• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On the Jet Structures of GRB 050820A and GRB 070125

    2022-09-02 12:25:38XinYuLiHaoNingHeandDaMingWei

    Xin-Yu LiHao-Ning Heand Da-Ming Wei

    1 Key Laboratory of Dark Matter and Space Astronomy,Purple Mountain Observatory,Chinese Academy of Sciences,Nanjing 210033,China;dmwei@pmo.ac.cn,hnhe@pmo.ac.cn

    2 School of Astronomy and Space Science,University of Science and Technology of China,Hefei 230026,China

    Abstract We present the broadband numerical modeling of afterglows for two remarkably bright long gamma-ray bursts(GRBs),GRB 050820A and GRB 070125,with a wide range of observations from the radio band to the X-ray band.In our work,we fit light curves and constrain physical parameters using a standard forward shock model from the afterglowpy Python package,considering different jet structures and the jet lateral expansion.For GRB 050820A,the constrained jet is close to a top-hat jet with an extremely small half opening angle of about 0.015 rad,and the circumburst matter density is as small as 10?7 cm?3,which suggests that this peculiar long GRB might originate from metal-poor stars with low mass-loss rates.To explain the late time optical light curves of GRB 070125,the effects of the lateral expansion and the participation factor of electrons that are accelerated by the shock have to be taken into account.The constrained results for GRB 070125 show that the jet is also close to a top-hat jet with a half opening angle of about 0.1 rad,the viewing angle is about 0.05 rad,the circumburst density is about 10 cm?3,and the participation factor is about 0.1.The jet energy of the two bursts is required to be ~1051–1052 erg,which can be produced by a millisecond magnetar or a hyper-accreting black hole.

    Key words: methods: numerical–ISM: jets and outflows–gamma-rays: ISM–gamma-rays: general

    1.Introduction

    Gamma-ray bursts (GRBs) originate from the collapse of massive stars or the merger of compact stars,which are the brightest explosive events in the universe.After collapsing or merging,collimated ultra-relativistic jets emerge from the central engine,which might be powered by the rotation energy of a central magnetar(Uso1992)or the accretion of star material onto a central black hole (Woosley1993).As the jet propagates through the external medium,its interaction with the medium will produce multi-wavelength afterglow emission.The highly collimated jets can explain the extremely high isotropic energy of GRBs and the jet break phenomenon of the afterglow emission(Sari et al.1999;Rhoads1999).In nature,most GRB jets might be structured jets.Besides the top-hat jet model,there are also more complex jet models such as the Gaussian model and the power-law model that are widely discussed.If jets are viewed onaxis,the light curves of structured jets are similar to those of tophat jets.If viewed off-axis,light curves of structured jets display more complex behavior than top-hat jets(Kumar&Granot2003;Wei &Jin2003).

    In 2017,the binary neutron-star merger event GW170817 was observed followed by a GRB,GRB 170817A (Abbott et al.2017a,2017b).The afterglow of GRB 170817A demonstrates quite a few characteristics different from typical afterglows,such as the lack of early emission,a slow rising light curve,apparent motion of the radio centroid and postbreak sharp decline,which are consistent with a structured jet viewed off-axis (Lamb &Kobayashi2017;Alexander et al.2018;Hotokezaka et al.2018;Wu &MacFadyen2018;Ghirlanda et al.2019;Fong et al.2019;Lamb et al.2019;Troja et al.2019;Mooley et al.2018;He et al.2018).Ryan et al.(2020) developed an open source Python package afterglowpy to compute the afterglow emission from structured jets from different viewing angles to explain characteristics of light curves for GRB 170817A.

    Cunningham et al.(2020)used the afterglowpy software package to analyze the afterglow for GRB 160625B,a long GRB with a high isotropic energyEγ,iso~1054erg(Burns2016) and redshiftz=1.406 (Xu et al.2016),and concluded that a Gaussian-shaped jet is favored over a top-hat jet (Cunningham et al.2020).

    To find more evidence of structured jets,we pick two bursts,GRB 050820A atz=2.615 (Prochaska et al.2005;Ledoux et al.2005)and GRB 070125 atz=1.547(Cenko et al.2008),to analyze their afterglow behavior.These two bursts are analogous to GRB 160625B for their very high isotropic energy,high redshift and abundant multi-wavelength afterglow observations.

    Previous works analyzed the multi-wavelength afterglow observations of GRB 050820A (Cenko et al.2006) and GRB 070125 (Updike et al.2008;Chandra et al.2008),using uniform jet models.Cenko et al.(2006) simply adopted a power-law relationFν∝t?αν?βto fit the light curve and spectra for the afterglow of GRB 050820A.Chandra et al.(2008) performed an afterglow analysis on GRB 070125,but reported some parameters with unreasonable values.

    In this work,we make use of the afterglowpy package for multi-wavelength afterglow modeling of GRB 050820A and GRB 070125,to study jet structures such as the top-hat,Gaussian and power-law jet models,the fraction of electrons that are accelerated by the shock,i.e.,the participation fraction ξN(in most previous studies,it was often assumed that all electrons have been accelerated to high energy,however in reality it is possible that only a fraction of electrons could be accelerated to high energy by the shock) and the lateral expansion(LE)of jets.In our work,we leave the viewing angle θvas a free parameter,while θv=0 is fixed in previous works.Posterior distributions of physical parameters are generated by adopting a Markov Chain Monte Carlo (MCMC) ensemble sampler emcee Python package (Foreman-Mackey et al.2013).In the end,we evaluate jet structures and central engines of the two GRBs.

    In Section2,we introduce the afterglowpy model and mathematical definitions of jet models.We present the detailed analyses of GRB 050820A and GRB 070125 in Section3and Section4,respectively.Discussions and conclusions are presented in Section5.Cosmological parameters are adopted asH0=67.4 ± 0.5 km s?1Mpc?1and Ωm=0.315±0.007(Aghanim et al.2020) throughout the paper.

    2.Afterglowpy

    Afterglowpy is a public Python package,which implements the single-shell approximation to model a blast wave propagating through a uniform circumburst medium,to calculate the afterglow emission from the forward shock for different viewing angles and jet structures.Different variations of jet structures,such as the top-hat,Gaussian and power-law jet models,are included.

    To the present time,the top-hat jet,i.e.,a uniform jet,is most frequently used in GRB problems.The following function describes the energy distribution as a function of the angle from jet axis of the top-hat jet

    where θcis the half opening angle of the jet core and θ is the angle from the jet axis.The beaming-corrected kinetic energy of the jet can be calculated viaEK=E0(1-cosθc)~

    In afterglowpy,the energy distribution of the Gaussian jet model is defined as the following function

    where θwis the truncation angle of the Gaussian jets.

    The power-law jet model introduces one more parameterbto describe the energy distribution as

    The beaming-corrected kinetic energyEKfor the Gaussian and power-law jet model can be calculated by integrating Equations (2) and (3),respectively.

    Afterglowpy utilizes semi-analytic methods to calculate the afterglow emission and uses the trans-relativistic equation to connect the ultra-relativistic and non-relativistic phases.In addition,afterglowpy can capture the features of afterglow emission for different viewing angles,and also provides approximated descriptions for the jet LE.Therefore,afterglowpy offers a greater degree of flexibility to study the GRB afterglow emission.A detailed introduction is available in the article Ryan et al.(2020) and at the websitehttps://github.com/geoffryan/afterglowpy.

    The process of our fitting is as follows: with the observed broadband fluxes,frequencies and observation times as input,and by employing emcee with afterglowpy,we can derive a posterior distribution of parameters on properties of the jets,such asE0,θv,θc,θw,b,the fraction of shock energy converted to electrons and to the magnetic field ?e,?B,the spectral index of the electron distributionp,the circumburst densityn0and the participation fraction ξN.

    3.GRB 050820A

    3.1.Data

    The Swift Burst Alert Telescope (BAT) was triggered by GRB 050820A at 06:34:53 on 2005 August 20 (UT) (Page et al.2005b).The Konus-Wind instrument also was triggered by the burst 257.948 seconds later(Pal’Shin&Frederiks2005).The total fluence in the energy range of 20–1000 keV was×10-5erg cm-2.At redshiftz=2.615 (Prochaska et al.2005;Ledoux et al.2005),the total isotropic γ-ray energy in the energy range of 1–104keV was ~9.7×1053erg(Cenko et al.2006,2010).

    The Swift X-Ray Telescope (XRT) started to observe GRB 050820A from 80 s after the BAT trigger (Page et al.2005a).The flux density at 1 keV is calculated by adopting an average spectral indexand the fluence in the energy range of 0.3–10 keV provided by the Swift/XRT burst Analyser.3 https://www.swift.ac.uk/burst_analyser/00151207/

    We adopted optical observations presented in Cenko et al.(2006),and a correction for Galactic extinctionE(B?V)=0.044 mag from Schlegel et al.(1998) was made.We do not use theU-band orB-band data in the light curve modeling,since they are affected by Ly-α absorption (Madau1995).Since the synchrotron self-absorption (SSA) effect is not included in afterglowpy,and the radio data might be affected by the SSA effect,we do not use the radio data in the modeling.

    3.2.Analysis

    We adopt afterglowpy to fit the X-ray and optical light curves using the top-hat,Gaussian and power-law jet models.In the first attempt,we ignored the optical data beforeT0+600 s,since the emission is composed of both prompt emission and forward shock afterglow emission(Vestrand et al.2006),whereT0is the burst time.However,the predicted light curves overshoot the observed data inV-,Rc-andIc-bands beforeT0+600 s,as depicted in Figure1.The reason might be that afterglowpy does not include an initial coasting phase(Ryan et al.2020),which may affect the predicted light curves at very early time.Therefore,in the end,we adopt the data fromT0+0.05 days to avoid this problem.The results for different jet models and considering LE/no LE are listed in Table1.From the table,we learn that,for top-hat jet models,the resulting parameters are similar no matter whether LE is considered or not.

    Figure 1.Observed optical data (points) of Ic-, Rc-and V-band and corresponding fits (lines) ignoring observations before 600 s,which are indicated by hollow squares.

    GRB 050820A is a long GRB originating from the death of a massive star,for which the local circumburst density is expected to be ~10?3–102cm?3.However,the fitted value of the circumburst medium density (n0~10?7cm?3) is extremely low.We note that GRB 050820A is not the only GRB for which the medium density is particularly small.The circumburst medium densities of a few GRBs,such as GRB 160509A (2.9×10?4cm?3),GRB 160625B (9.6×10?7cm?3),GRB 210619B(6×10?5cm?3) and GRB 171710A (8.9×10?5cm?3),are also constrained to be extremely low (Kangas &Fruchter2021;Cunningham et al.2020;Oganesyan et al.2021).These peculiar long GRBs might originate from metal-poor stars with low massloss rates (Cunningham et al.2020).

    Adopting parameters for the top-hat (LE) model listed in Table1,we calculate the light curves for the radio bands,and find out that the SSA effect is needed to avoid overshooting the radio flux.If we assume the SSA frequency to be νa=13 GHz,the calculated light curves can fit the observations well at the frequency of 8.46 GHz from 20 days after the burst,and do not overshoot observations at frequencies of 4.86 and 22.5 GHz.The calculated light curves for the X-ray,optical and radio bands,for the top-hat (LE) model,assuming ξN=1 and νa=13 GHz,are plotted in Figure2.4The observed radio light curves in Figure 2 are not reproduced well.This might be because the early radio observations(before 20 days)are disturbed by the interstellar scintillation (Rickett et al. 1984;Rickett 1986).

    The calculated spectra at three epochs of 0.2 days,2.0 days and 7.0 days are plotted in Figure3.From Figure3,we ascertain that νm<νo<νx<νcat 0.2 days after the burst,where νoand νxcorrespond to the frequencies of the optical data and the X-ray data,respectively,and νcand νmare the cooling frequency and the minimum frequency of electrons,respectively.We simply use a single power-law function ofFν∝ν?βto fit the observed spectra in Figure3,and then check whether the value ofpis consistent with that derived from afterglowpy.The fitted slope of the single power-law spectrum isβ=then the corresponding value ofwhich is consistent with the results shown in Table1within the margin of error.

    Table 1Physical Parameter Posteriors for GRB 050820A

    4.GRB 070125

    4.1.Data

    GRB 070125 was triggered at 07:20:42 on 2007 January 25(UT)by space telescopes in the Inter Planetary Network (IPN)(Hurley et al.2007).The total fluence in the energy band of 20 keV–10 MeV is 1.74×10?4erg cm?2detected by the Konus-Wind (Golenetskii et al.2007;Bellm et al.2008).Adopting the redshiftz=1.547(Cenko et al.2008),we get the isotropic γ-ray energy as 1.1×1054erg (Chandra et al.2008).

    The Swift XRT started to observe this GRB at 46.7 ks after the trigger (Racusin et al.2007).The flux density at 1 keV is calculated by adopting an average spectral indexГX=and the fluence in the energy range of 0.3–10 keV provided by the Swift/XRT burst Analyser.5 https://www.swift.ac.uk/burst_analyser/00020047/

    We adopt the data from the ultraviolet to infrared bands corrected for Galactic extinction from Updike et al.(2008)and Chandra et al.(2008).We do not use the data of uvw2 and uvm2 bands in the afterglowpy fitting,since they suffer severe Ly-α absorption.

    The radio data in the bands of 22.5,14.96 and 8.46 GHz are adopted from Chandra et al.(2008).The radio data in the early time before 20 days post the burst are excluded in the fitting,since the interstellar scintillation causes short-term fluctuations of the flux in the early 20 days (Chandra et al.2008).

    The data between 1–2 days for all bands are excluded due to the existence of multi-flares (Updike et al.2008).

    4.2.Analysis

    We try to fit the multi-wavelength afterglow light curves of GRB 070125 via the top-hat,Gaussian and power-law jet models using afterglowpy.In the beginning,we set ξN=1;the resulting light curves do not agree with the observations well.Then we set the parameter ξNfree,and get the resulting light curves that fit the observations better.The results are listed in Table2,and the calculated light curves for the top-hat jet model are plotted in Figure4.Models considering LE can explain the late optical observations better than models considering no LE.As seen from the light curves forR-band shown in Figure4,the light curve for the case considering no LE (light green dashed line)overshoots the observed data or upper limits in theR-band after 22 days from the burst,while the light curve considering LE (light green solid line) is steeper (Rhoads1999;Sari et al.1999) and does not overshoot the observed data and upper limits.Compared to no LE models,LE models require a smaller isotropic kinetic energyEK,iso,a larger radiation efficiency η,denser circumburst mediumn0and larger ?ebut smaller ?B.Moreover,considering LE,a larger θcis required.

    The calculated spectra at two epochs for the top-hat (LE)model are plotted in Figure5.As in Section3.2,we perform the same single power-law fitting on the observed spectra,to check whether the value of p is consistent with that derived from afterglowpy.The fitted slope for the spectrum isfor 0.55 days and 2.9 days after the burst,respectively.As shown in Figure5,the spectrum is in the regime of νm<νc<νo<νxfor the two epochs,then we havep=?2β,leading to the corresponding values of p asrespectively,which are very compatible with the constrained value of p in Table2.

    Figure 2.The observed XRT,optical and radio afterglow light curves of GRB 050820A,and the resulting light curves of the top-hat (LE) model (ξN=1) from afterglowpy.The reported data of U-and B-band in Figure 2 were corrected by the factors U=0.4534 and B=0.5440 caused by Ly-α absorption.Downward triangles represent upper limits.

    Figure 3.Observed spectral energy distribution (SED) of GRB 050820A(points)and the top-hat fits(lines)with the LE(ξN=1)from afterglowpy at three epochs.

    5.Discussion and Conclusion

    5.1.The Comparison to Previous Works

    GRB 050820A and GRB 070125 are very bright GRBs at high redshift.The abundant observations on these two GRBs provide us rich information to explore the nature of the afterglow.Analysis on GRB 050820A and GRB 070125 has been done in previous works.Cenko et al.(2006) used a simple analytical relationship to fit the light curves and spectra of GRB 050820A.Updike et al.(2008) and Chandra et al.(2008) analyzed multiwavelength observations of GRB 070125.However,all of these works assumed a uniform jet,and set θv=0 and ξN=1.In Chandra et al.(2008),some extreme parameters are required to explain the observations.For example,an extremely high radiation efficiency η ~100% and an extremely high electron energy fraction ?e~1 is required in the case with a wind-like environment,and the magnetic field energy fraction ?B~1 is required in the interstellar medium(ISM)case.Moreover,the flux in theR-band calculated by Chandra et al.(2008) overshoots the observations in the late time.

    In this work,we fit light curves using the top-hat,Gaussian and power-law jet models to derive the posterior distributions of physical parameters(Figures6and7).Additionally,we set θvand ξNas free parameters and take into account the impact of the LE of the jet.For GRB 070125,we find that models with free ξNand considering LE can fit the observations better,and no extreme parameters are needed (as shown in Table2).

    Figure 4.The observed XRT,optical and radio afterglow light curves of GRB 070125,and the resulting light curves of the top-hat (LE) model from afterglowpy.The light green dashed line signifies the case of no LE in the R-band for comparison.The optical data are adopted from Chandra et al.(2008)and Updike et al.(2008).The data of U,uvw1,uvw2 and uvm2 bands were corrected by these factors: U=0.996,uvw1=0.848,uvw2=0.7350 and uvm2=0.6834.Downward triangles represent upper limits.

    Figure 5.Observed SED of GRB 07025 and the calculated spectrum of the top-hat (LE) model from afterglowpy at two epochs.

    Figure 6.The posterior distribution of physical parameters of the top-hat jet(LE)model for GRB 050820A.Blue solid lines show the locations of the median values.Dashed lines signify the 16th and 84th percentiles of the distributions.

    Figure 7.The posterior distribution of physical parameters of the top-hat jet (LE) model for GRB 070125.

    5.2.Jet Structures and Central Engines

    In general,the energy budget of GRBs can be provided by the rotational energy of a magnetar or the accretion energy of a black hole.If the required jet energy of the GRB is larger than 1053erg,a hyper-accreting black hole is preferred.In our work,the fitted isotropic kinetic energy of GRB 050820A is up to ~1055erg,but the jet core angle is extremely small.After being corrected by the beaming effect,the total jet energy is ~1051erg when fixing ξN=1,and is (2.7–9.8)×1051erg if setting ξNfree.The jet energy of GRB 070125 is(1.5–7.3)×1051erg with a high radiation efficiency,η ~30%–80%.So far,we cannot distinguish the central engine,since the required energy budget can be provided by either the rotational energy of a magnetar or the accretion energy of a black hole.

    One goal of our work is to study jet structures for GRB 050820A and GRB 070125,and we find out that their jet structures are close to a top-hat jet considering the jet LE.As displayed in Table1,the fitted values of physical parameters and the reduced-χ2for GRB 050820A are similar among the three jet models.For the Gaussian and power-law jet models,we have θc>θwwith the value of θwsimilar to that of the top-hat jet model,thus the Gaussian and power-law jet models are close to the top-hat jet with a similar jet opening angle as small as 0.015 rad.The density of the circumburst matter is as small as 10?7cm?3.The results do not change significantly if ignoring LE.

    Table 2Physical Parameter Posteriors for GRB 070125

    To explain the late time optical light curves of GRB 070125,the jet LE cannot be ignored.For GRB 070125,the reduced-χ2values are somewhat larger due to the late radio observational data.This is because when the relativistic blast wave has been decelerated to the non-relativistic phase,the LE approximation used in afterglowpy is not accurate enough.We haveθw?θcfor the Gaussian and power-law jet models considering LE,and the value ofbfor the power-law jet model is extremely small,which make the jet structure also close to the top-hat jet,with a half opening angle of about 0.1 rad and the viewing angle of about 0.05 rad.The circumburst density is constrained to be about 10 cm?3,and the participation factor of electrons that are accelerated by the shock is required to be about 0.1.

    Compared to the above two bursts,GRB 160625B showed some different features.Cunningham et al.(2020) found that for GRB 160625B the Gaussian jet model was more favored with the viewing angleand the jet critical anglewhile for GRB 050820A and GRB 070125,we foundrespectively.

    The jet structure may have some implications for the central engine and jet initiation/propagation.Morsony et al.(2007)performed simulations of the jet propagating through a stellar envelope and found that the top-hat jet could be generated if the progenitor star is compact and the jet injection Lorentz factor is large.Therefore,the nearly uniform jet structure of GRB 050820A and GRB 070125 suggests that these two bursts may originate from the compact stars and have large injection Lorentz factors.

    We note that the viewing angles of these two GRBs are very small.This may be a selection effect since most high redshift GRBs may only be detected for small viewing angles.However,for nearby GRBs,they can be observed even for relatively large viewing angles such as GRB 170817A.Therefore,in the future,we will focus on the nearby GRBs,because in this case the viewing angle distribution and the jet structure may be even better constrained.

    Acknowledgments

    We gratefully thank the anonymous referee for careful reading and many important suggestions that improved this paper.This work was supported by the National Natural Science Foundation of China (NSFC,Grant Nos.12073080,11933010,11921003 and 12173091) and by the Chinese Academy of Sciences via the Key Research Program of Frontier Sciences (No.QYZDJ-SSW-SYS024).

    一进一出好大好爽视频| 久久天躁狠狠躁夜夜2o2o| 一个人免费在线观看电影| 深爱激情五月婷婷| 日韩欧美精品免费久久| 简卡轻食公司| 国产伦精品一区二区三区四那| 午夜视频国产福利| 少妇高潮的动态图| av在线老鸭窝| 国产毛片a区久久久久| 日本成人三级电影网站| 欧美最新免费一区二区三区| 亚洲成人久久性| 色综合亚洲欧美另类图片| 久久久久久久久久黄片| 亚洲七黄色美女视频| 性插视频无遮挡在线免费观看| 嫩草影院入口| 黄色丝袜av网址大全| 国产精品电影一区二区三区| 亚洲av五月六月丁香网| 男人舔奶头视频| 日韩欧美国产一区二区入口| 免费不卡的大黄色大毛片视频在线观看 | 午夜福利视频1000在线观看| 18禁裸乳无遮挡免费网站照片| 久99久视频精品免费| 一进一出抽搐动态| 尤物成人国产欧美一区二区三区| 中文字幕高清在线视频| 成年版毛片免费区| 在线a可以看的网站| 一a级毛片在线观看| 精品午夜福利在线看| 亚洲性夜色夜夜综合| 日本欧美国产在线视频| 亚洲av电影不卡..在线观看| 亚洲av成人精品一区久久| 天堂av国产一区二区熟女人妻| 国产亚洲精品久久久久久毛片| 大型黄色视频在线免费观看| 91麻豆精品激情在线观看国产| 久久精品影院6| 国产黄色小视频在线观看| 日韩高清综合在线| 亚洲欧美激情综合另类| 亚洲久久久久久中文字幕| 大又大粗又爽又黄少妇毛片口| 国产成人一区二区在线| 日本-黄色视频高清免费观看| 一a级毛片在线观看| a级毛片免费高清观看在线播放| 久久久久久大精品| 久久久国产成人免费| 美女高潮的动态| 中文在线观看免费www的网站| 国产精品野战在线观看| 一区二区三区高清视频在线| 丰满人妻一区二区三区视频av| 日韩强制内射视频| 久久久久国内视频| 成年女人毛片免费观看观看9| 乱码一卡2卡4卡精品| 亚洲午夜理论影院| 国产熟女欧美一区二区| 99国产极品粉嫩在线观看| 久久精品国产清高在天天线| a级毛片a级免费在线| 亚洲av免费高清在线观看| 国产精品精品国产色婷婷| 中文字幕精品亚洲无线码一区| 91麻豆av在线| 麻豆成人av在线观看| 午夜福利高清视频| 精品久久久久久久久亚洲 | 99热精品在线国产| 亚洲专区国产一区二区| 亚洲国产欧洲综合997久久,| 精品久久久久久久末码| 男人狂女人下面高潮的视频| 亚洲av不卡在线观看| 国产精品一区二区免费欧美| 国产精品亚洲一级av第二区| 国产男靠女视频免费网站| 国产91精品成人一区二区三区| 嫩草影院精品99| 岛国在线免费视频观看| 校园春色视频在线观看| 精品午夜福利视频在线观看一区| aaaaa片日本免费| 最新在线观看一区二区三区| 亚洲国产精品合色在线| 久久人人精品亚洲av| 精品午夜福利在线看| 免费人成视频x8x8入口观看| 成年人黄色毛片网站| xxxwww97欧美| 啦啦啦韩国在线观看视频| 91在线观看av| 国产高潮美女av| a级毛片免费高清观看在线播放| 日本撒尿小便嘘嘘汇集6| 黄色丝袜av网址大全| 小蜜桃在线观看免费完整版高清| 成人av一区二区三区在线看| 久久久成人免费电影| 91麻豆精品激情在线观看国产| 亚洲最大成人手机在线| 又黄又爽又刺激的免费视频.| 日韩,欧美,国产一区二区三区 | 高清日韩中文字幕在线| 99九九线精品视频在线观看视频| 韩国av在线不卡| 成人美女网站在线观看视频| 久久久久久久久久成人| 欧美最新免费一区二区三区| 丰满乱子伦码专区| a在线观看视频网站| 成年免费大片在线观看| 国产精品1区2区在线观看.| 2021天堂中文幕一二区在线观| 免费电影在线观看免费观看| 国产成人av教育| 精品人妻一区二区三区麻豆 | 在线播放国产精品三级| 午夜福利高清视频| 免费人成视频x8x8入口观看| 三级毛片av免费| 中文在线观看免费www的网站| 欧美日韩瑟瑟在线播放| 国产午夜精品久久久久久一区二区三区 | 观看免费一级毛片| 91午夜精品亚洲一区二区三区 | 午夜视频国产福利| 国产爱豆传媒在线观看| 婷婷六月久久综合丁香| 无人区码免费观看不卡| 小蜜桃在线观看免费完整版高清| 大型黄色视频在线免费观看| 波多野结衣高清作品| 在现免费观看毛片| 欧美高清性xxxxhd video| 国产大屁股一区二区在线视频| 特级一级黄色大片| 精华霜和精华液先用哪个| 淫秽高清视频在线观看| 亚洲欧美清纯卡通| 观看免费一级毛片| 国产亚洲精品久久久久久毛片| 国产午夜福利久久久久久| 精品久久久久久久久av| 99久久精品国产国产毛片| 久久久国产成人精品二区| 色视频www国产| 久久久久久久久久久丰满 | 又紧又爽又黄一区二区| 成人毛片a级毛片在线播放| 久久久成人免费电影| 精品乱码久久久久久99久播| 亚洲av免费高清在线观看| 成人美女网站在线观看视频| 国产女主播在线喷水免费视频网站 | 乱系列少妇在线播放| 色尼玛亚洲综合影院| 久久精品国产亚洲av涩爱 | 成人av在线播放网站| 啦啦啦观看免费观看视频高清| 日本成人三级电影网站| 国产精品免费一区二区三区在线| 久久99热6这里只有精品| 免费一级毛片在线播放高清视频| 国内少妇人妻偷人精品xxx网站| 亚洲精品成人久久久久久| 亚洲精品久久国产高清桃花| 一本精品99久久精品77| 麻豆成人av在线观看| 丰满人妻一区二区三区视频av| 丰满的人妻完整版| 窝窝影院91人妻| 久久草成人影院| 人妻少妇偷人精品九色| 久久久国产成人免费| 国产真实乱freesex| 日本撒尿小便嘘嘘汇集6| 无人区码免费观看不卡| 国产精品伦人一区二区| 99久久精品国产国产毛片| 国产精品美女特级片免费视频播放器| 精品午夜福利视频在线观看一区| 成年女人毛片免费观看观看9| 91精品国产九色| 又黄又爽又刺激的免费视频.| 国产高清不卡午夜福利| 免费不卡的大黄色大毛片视频在线观看 | 国产成人一区二区在线| 国产精品综合久久久久久久免费| 日韩欧美 国产精品| 免费高清视频大片| 桃色一区二区三区在线观看| 亚洲中文字幕日韩| 久久99热这里只有精品18| 免费人成视频x8x8入口观看| 欧美高清性xxxxhd video| 亚洲无线观看免费| 成人毛片a级毛片在线播放| а√天堂www在线а√下载| 高清毛片免费观看视频网站| 男女视频在线观看网站免费| 人妻少妇偷人精品九色| 别揉我奶头 嗯啊视频| 一进一出抽搐gif免费好疼| 免费高清视频大片| 亚洲国产色片| 色5月婷婷丁香| 亚洲欧美日韩无卡精品| 少妇猛男粗大的猛烈进出视频 | 国产精品av视频在线免费观看| 毛片女人毛片| 国产探花在线观看一区二区| 国产成人一区二区在线| 身体一侧抽搐| 大又大粗又爽又黄少妇毛片口| 少妇熟女aⅴ在线视频| 亚洲精品一卡2卡三卡4卡5卡| 91午夜精品亚洲一区二区三区 | 欧美日韩中文字幕国产精品一区二区三区| 日韩欧美精品免费久久| 国产日本99.免费观看| 国产又黄又爽又无遮挡在线| 亚洲中文字幕日韩| 在线观看一区二区三区| 国国产精品蜜臀av免费| 国产精品自产拍在线观看55亚洲| 黄色视频,在线免费观看| 久久久精品欧美日韩精品| а√天堂www在线а√下载| 亚洲四区av| 欧美3d第一页| 日本三级黄在线观看| 99热这里只有是精品50| 国产伦精品一区二区三区四那| 国产午夜精品论理片| 老熟妇乱子伦视频在线观看| 免费无遮挡裸体视频| 久久香蕉精品热| 久久久久久九九精品二区国产| 精品久久久久久,| 99久久精品热视频| 嫩草影院精品99| 高清毛片免费观看视频网站| 久久久国产成人精品二区| 午夜精品一区二区三区免费看| 欧美潮喷喷水| 日本熟妇午夜| 日韩人妻高清精品专区| 男人舔女人下体高潮全视频| 美女黄网站色视频| 国产精品久久视频播放| 99热6这里只有精品| 欧洲精品卡2卡3卡4卡5卡区| 少妇的逼水好多| 欧美区成人在线视频| av在线蜜桃| 久久精品久久久久久噜噜老黄 | 99九九线精品视频在线观看视频| 亚洲成人久久性| 两个人的视频大全免费| .国产精品久久| 91久久精品电影网| av福利片在线观看| 免费无遮挡裸体视频| 特级一级黄色大片| 黄色配什么色好看| 黄色欧美视频在线观看| 国内精品久久久久精免费| 成人鲁丝片一二三区免费| 嫁个100分男人电影在线观看| 国产成人av教育| 麻豆精品久久久久久蜜桃| aaaaa片日本免费| 老司机午夜福利在线观看视频| 亚洲av不卡在线观看| 亚洲人成网站高清观看| 国产精品亚洲美女久久久| 色综合色国产| 免费无遮挡裸体视频| 国产爱豆传媒在线观看| 国产不卡一卡二| 国产精品福利在线免费观看| 97超视频在线观看视频| 精品一区二区免费观看| 国产私拍福利视频在线观看| 69人妻影院| 午夜激情福利司机影院| 老女人水多毛片| 国产午夜精品论理片| 欧美最新免费一区二区三区| 热99在线观看视频| 亚洲精品国产成人久久av| 一区二区三区免费毛片| 精品人妻熟女av久视频| 日本在线视频免费播放| av专区在线播放| 欧美精品啪啪一区二区三区| 国产精品一区二区性色av| 亚洲欧美日韩无卡精品| 久久人人爽人人爽人人片va| 免费大片18禁| 日韩高清综合在线| 中出人妻视频一区二区| 国产色婷婷99| 一级a爱片免费观看的视频| 别揉我奶头~嗯~啊~动态视频| 欧美人与善性xxx| 国产精品久久久久久亚洲av鲁大| 日韩亚洲欧美综合| 亚洲最大成人中文| 日日撸夜夜添| 久久精品国产鲁丝片午夜精品 | 欧美日韩中文字幕国产精品一区二区三区| 两人在一起打扑克的视频| 亚洲欧美日韩东京热| 他把我摸到了高潮在线观看| 中文字幕精品亚洲无线码一区| 少妇熟女aⅴ在线视频| 免费av毛片视频| 久99久视频精品免费| 亚洲国产精品合色在线| 国产一区二区亚洲精品在线观看| 国产大屁股一区二区在线视频| 亚洲精品一区av在线观看| 床上黄色一级片| 亚洲在线观看片| 免费看a级黄色片| 欧美激情在线99| 欧美精品啪啪一区二区三区| 久久久久久国产a免费观看| 欧美日韩亚洲国产一区二区在线观看| 在线观看66精品国产| 成人特级av手机在线观看| 亚洲美女搞黄在线观看 | 国产成人a区在线观看| 日本黄大片高清| 听说在线观看完整版免费高清| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产精品合色在线| 亚洲自偷自拍三级| 亚洲欧美精品综合久久99| 久久人人精品亚洲av| 亚洲国产色片| 国产高清不卡午夜福利| 成人无遮挡网站| 免费观看精品视频网站| 久久婷婷人人爽人人干人人爱| 精品99又大又爽又粗少妇毛片 | 一进一出抽搐动态| .国产精品久久| 亚洲七黄色美女视频| 国产精品野战在线观看| 91麻豆精品激情在线观看国产| 简卡轻食公司| 在线观看66精品国产| 欧美一区二区国产精品久久精品| 亚洲avbb在线观看| 国产爱豆传媒在线观看| 色精品久久人妻99蜜桃| 午夜日韩欧美国产| 少妇人妻一区二区三区视频| 国产伦精品一区二区三区视频9| 小说图片视频综合网站| 精华霜和精华液先用哪个| 中文字幕熟女人妻在线| 国产真实乱freesex| 欧美xxxx性猛交bbbb| 乱码一卡2卡4卡精品| a级一级毛片免费在线观看| 国产精品久久久久久久电影| 婷婷色综合大香蕉| 免费不卡的大黄色大毛片视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 嘟嘟电影网在线观看| 亚洲性久久影院| 亚洲精品,欧美精品| 99九九线精品视频在线观看视频| 国产精品久久久久久精品古装| 99视频精品全部免费 在线| 精品久久国产蜜桃| 51国产日韩欧美| 亚洲国产精品一区三区| 国产美女午夜福利| 久久毛片免费看一区二区三区| 中文字幕av成人在线电影| 亚州av有码| 日韩免费高清中文字幕av| 在线观看一区二区三区激情| 91久久精品电影网| 一级毛片 在线播放| av在线播放精品| 99热这里只有是精品在线观看| 成人综合一区亚洲| 一个人看的www免费观看视频| 又大又黄又爽视频免费| 在线观看美女被高潮喷水网站| 成人美女网站在线观看视频| 午夜免费观看性视频| 伦精品一区二区三区| 亚洲中文av在线| 少妇被粗大猛烈的视频| 日韩成人av中文字幕在线观看| 成年免费大片在线观看| 亚洲av在线观看美女高潮| 欧美最新免费一区二区三区| 久久ye,这里只有精品| 在线观看人妻少妇| 亚洲精品日韩av片在线观看| 男人和女人高潮做爰伦理| 精品少妇黑人巨大在线播放| 丰满人妻一区二区三区视频av| 欧美成人精品欧美一级黄| 只有这里有精品99| 亚洲人与动物交配视频| 美女脱内裤让男人舔精品视频| 亚洲欧美日韩卡通动漫| av视频免费观看在线观看| 七月丁香在线播放| 成人二区视频| 午夜福利在线观看免费完整高清在| 丰满迷人的少妇在线观看| 国产色爽女视频免费观看| freevideosex欧美| 日韩亚洲欧美综合| 国产精品人妻久久久久久| 国产精品无大码| 欧美日韩视频高清一区二区三区二| 99热6这里只有精品| 伦精品一区二区三区| 成人黄色视频免费在线看| 精品久久久久久久久av| 九九爱精品视频在线观看| 伦理电影大哥的女人| 色视频在线一区二区三区| 美女cb高潮喷水在线观看| 熟女av电影| av在线观看视频网站免费| 国产成人a∨麻豆精品| 精品久久久噜噜| 91狼人影院| 精华霜和精华液先用哪个| 欧美成人一区二区免费高清观看| 免费黄频网站在线观看国产| av播播在线观看一区| 夜夜骑夜夜射夜夜干| 高清视频免费观看一区二区| 深夜a级毛片| 大片免费播放器 马上看| 精品视频人人做人人爽| 亚洲av福利一区| 亚洲精品456在线播放app| 国产免费福利视频在线观看| 狂野欧美激情性xxxx在线观看| 狠狠精品人妻久久久久久综合| 国产成人精品久久久久久| 午夜福利影视在线免费观看| 精品视频人人做人人爽| 免费观看a级毛片全部| 2021少妇久久久久久久久久久| 亚洲国产精品999| 日本午夜av视频| 亚洲av综合色区一区| 免费观看在线日韩| 我的女老师完整版在线观看| 国产精品久久久久成人av| 欧美高清成人免费视频www| 男女下面进入的视频免费午夜| 日韩欧美精品免费久久| 亚洲人成网站在线观看播放| 国内揄拍国产精品人妻在线| 少妇猛男粗大的猛烈进出视频| 夜夜爽夜夜爽视频| 观看av在线不卡| 简卡轻食公司| 老司机影院毛片| 美女国产视频在线观看| 久久国内精品自在自线图片| 极品少妇高潮喷水抽搐| 91久久精品电影网| 综合色丁香网| 亚洲三级黄色毛片| 老司机影院毛片| 久久人人爽人人爽人人片va| 国内精品宾馆在线| 中文资源天堂在线| 色视频在线一区二区三区| 老女人水多毛片| 亚洲真实伦在线观看| 毛片女人毛片| av线在线观看网站| 日韩av不卡免费在线播放| 久久韩国三级中文字幕| h视频一区二区三区| 草草在线视频免费看| 中文字幕亚洲精品专区| 欧美激情极品国产一区二区三区 | 日韩三级伦理在线观看| 免费在线观看成人毛片| 五月开心婷婷网| 一本色道久久久久久精品综合| 亚洲国产精品成人久久小说| 色5月婷婷丁香| 亚洲av.av天堂| 国产亚洲一区二区精品| 黑丝袜美女国产一区| 国产精品欧美亚洲77777| 18禁在线无遮挡免费观看视频| 99久久精品一区二区三区| 天天躁夜夜躁狠狠久久av| 国产精品av视频在线免费观看| 国产视频内射| 99视频精品全部免费 在线| 青青草视频在线视频观看| 大又大粗又爽又黄少妇毛片口| 搡女人真爽免费视频火全软件| 国内精品宾馆在线| 久热这里只有精品99| av在线蜜桃| 80岁老熟妇乱子伦牲交| 久久精品久久久久久噜噜老黄| 在线 av 中文字幕| 欧美日本视频| 亚洲精品视频女| 久久久国产一区二区| 国产精品久久久久久精品电影小说 | 日本av免费视频播放| 一二三四中文在线观看免费高清| 联通29元200g的流量卡| 又大又黄又爽视频免费| 欧美精品亚洲一区二区| 成人亚洲精品一区在线观看 | 又大又黄又爽视频免费| 久久久久网色| 亚洲经典国产精华液单| 视频中文字幕在线观看| 亚洲精品456在线播放app| 亚洲中文av在线| 97在线视频观看| 水蜜桃什么品种好| 插逼视频在线观看| 观看美女的网站| 国产av一区二区精品久久 | 欧美97在线视频| 亚洲真实伦在线观看| 舔av片在线| 国产在线一区二区三区精| 亚洲激情五月婷婷啪啪| 亚洲欧美清纯卡通| 国产在线视频一区二区| 国产亚洲欧美精品永久| 亚洲精品乱码久久久v下载方式| av在线观看视频网站免费| 啦啦啦视频在线资源免费观看| 欧美变态另类bdsm刘玥| 美女国产视频在线观看| 晚上一个人看的免费电影| 2022亚洲国产成人精品| 国产精品女同一区二区软件| 亚洲国产毛片av蜜桃av| 身体一侧抽搐| 黑人高潮一二区| 美女cb高潮喷水在线观看| 成人高潮视频无遮挡免费网站| 搡女人真爽免费视频火全软件| 成人二区视频| 婷婷色麻豆天堂久久| 国产精品久久久久久精品电影小说 | 欧美高清性xxxxhd video| 高清日韩中文字幕在线| 久久久精品免费免费高清| 日韩一本色道免费dvd| 色婷婷av一区二区三区视频| 亚洲丝袜综合中文字幕| 久久影院123| h日本视频在线播放| 一本一本综合久久| 亚洲激情五月婷婷啪啪| 免费看日本二区| av免费在线看不卡| 亚洲人成网站在线观看播放| 免费观看无遮挡的男女| 精品熟女少妇av免费看| a级毛色黄片| www.色视频.com| 秋霞伦理黄片| av国产精品久久久久影院| 肉色欧美久久久久久久蜜桃| 日韩 亚洲 欧美在线| 国产真实伦视频高清在线观看| 香蕉精品网在线| 菩萨蛮人人尽说江南好唐韦庄| 免费少妇av软件| 97在线视频观看| 国产毛片在线视频| 精品少妇久久久久久888优播| 成人免费观看视频高清| av女优亚洲男人天堂| 日本午夜av视频| 在线观看人妻少妇| 一级片'在线观看视频| 欧美激情国产日韩精品一区| 毛片一级片免费看久久久久| 亚洲最大成人中文| 偷拍熟女少妇极品色| 日韩成人伦理影院| av国产久精品久网站免费入址| av福利片在线观看|