SR) of AR/magnetogram is of great significance in both solar physics and solar activity forecasting.Recently,deep learning-based SR has been investigated in solar astronomy (Xu et al.2019;Xu et al.2020;Yu et al.2022).Anna Jungbluth et al.(Jungbluth et al.2019)leveraged HighRes-Net (Deudon et al.2019) to super-resolve the MDI magnetograms to the same resolution of HMI magnetograms.Sumiaya Rahman&Yong-Jae Moon(Rahman et al.2020)applied two deep learning-based networks to enhance the HMI magnetograms by a factor of four,and compared the generated HMI magnetograms with the Hinode/Solar Optical Telescope Narrowband Filtergrams (NFI) magnetogram.However,Jungbluth et al.(2019) is about SR of full-disk magnetogram.In addition,it uses overlapped magnetograms between MDI and HMI from 2010 to 2011.This time interval has only few ARs,resulting in low efficiency of SR of ARs.Rahman et al.(2020)only super-resolves the bicubic-downsampled HMI magnetograms,not concerning real-world scenarios.

    SR reconstructs high-resolution (HR) image from lowresolution (LR) image (Freeman &Pasztor1999).Deep learning-based SR has achieved promising performance of both quantitative and qualitative (Kim et al.2016;Lim et al.2017;Zhang et al.2018b;Muqeet et al.2019).Most state-of-the-art SR models impose bicubic downsampling on HR images to get LR images paired with HR images.However,bicubic downsampling may alter image characteristics,leading to a serious problem that the downsampled LR image has distinct image characteristics different from that of real-world image,namely domain difference,including sensor noises,blur and other specifics (Lugmayr et al.2019).This would lead to the performance drop drastically when the trained model is applied to real-world scenarios.Therefore,to overcome the mentioned problem,SR methods recently applied an unsupervised generative adversarial network (GAN) model to first conduct domain migration.Manuel Fritsche et al.(Fritsche et al.2019)proposed DSGAN to introduce natural image characteristics into bicubic-downsampled images.The unsupervised DSGAN can be trained on HR images,thereby generating LR images with the same characteristics as the natural LR images.Then,the paired LR and HR images constitute a database for training SR model by supervised learning.Recently,GAN based SR network has been verified to recover photorealistic images with high-fidelity as the target images (Ledig et al.2016;Sajjadi et al.2017;Wang et al.2018;Soh et al.2019).Cheng Ma et al.(Ma et al.2020) proposed a structure-preserving SPSR model to generate perceptual-pleasant details,which leverages gradient information as the gradient branch to improve the details of SR results.

    General images,in contrast to magnetograms,usually have clear semantic information and rich texture structure.Therefore,super-resolution of general image mainly concerns recovering semantic information,such as edge,structure and texture,which is closed related to perceptual visual quality.Moreover,because the structure of general images is more complex,the network of SR for general image is more complicated.In contrast,super-resolution of magnetogram is more concerned with the fidelity,the invariance of the physical parameters of the magnetic field (e.g.,magnetic flux remains constant).

    The SOHO/MDI(2″)and the SDO/HMI(05)are different in noise characteristics,saturation,spectral inversion techniques and other physical characteristics,resulting in two different domains of magnetograms.To address domain difference problem,we first leverage DSGAN (Fritsche et al.2019) to perform domain migration,where the input is an HR HMI magnetogram,the output is an LR HMI magnetogram in the same domain as the MDI magnetogram.Then,a twochannel/branch GAN model,namely structure-preserving super resolution (SPSR) (Ma et al.2020) is performed to super-resolve MDI magnetogram.The SPSR takes into account gradient preservation and enhancement,which benefits to recovering the gradient of magnetogram.The gradient of magnetogram is a direct measure of magnetic gradient field on the surface of the Sun.Therefore,maintaining and enhancing the gradient is essential for generating magnetograms with both pleasant visual quality and high fidelity.

    In brief,there are two key points in the proposed method for SR of magnetogram.On the one hand,the DSGAN method is first employed to accomplish domain transferring/transformation.It alters image characteristics of LR magnetogram directly downscaled from HR HMI magnetogram,converting it to the one in the same domain as MDI magnetogram.Thus,a database consisting of LR&HR magnetogram pairs can be prepared for the following supervised learning of SR model.On the other hand,the SPSR Ma et al.(2020) is employed to leverage image gradient through an additional network branch to generate pleasant structures of magnetogram.In natural image,gradients coincide with sharp edges of local image objects.Moreover,gradients of a magnetogram are direct measures of the magnetic field gradients on the surface of the Sun.However,Jungbluth et al.(2019) only leverages gradient loss in the HighRes-Net,which makes the results generally suffer from geometric distortions.Hence,we adopt SPSR method with both gradient loss and separate gradient branch to generate perceptual-pleasant magnetograms.

    2.Data

    SDO/HMI started observation from 2010,recording photospheric vector magnetic field at 05 spatial resolution for every 45 s,obtaining magnetograms of size 4096×4096.SOHO/MDI was operated from 1995 to 2011 with spatial resolution of 2″ and temporal resolution of 96 minutes,obtaining magnetograms of size 1024×1024.In this paper,we super-resolve magnetograms of active region rather than full-disk magnetograms.We downloaded the HMI magnetograms of active region from JSOC and imaged them.The MDI magnetograms of active region are extracted from full-disk MDI magnetograms given coordinates of active regions.MDI and HMI are two different devices,not only differ in resolution.Thus,there exists domain difference between MDI magnetogram and HMI magnetogram.To mitigate domain difference,a DSGAN model is trained to fulfill domain transfer,generating LR HMI magnetogram complying with the domain of MDI magnetogram.Using the well-trained DSGAN,we collected 70,064 LR and HR HMI magnetogram patch pairs from 2010 May to 2014 May to construct a training data set for training the SPSR model.The validation set contains magnetogram patches from May 2014 to 2014 November.The HMI magnetograms from 2014 November to 2017 April and the MDI magnetograms from 1996 July to 2010 December constitute the testing data set.It should be pointed that the magnetogram patches of the same size are used for model training,while magnetograms of any size can be the inputs of SPSR model for inference.The details of training,validation and testing data sets are provided in Table1.

    Table 1The Details of the Datasets for the SPSR Model

    Table 2Comparisons of Models on Test HMI Dataset with PSNR,SSIM,LPIPS,CC and RMSE

    Table 3Comparisons on MDI Dataset(2010)with Respect to PSNR,SSIM,LPIPS,CC and RMSE

    Table 4Quantitative Comparisons on the Dataset of HMI Magnetograms with Respective to PSNR,SSIM,LPIPS,CC and RMSE

    3.Method

    As mentioned above,the overall framework of our method consists of two stages.In the first stage,the DSGAN model is employed to accomplish domain transferring,converting directly bicubic-downscaled HMI magnetograms to the ones in the same domain as MDI magnetogram.Then,a database consisting of paired LR&HR magnetograms in the same domain can be provided for the second stage of supervised learning.In the second stage,a supervised SR model,namely SPSR,is trained over the established database in the first stage.Usually,SR may generate super-resolved images with undesired geometric distortions or twisted structure.To alleviate this problem,the SPSR is investigated for magnetogram SR in this paper.It exploits gradient as the prior knowledge.Gradient is the direct measure of magnetic gradient field on the surface of the Sun.The SPSR model can improve the subjective visual performance with rich small-scale structures and sharp edges.We describe these two stages in detail as follows.

    3.1.Unsupervised DSGAN Model

    In this part,we describe the overall structure of the DSGAN as shown in Figure1,where the DSGAN is exploited to generate LR images in the domainZ,given the corresponding HR images in the domainY.First,we downscale the HR images using the bicubic downsampling method to obtain the LR images y↓b=B(y).y↓bis in the domainY↓instead of the expected domainZ.To transfer y↓bto the domainZ,a generatoris applied to y↓b,to learn a mapping fromY↓domain todomain,namely=G(y↓b) .To train,a standard GAN(Goodfellow2016) with an additional discriminatorDis employed.The discriminatorDis used to distinguish the output and the source images.The output imageG(B(Y)) is regarded as the fake sample,while the source image in the domainZis regarded as the real sample.

    Figure 1.Architecture of the unsupervised DSGAN model.

    Figure 2.Architectures of the supervised SPSR model.

    Network Architecture:The generator network contains several residual blocks (He et al.2015) with a short skip connection.Each block includes two convolutional layers with strides of 1 and a RELU activation function in between.We use 3×3 filters in all convolutional layers.As the downsampled image low frequency information remains and the high frequency information loses,we apply discriminatorDonly on the high frequency.The discriminator contains four convolutional layers with 5×5 kernels.Between each layer we apply LeakyReLU activations.The number of feature maps is increasing layer by layer,where the input channel is 3,then increases to 64,128,256.Finally,the output LR images of the generator and the source LR images are fed into the discriminator.

    Loss Function: To train the DSGAN model accurately,we utilize multiple loss functions with content lossLcontent,perceptual lossLperand adversarial lossLadv.As the content attach importance to the low frequencies,we define a Gaussian low-pass filter aswL.To keep the low frequencies constant,we apply anL1loss to be the content loss,as expressed by Equation (1):

    wherenrepresents the batch size.

    Perceptual loss has been proposed in Johnson et al.(2016),which is effective in image restoration.It contains semantic information in the features.We apply the pre-trained VGG16 network to extract the features.It can be defined as follows:

    where φirepresents the output features of theith layer.The bicubic downsampling method can only preserve low frequencies of an image,resulting in the loss of high frequencies of an image.Therefore,we apply the GAN loss (i.e.,lgenandldisk)only to the high frequencies,wherewHrepresents a Gaussian high-pass filter.The discriminator contributes to distinguishing the LR image y↓band the source LR image on high frequency.The GAN loss makes the generated LR image in the domain ?zclose to the source image in the domainZ.The GAN loss is given as:

    where λt1and λt2represent the weights of pixel loss and perceptual loss,respectively.λt3and λt4are the weights of the adversarial loss.

    3.2.Supervised SPSR Model

    After domain transformation,the output LR images with the corresponding HR images constitute the image pairs.The supervised SPSR model is then trained over the prepared LRHR image pairs.The SPSR model with gradient guidance preserves finer structure and high fidelity of the images.Because the gradient map reveals the sharpness and finer textures of an image,we use it to guide the super-resolution of the images.A gradient branch is used to generate the high resolution gradient maps from the LR images,providing gradient information to the SR branch.

    Network Architecture: An overview of the SPSR model is depicted in Figure2.The network consists of the SR branch and the gradient branch.The SR branch is divided into four modules: shallow feature extraction,high-frequency feature extraction utilizing Residual in Residual Dense Block(RRDB)proposed in the ESRGAN (Wang et al.2019),fusion module and reconstruction module.The shallow feature module includes one convolution layer with a 3×3 filter with feature maps of size 64.The high-frequency feature extraction module contains 23 RRDB blocks and one long skip connection.The fusion model contains one fusion block which fuses the feature maps from the two branches together.Finally,the SR image is reconstructed through the reconstruction module,which has one RRDB block and a convolutional layer.The gradient branch consists of multiple gradient blocks which are employed to extract higher-level features.In addition,the gradient branch incorporates the middle-level features from the SR branch,which benefits to recovering the gradient maps.Finally,the SR branch integrates the generated SR gradient maps by the gradient branch to guide SR reconstruction in turn.

    Figure 3.Visual comparison among LR,HR,our SPSR model,HighRes-Net and bicubic method on HMI images.From top to bottom,the first,third and fifth rows are full-images,and the others are zoomed-in patches.

    Figure 4.Visual comparison among LR,HR,our SPSR model,HighRes-Net and bicubic method on 2010 MDI images.From top to bottom,the first and third rows are full-images,and the others are zoomed-in patches.

    Figure 5.Visual comparison among LR,our SPSR model,HighRes-Net and bicubic method on the MDI magnetograms.From top to bottom,the first and third rows are full-images,and the others are zoomed-in patches.

    Figure 6.Visual comparison among LR-bicubic,LR-DSGAN,HR,our DSGAN-SPSR model and Bicubic-SPSR on HMI images,From top to bottom,the first row is full-images,and the second is zoomed-in patches.

    Loss Function:We utilize multiple loss functions containing common pixel-wise loss,perceptual loss,adversarial loss and gradient loss to train the model.The gradient loss consists of gradient pixel-wise loss and gradient adversarial loss.Both of them are applied to the gradient map of the generated SR image and HR image.The gradient pixel-wise loss and the gradient adversarial loss are given by:

    4.Results and Discussion

    4.1.Implementation Details

    Model training details: We downsample HR HMI magnetograms by the DSGAN method to get LR HMI inputs and only consider the scaling factor of 4 in the SPSR model.First,we utilize DSGAN to generate the LR HMI magnetograms in the similar domain to the MDI magnetograms.For training the DSGAN network,we crop 128×128 HR HMI magnetograms patches and 32×32 LR MDI magnetograms patches;the batch size is 16.We train the DSGAN network with 400 epochs and use the Adam (Kingma &Ba2014) optimizer with β=0.5.The initial learning rate is 2×10?4for the generator and discriminator and decayed with the epochs.

    Second,the generated LR-HR HMI magnetogram pairs are used to train the SPSR model.We randomly crop patches of size 32×32 and patches of size 128×128 from LR HMI magnetograms and the corresponding HR magnetograms,respectively.In addition,we train the model for 200 epochs and use the Adam optimizer with β1=0.9 and β2=0.999.The learning rate is set to 1×10?4,and it decayed to half by every 1000 iterations.We optimize the model using pixel loss,perceptual loss,GAN loss and gradient loss.Because the structure of the magnetograms is not complicated,the weights of the gradient loss and other image-space loss are different for the trade-off.All the experiments are implemented by using PyTorch 1.6.0.

    Evaluation metrics: For quantitative evaluation,we employ PSNR,Structure Similarity (SSIM) (Wang et al.2004),Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al.2018a),correlation coefficient(CC)and root mean square error (RMSE) to evaluate our method.PSNR represents the error between the corresponding pixel points,reflecting the fidelity of the generated images.SSIM measures the imagesimilarity in terms of brightness,contrast and structure.However,the two measures do not take into account the visual recognition and perception characteristics of the human,which makes the two measures are poorly related to the human subjective perception.Therefore,we consider the LPIPS as the primary metric for comparison.LPIPS has the best correlation with both image similarity and human perception.In addition,the physics-based CC and RMSE metrics are computed over the total signed magnetic flux to evaluate the super-resolved solar magnetograms.RMSE measures the deviation between the generated magnetic flux and the observed magnetic flux.RMSE is more sensitive to the outliers.The CC reflects the degree of linear correlation between the generated magnetic flux and the observed magnetic flux.Namely,the CC and RMSE reflect the trend and the true value consistency,respectively.The RMSE and CC metric are calculated by:

    whereN,are the total number of testing data,the observed magnetic flux,the generated magnetic flux,the average observed magnetic flux and the average generated magnetic flux,respectively.

    4.2.The Comparison of Super-solved Results on HMI

    Quantitative Comparison: In this section,we evaluate our model on the synthetic LR HMI magnetograms.We compare our model with other two methods including bicubic interpolation and a deep learning model named HighRes-Net.The HighRes-Net has been applied on solar magnetograms superresolution.In the quantitative evaluation,the results of PSNR,SSIM,LPIPS,CC and RMSE are presented in Table2.From Table2,we see that our SPSR model obtains the best PSNR,LPIPS,RMSE,comparable SSIM and CC.Our method surpasses other two methods by a large margin in terms of LPIPS benefiting from the gradient-space guidance for preserving geometric structures.Although HighRes-Net obtains the best SSIM values,it obtained the worst RMSE and PSNR values.This is due to the large deviation of the generated magnetic flux from the observed magnetic flux in the strong magnetic fields.The bicubic method obtains the second best PSNR values,it is more like a PSNR-oriented interpolation method generating blurred images.In addition,the CC value is almost equal to the HighRes-Net method,while the RMSE values surpass HighRes-Net by a large margin,indicating that our method has good stability while generating magnetic flux values are closer to the observed magnetic flux value.

    Qualitative Comparison:We show a visual comparison of our SPSR model,HighRes-Net and bicubic method.From Figure3,we observe that our method produces perceptualpleasant results which are more realistic and natural.For the first magnetogram observed on 2015 January 3,our SPSR method can recover small-scale magnetic structures with fewer artifacts.Moreover,SPSR model can produce clear polarity inversion line and sharper edges.The bicubic method and HighRes-Net produce blurry magnetograms.Then,we apply these methods on MDI magnetograms,the results of which are shown in Figures4and5.

    4.3.The Comparison of Super-solved Results on Real MDI

    In this section,we evaluate our model on the LR MDI magnetograms in real scenarios.MDI and HMI observations overlapped from 2010 to 2011.However,there exists a slight time difference of image capture time,resulting in small deviation of magnetogram between MDI and HMI.We present the quantitative and qualitative comparisons of SR results over paired data of MDI and HMI in 2010.The quantitative comparison is listed in Table3.We can observe that our method achieves the best performance over MDI data set in terms of almost all the metrics.The correlation coefficient(CC)and root mean square error(RMSE)metrics are calculated from total signed magnetic flux.The quantitative comparison shows that our method is effective to the real MDI magnetogram.The qualitative experimental results are presented in Figure4,where the magnetograms were observed on 2010 May 1 and 2010 November 16.From Figure4,our method can produce small-scale structures of magnetic field,with sharper edges than HighRes-Net and Bicubic methods,which is more close to the target magnetogram in both positive and negative magnetic regions.However,the results of the HighRes-Net and Bicubic methods are much more blurred than the SPSR method.All three methods produce a better distribution of magnetic flux.

    Table 5Comparison of SPSR Model with/without Gradient Guidance

    Figure5presents a comparison on MDI observed on 2003 October 31 and 2000 June 7 of our SPSR method,HighRes-Net and bicubic.Since the two MDI magnetograms have no ground truth,we only show the visual quality.For the image in Figure5,our SPSR model has generated relatively clear magnetograms with detailed information and preserves finer geometric structures.In contrast,the HighRes-Net and the bicubic method produce blurred magnetograms including unnatural artifacts.The structures in SPSR method are clear without severe distortions,while other methods fail to show a satisfactory appearance for the objects.

    Figure 9.Visual comparison among LR,HR,complete SPSR model and SPSR model without gradient guidance on MDI images.From top to bottom,the first is fullimages,and the second is zoomed-in patches.

    4.4.Ablation Study

    In this section,we conduct two experiments to validate the necessity of the different downsample methods and the gradient guidance.First,we compare our DSGAN model and the bicubic downsample method.We obtain two data sets containing LR-HR HMI magnetogram pairs by the two methods.We feed the two data sets to train the SPSR model separately.Our quantitative results are provided in Table4reporting PSNR,SSIM,LPIPS,CC and RMSE.It is observed that the performance of the DSGAN method is much better than the bicubic method in all metrics,which demonstrates the effectiveness of the domain transformation.We provide visual results in Figures6and7testing on DSGN-LR HMI and MDI magnetograms.In Figure6,we see that the bicubic-LR HMI magnetogram and DSGAN-LR HMI magnetogram exit some differences.For example,the bicubic-LR HMI magnetogram is clean in the clean domain resulting from it alters the characteristics of the HR HMI magnetograms.The DSGAN model enables the generated LR HMI magnetograms in the similar domain with the MDI magnetograms.The bicubic downsampling method produces blurred magnetograms with many artifacts and incorrect structure in Figures6and7.The result indicates that bicubic method is not applicable to super-resolution of the MDI magnetograms.In contrast,our DSGAN model greatly enhanced the performance.In Figure6,the generated SR HMI magnetogram is consistent with the HR HMI magnetrograms with sharper edges and finer geometric features.In Figure7,the generated MDI magnetogram has clear edges and small-scale magnetic structures.Therefore,our DSGAN is more applicable to the super-resolution of the MDI magnetograms.

    We conduct the second experiment to validate the effectiveness of the gradient loss and gradient branch.We compare the SPSR without the gradient loss and gradient branch with the complete SPSR model.Quantitative comparison is presented in Table5.We see that our complete SPSR model gets the best metrics,which demonstrates that gradient guidance can improve the model performance.The qualitative results presented in Figure8.The complete SPSR model recovers the HMI magnetogram with sharper edges and pleasant structure.However,the SPSR model without the gradient guidance recovers a blurred HMI magnetogram with incorrect structure.Figure9shows the visual results on the LR MDI magnetogram.Our complete SPSR model can recover photorealistic magenetograms without many distortions.The SPSR model without gradient guidance fails to reconstruct MDI magnetograms with clearly serrated structure.This illustrates the important role of gradient guidance for super-resolving the magnetograms with correct structure.

    5.Conclusions

    In this paper,a super-resolution model for upscaling MDI magnetogram into the one with the same resolution as HMI magnetogram,so that a large-scale database containing both MDI and HMI with uniform spatial resolution is built.The database provides continuous observation of solar magnetogram from 1996 to the present,which is fundamental for operating statistical forecasting of solar activities.In our case,there is no correspondence between MDI and HMI magnetograms,so we first propose a GAN model to generate downscaled magnetograms with the same resolution as MDI from HMI,meanwhile transfer MDI domain knowledge onto generated magnetograms.Through this way,we can get the correspondences of LR and HR magnetograms,which are then fed into another GAN for training a super-resolver,which can be applied to MDI to generate HR magnetograms with the same resolution as HMI.It should be pointed that the novelty concerning our model lies in a two-stream GAN model,which explicitly optimizes gradient preserving through a separate stream besides the other stream for optimizing image content fidelity.

    Acknowledgments

    This work was supported by the Peng Cheng Laboratory Cloud Brain (No.PCL2021A13),the National Key R&D Program of China(No.2021YFA160054),the National Natural Science Foundation of China (NSFC) (Nos.11790305,11973058 and 12103064).

    精品国产一区二区三区久久久樱花| 成人黄色视频免费在线看| 国产又色又爽无遮挡免| 久久人人97超碰香蕉20202| 国产免费一区二区三区四区乱码| 日本一区二区免费在线视频| 在线观看免费午夜福利视频| av有码第一页| 一个人免费在线观看的高清视频 | 一级a爱视频在线免费观看| 人人妻人人添人人爽欧美一区卜| 天天操日日干夜夜撸| 久久99一区二区三区| h视频一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品中文字幕在线视频| 国产精品影院久久| 亚洲国产欧美日韩在线播放| 超色免费av| 欧美精品一区二区大全| 国产又爽黄色视频| 亚洲精品成人av观看孕妇| 日韩 亚洲 欧美在线| 国产精品1区2区在线观看. | 97人妻天天添夜夜摸| 亚洲情色 制服丝袜| 亚洲伊人久久精品综合| 三级毛片av免费| 最新在线观看一区二区三区| 亚洲成国产人片在线观看| 国产黄频视频在线观看| 中文欧美无线码| 国产在线视频一区二区| 亚洲国产日韩一区二区| 99热全是精品| 美女国产高潮福利片在线看| 侵犯人妻中文字幕一二三四区| 一区二区三区四区激情视频| 国产精品一区二区在线不卡| 欧美日韩一级在线毛片| 亚洲伊人久久精品综合| 啪啪无遮挡十八禁网站| 国产黄色免费在线视频| 大陆偷拍与自拍| 午夜福利一区二区在线看| 久久久久国产精品人妻一区二区| 亚洲欧美成人综合另类久久久| 日韩一卡2卡3卡4卡2021年| 精品福利永久在线观看| 亚洲精品美女久久av网站| 他把我摸到了高潮在线观看 | av免费在线观看网站| 精品少妇一区二区三区视频日本电影| 国产人伦9x9x在线观看| 国产精品一区二区在线不卡| 超色免费av| 欧美日韩福利视频一区二区| 大香蕉久久网| 三上悠亚av全集在线观看| 国产精品一二三区在线看| 精品亚洲成国产av| 99九九在线精品视频| 国产亚洲精品一区二区www | 女人高潮潮喷娇喘18禁视频| 亚洲va日本ⅴa欧美va伊人久久 | 久久国产精品影院| 国产在视频线精品| 超碰成人久久| xxxhd国产人妻xxx| 精品国产乱子伦一区二区三区 | 老司机深夜福利视频在线观看 | 亚洲第一青青草原| 啦啦啦啦在线视频资源| 精品国内亚洲2022精品成人 | 精品国产一区二区久久| 久久久久国产一级毛片高清牌| 欧美一级毛片孕妇| 极品人妻少妇av视频| 夜夜夜夜夜久久久久| 国产精品自产拍在线观看55亚洲 | 青草久久国产| 日韩熟女老妇一区二区性免费视频| 亚洲一码二码三码区别大吗| 老鸭窝网址在线观看| tocl精华| 精品久久蜜臀av无| 国产麻豆69| 最新在线观看一区二区三区| 久久午夜综合久久蜜桃| 制服人妻中文乱码| 国产在视频线精品| 777久久人妻少妇嫩草av网站| 麻豆乱淫一区二区| 亚洲国产中文字幕在线视频| 免费看十八禁软件| 成年人黄色毛片网站| 亚洲中文av在线| 亚洲人成电影观看| 国产精品国产av在线观看| 精品国产一区二区三区四区第35| 精品人妻一区二区三区麻豆| 每晚都被弄得嗷嗷叫到高潮| 在线亚洲精品国产二区图片欧美| 无限看片的www在线观看| 在线十欧美十亚洲十日本专区| 99热全是精品| 午夜影院在线不卡| 亚洲国产毛片av蜜桃av| 欧美黑人精品巨大| 国产91精品成人一区二区三区 | 国产精品九九99| 男女边摸边吃奶| 男女之事视频高清在线观看| 亚洲国产av影院在线观看| 国产成人影院久久av| 免费观看a级毛片全部| 中亚洲国语对白在线视频| 欧美激情高清一区二区三区| 国产精品一区二区精品视频观看| 国产精品熟女久久久久浪| 亚洲国产欧美日韩在线播放| 亚洲精品国产av成人精品| 少妇 在线观看| 亚洲自偷自拍图片 自拍| 成年人午夜在线观看视频| 国产精品99久久99久久久不卡| 999久久久精品免费观看国产| 国产精品久久久久久精品电影小说| 欧美精品啪啪一区二区三区 | 成人av一区二区三区在线看 | 女警被强在线播放| 69av精品久久久久久 | 亚洲国产精品一区二区三区在线| 在线永久观看黄色视频| 黑丝袜美女国产一区| 日韩熟女老妇一区二区性免费视频| 午夜福利免费观看在线| 高清黄色对白视频在线免费看| 免费人妻精品一区二区三区视频| 各种免费的搞黄视频| 久久久久久亚洲精品国产蜜桃av| 一本—道久久a久久精品蜜桃钙片| 欧美日韩一级在线毛片| 精品欧美一区二区三区在线| 两性夫妻黄色片| 国产区一区二久久| 亚洲色图 男人天堂 中文字幕| 两个人看的免费小视频| 精品第一国产精品| 夜夜骑夜夜射夜夜干| av国产精品久久久久影院| 大片免费播放器 马上看| 亚洲欧美日韩另类电影网站| 韩国高清视频一区二区三区| 日韩欧美一区视频在线观看| 亚洲av电影在线进入| 人妻一区二区av| 91成年电影在线观看| 母亲3免费完整高清在线观看| 五月开心婷婷网| 亚洲国产精品999| 99国产综合亚洲精品| 午夜福利在线观看吧| 国产麻豆69| 久久精品亚洲av国产电影网| 欧美人与性动交α欧美精品济南到| 汤姆久久久久久久影院中文字幕| 国产成人精品在线电影| 中文字幕人妻熟女乱码| 久久香蕉激情| 正在播放国产对白刺激| 黄色毛片三级朝国网站| 欧美日韩av久久| 亚洲精品中文字幕在线视频| 国产欧美日韩一区二区三 | 麻豆av在线久日| 黄色片一级片一级黄色片| 精品一区二区三区av网在线观看 | 久久免费观看电影| 欧美在线一区亚洲| 爱豆传媒免费全集在线观看| 久久这里只有精品19| 伦理电影免费视频| 日日爽夜夜爽网站| 麻豆乱淫一区二区| 日韩 亚洲 欧美在线| 99热全是精品| 精品一区二区三卡| 嫩草影视91久久| 亚洲精品粉嫩美女一区| 少妇精品久久久久久久| 人人妻,人人澡人人爽秒播| 免费高清在线观看日韩| 性高湖久久久久久久久免费观看| av超薄肉色丝袜交足视频| 日本vs欧美在线观看视频| 精品一区二区三区四区五区乱码| 国产麻豆69| 久久国产亚洲av麻豆专区| 少妇粗大呻吟视频| 国产无遮挡羞羞视频在线观看| 精品人妻1区二区| 日韩精品免费视频一区二区三区| 永久免费av网站大全| 亚洲九九香蕉| 日本wwww免费看| 最黄视频免费看| 欧美少妇被猛烈插入视频| 亚洲色图综合在线观看| 黑人巨大精品欧美一区二区mp4| 久久精品国产a三级三级三级| 日韩欧美一区二区三区在线观看 | 亚洲成人国产一区在线观看| 亚洲精品国产区一区二| 男人添女人高潮全过程视频| 国产在线免费精品| 久久久久久久久久久久大奶| 国产精品久久久久久人妻精品电影 | a级毛片黄视频| 国产野战对白在线观看| 亚洲国产精品成人久久小说| 午夜福利影视在线免费观看| 亚洲国产欧美日韩在线播放| 啦啦啦免费观看视频1| 国产男女超爽视频在线观看| 国产精品自产拍在线观看55亚洲 | 久久人人爽人人片av| 各种免费的搞黄视频| 午夜福利影视在线免费观看| 手机成人av网站| 天天影视国产精品| 日本黄色日本黄色录像| 日本wwww免费看| 婷婷丁香在线五月| 国产一区二区 视频在线| 中文字幕高清在线视频| 一本大道久久a久久精品| 国产成人欧美| 人人妻人人爽人人添夜夜欢视频| 最近中文字幕2019免费版| 各种免费的搞黄视频| 色综合欧美亚洲国产小说| 精品卡一卡二卡四卡免费| 精品少妇一区二区三区视频日本电影| 成年av动漫网址| 亚洲精品一二三| 美女高潮到喷水免费观看| 视频区图区小说| 亚洲欧美成人综合另类久久久| 黄色毛片三级朝国网站| 精品国内亚洲2022精品成人 | 伦理电影免费视频| 久热爱精品视频在线9| 亚洲欧美激情在线| 精品视频人人做人人爽| 欧美激情 高清一区二区三区| cao死你这个sao货| 国产熟女午夜一区二区三区| 国产成人a∨麻豆精品| 国产高清国产精品国产三级| 国产男人的电影天堂91| 黄片播放在线免费| 12—13女人毛片做爰片一| 国产日韩欧美亚洲二区| 亚洲男人天堂网一区| 制服诱惑二区| 丰满迷人的少妇在线观看| 免费在线观看日本一区| 91国产中文字幕| 一本久久精品| 国产成人欧美| 黄片小视频在线播放| 人人妻人人澡人人看| 亚洲专区中文字幕在线| 人妻一区二区av| 一二三四社区在线视频社区8| 桃红色精品国产亚洲av| 精品第一国产精品| 青春草亚洲视频在线观看| 男男h啪啪无遮挡| 午夜福利视频在线观看免费| 国产精品一区二区在线观看99| 亚洲一码二码三码区别大吗| 久久久久国产一级毛片高清牌| 老司机午夜福利在线观看视频 | 日韩视频一区二区在线观看| 狂野欧美激情性xxxx| 精品久久久久久电影网| 久久99热这里只频精品6学生| 天堂俺去俺来也www色官网| 久久中文看片网| 一区二区日韩欧美中文字幕| 国产黄频视频在线观看| 黑人欧美特级aaaaaa片| 在线观看舔阴道视频| 新久久久久国产一级毛片| 亚洲欧美精品自产自拍| 欧美日韩视频精品一区| 一区二区三区乱码不卡18| 亚洲精品中文字幕在线视频| 90打野战视频偷拍视频| 免费久久久久久久精品成人欧美视频| 亚洲成av片中文字幕在线观看| 美女脱内裤让男人舔精品视频| 国产精品一区二区在线观看99| 法律面前人人平等表现在哪些方面 | 一区二区三区乱码不卡18| 欧美 亚洲 国产 日韩一| 午夜免费观看性视频| 免费观看a级毛片全部| www.熟女人妻精品国产| 12—13女人毛片做爰片一| 宅男免费午夜| 亚洲一卡2卡3卡4卡5卡精品中文| 丰满少妇做爰视频| 亚洲av片天天在线观看| 国产亚洲av片在线观看秒播厂| 国产欧美亚洲国产| 亚洲av男天堂| 777米奇影视久久| a 毛片基地| 精品一品国产午夜福利视频| 汤姆久久久久久久影院中文字幕| 久久久久久久精品精品| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲中文av在线| 免费久久久久久久精品成人欧美视频| 亚洲五月色婷婷综合| 两个人免费观看高清视频| 国产成人一区二区三区免费视频网站| 法律面前人人平等表现在哪些方面 | 秋霞在线观看毛片| 久久久国产精品麻豆| 伊人亚洲综合成人网| 午夜激情久久久久久久| 亚洲国产欧美日韩在线播放| av在线app专区| 久久久水蜜桃国产精品网| 精品久久久久久电影网| 国精品久久久久久国模美| 天天躁夜夜躁狠狠躁躁| 高清黄色对白视频在线免费看| 亚洲欧洲精品一区二区精品久久久| 男人爽女人下面视频在线观看| 巨乳人妻的诱惑在线观看| 日本a在线网址| 欧美在线一区亚洲| 黑人欧美特级aaaaaa片| 另类精品久久| 国产91精品成人一区二区三区 | 亚洲色图 男人天堂 中文字幕| 久久国产亚洲av麻豆专区| 老司机深夜福利视频在线观看 | 黄色a级毛片大全视频| 97人妻天天添夜夜摸| 久久亚洲国产成人精品v| 天堂俺去俺来也www色官网| 亚洲,欧美精品.| 免费少妇av软件| 九色亚洲精品在线播放| 少妇 在线观看| 国产成+人综合+亚洲专区| 亚洲 国产 在线| 黄片播放在线免费| 欧美日本中文国产一区发布| 国产精品影院久久| 水蜜桃什么品种好| 午夜精品久久久久久毛片777| 亚洲精品成人av观看孕妇| 国产成人啪精品午夜网站| 国产精品久久久人人做人人爽| 99精品欧美一区二区三区四区| 青春草视频在线免费观看| 欧美变态另类bdsm刘玥| 男女边摸边吃奶| 国产免费视频播放在线视频| 久久精品aⅴ一区二区三区四区| 99久久国产精品久久久| 秋霞在线观看毛片| 欧美激情高清一区二区三区| 精品少妇久久久久久888优播| 美女中出高潮动态图| 日本一区二区免费在线视频| 97精品久久久久久久久久精品| 99国产综合亚洲精品| 欧美久久黑人一区二区| 亚洲国产毛片av蜜桃av| 午夜精品久久久久久毛片777| 午夜激情av网站| 国内毛片毛片毛片毛片毛片| 91老司机精品| 久久亚洲精品不卡| 三级毛片av免费| 亚洲欧美激情在线| 黄频高清免费视频| 午夜免费鲁丝| 欧美97在线视频| 制服诱惑二区| 在线十欧美十亚洲十日本专区| 两个人免费观看高清视频| 亚洲人成电影免费在线| 亚洲国产av影院在线观看| 精品国内亚洲2022精品成人 | 一边摸一边做爽爽视频免费| 男女床上黄色一级片免费看| 大片电影免费在线观看免费| 99久久人妻综合| 国产成人精品在线电影| 黄色a级毛片大全视频| 亚洲欧美日韩另类电影网站| 亚洲av日韩在线播放| 国精品久久久久久国模美| 性色av一级| 99国产精品一区二区蜜桃av | 90打野战视频偷拍视频| 人人澡人人妻人| 亚洲精品第二区| 交换朋友夫妻互换小说| 色综合欧美亚洲国产小说| 亚洲专区中文字幕在线| 国产精品成人在线| 欧美另类一区| 国产精品香港三级国产av潘金莲| 欧美日韩视频精品一区| 亚洲国产中文字幕在线视频| 精品亚洲成国产av| 黄色视频不卡| 成人18禁高潮啪啪吃奶动态图| 精品亚洲成国产av| 大香蕉久久网| 人人妻人人添人人爽欧美一区卜| 国产av一区二区精品久久| 欧美激情高清一区二区三区| 国产免费视频播放在线视频| 成人av一区二区三区在线看 | 亚洲伊人久久精品综合| 女人被躁到高潮嗷嗷叫费观| 这个男人来自地球电影免费观看| 99香蕉大伊视频| 一二三四在线观看免费中文在| 老汉色av国产亚洲站长工具| 午夜激情久久久久久久| 老熟妇仑乱视频hdxx| 国产黄频视频在线观看| 水蜜桃什么品种好| 黄色视频不卡| 中文字幕最新亚洲高清| 亚洲 国产 在线| 99热国产这里只有精品6| 国产精品久久久久成人av| 亚洲,欧美精品.| 亚洲七黄色美女视频| 国产成+人综合+亚洲专区| 不卡av一区二区三区| 亚洲九九香蕉| 亚洲av电影在线观看一区二区三区| av视频免费观看在线观看| 亚洲av电影在线进入| 午夜福利视频精品| 考比视频在线观看| 日本av免费视频播放| 国产精品一区二区精品视频观看| 男女下面插进去视频免费观看| 女人精品久久久久毛片| 日韩制服丝袜自拍偷拍| 国产伦人伦偷精品视频| av超薄肉色丝袜交足视频| 男人爽女人下面视频在线观看| 美女脱内裤让男人舔精品视频| 国产精品亚洲av一区麻豆| 午夜精品国产一区二区电影| 欧美日韩视频精品一区| 多毛熟女@视频| av欧美777| 国产av又大| 大码成人一级视频| 免费少妇av软件| 最近最新免费中文字幕在线| 国产精品1区2区在线观看. | 中文精品一卡2卡3卡4更新| av线在线观看网站| 纵有疾风起免费观看全集完整版| 欧美精品啪啪一区二区三区 | 午夜成年电影在线免费观看| 国产日韩欧美在线精品| 日韩大片免费观看网站| 亚洲成人免费av在线播放| 亚洲免费av在线视频| av在线老鸭窝| 老司机午夜福利在线观看视频 | 12—13女人毛片做爰片一| 麻豆国产av国片精品| 亚洲精品中文字幕在线视频| 中文欧美无线码| 国产精品久久久久久精品古装| 国产成人影院久久av| 九色亚洲精品在线播放| av超薄肉色丝袜交足视频| 97人妻天天添夜夜摸| 中亚洲国语对白在线视频| 欧美精品亚洲一区二区| 中亚洲国语对白在线视频| 99热全是精品| 桃红色精品国产亚洲av| 在线观看www视频免费| 欧美成狂野欧美在线观看| 国产一级毛片在线| 一区在线观看完整版| 午夜视频精品福利| 久久香蕉激情| 好男人电影高清在线观看| 黄色片一级片一级黄色片| 韩国精品一区二区三区| 久久久精品国产亚洲av高清涩受| 亚洲伊人色综图| 操美女的视频在线观看| 一个人免费看片子| 一级片'在线观看视频| 人妻 亚洲 视频| 黑人欧美特级aaaaaa片| 十八禁网站网址无遮挡| 久久99热这里只频精品6学生| 国产一区二区激情短视频 | 日韩视频一区二区在线观看| 精品国产国语对白av| 久久人妻熟女aⅴ| www日本在线高清视频| 永久免费av网站大全| 侵犯人妻中文字幕一二三四区| 又大又爽又粗| 国产精品久久久久久精品古装| 别揉我奶头~嗯~啊~动态视频 | 性少妇av在线| tube8黄色片| 大片电影免费在线观看免费| h视频一区二区三区| 国产精品 欧美亚洲| 亚洲视频免费观看视频| 色视频在线一区二区三区| 日韩三级视频一区二区三区| 少妇猛男粗大的猛烈进出视频| 久久国产精品大桥未久av| 国产精品久久久久成人av| 老鸭窝网址在线观看| 久久久精品区二区三区| 久久香蕉激情| 精品亚洲成a人片在线观看| 老司机午夜福利在线观看视频 | 亚洲少妇的诱惑av| 老司机午夜福利在线观看视频 | 啦啦啦啦在线视频资源| 亚洲一卡2卡3卡4卡5卡精品中文| 成人国产一区最新在线观看| 国产区一区二久久| 美女午夜性视频免费| svipshipincom国产片| 欧美老熟妇乱子伦牲交| 黄片播放在线免费| 日韩三级视频一区二区三区| 热re99久久国产66热| 久久中文字幕一级| 亚洲欧美精品综合一区二区三区| 午夜福利在线观看吧| 国产无遮挡羞羞视频在线观看| 欧美亚洲 丝袜 人妻 在线| 一区二区三区激情视频| 成人手机av| 免费在线观看影片大全网站| 热99re8久久精品国产| 国产亚洲精品第一综合不卡| 婷婷丁香在线五月| 80岁老熟妇乱子伦牲交| 国产日韩一区二区三区精品不卡| 日韩三级视频一区二区三区| 99久久99久久久精品蜜桃| 亚洲欧美精品自产自拍| 秋霞在线观看毛片| 欧美日韩福利视频一区二区| 精品人妻一区二区三区麻豆| 欧美另类亚洲清纯唯美| 99国产精品免费福利视频| 丰满少妇做爰视频| 男女下面插进去视频免费观看| 麻豆乱淫一区二区| 在线观看免费午夜福利视频| av天堂在线播放| 久久精品久久久久久噜噜老黄| 午夜福利视频在线观看免费| 日韩一卡2卡3卡4卡2021年| 成人国产一区最新在线观看| 大码成人一级视频| 亚洲男人天堂网一区| 99久久99久久久精品蜜桃| 电影成人av| 国产欧美日韩一区二区三区在线| 狂野欧美激情性xxxx| 91麻豆精品激情在线观看国产 | 美女国产高潮福利片在线看| 亚洲精品自拍成人| 黄色 视频免费看| 人人妻人人澡人人看| 91成人精品电影| www.精华液| 久久亚洲国产成人精品v| 中文字幕av电影在线播放| 99国产综合亚洲精品| 女性被躁到高潮视频| 桃红色精品国产亚洲av| 成人av一区二区三区在线看 | 久久久久久久国产电影| 成人国产av品久久久| 成人av一区二区三区在线看 | 精品人妻一区二区三区麻豆| av网站在线播放免费| 精品乱码久久久久久99久播|