• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Distribution of UV Radiation Field in the Molecular Clouds of Gould Belt

    2022-09-02 12:25:28JifengXia夏季風NingyuTangQijunZhiSihanJiaoJinjinXieGaryFullerPaulGoldsmithandDiLi

    Jifeng Xia (夏季風)Ningyu TangQijun ZhiSihan JiaoJinjin XieGary A.FullerPaul F.Goldsmithand Di Li

    1School of Physics and Electronic Science,Guizhou Normal University,Guiyang 550025,China; qjzhi@gznu.edu.cn

    2 National Astronomical Observatories,Chinese Academy of Sciences,Beijing 100101,China; dili@nao.cas.cn

    3 University of Chinese Academy of Sciences,Beijing 100049,China

    4 Department of Physics,Anhui Normal University,Wuhu 241002,China; nytang@ahnu.edu.cn

    5 Guizhou Provincial Key Laboratory of Radio Astronomy and Data Processing,Guizhou Normal University,Guiyang 550001,China

    6 Shanghai Astronomical Observatory,CAS,Shanghai 200030,China

    7 Jodrell Bank Centre for Astrophysics,Department of Physics &Astronomy,The University of Manchester,Manchester M13 9PL,United Kingdom

    8 I.Physikalisches Institut,University of Cologne,Zülpicher Str.77,D-50937 K?ln,Germany

    9 Jet Propulsion Laboratory,California Institute of Technology,4800 Oak Grove Drive,Pasadena,CA 91109,United States of America

    Abstract The distribution of ultraviolet (UV) radiation field provides critical constraints on the physical environments of molecular clouds.Within 1 kpc of our solar system and fostering protostars of different masses,the giant molecular clouds in the Gould Belt present an excellent opportunity to resolve the UV field structure in star-forming regions.We performed spectral energy distribution(SED)fitting of the archival data from the Herschel Gould Belt Survey(HGBS).Dust radiative transfer analysis with the DUSTY code was applied to 23 regions in 14 molecular complexes of the Gould Belt,resulting in the spatial distribution of the radiation field in these regions.For 10 of 15 regions with independent measurements of star formation rate,their star formation rate and UV radiation intensity largely conform to a linear correlation found in previous studies.

    Key words: ISM: clouds–(ISM:) dust–extinction–radiative transfer

    1.Introduction

    The interstellar medium(ISM)is the cradle of star formation.Its evolution is strongly affected by ultraviolet (UV) radiation.By ejecting electrons from dust grains and directly exciting atoms and molecules,UV photons ionize atoms,dissociate molecules and heat gases (e.g.,Tielens &Hollenbach1985;Ferrière2001;Draine2011).Kennicutt (1998) found a tight correlation between UV radiation and the star formation rate(SFR) in galaxies.In Galactic studies,most previous investigations focused on the distribution of the UV radiation field of individual nearby regions (e.g.,Liseau et al.1999;Pineda et al.2010).

    Within 1 kpc of our solar system,the Gould Belt containing a lot of molecular complexes provides an excellent opportunity to investigate the relationship between UV intensity and SFR under diverse environments (Ward-Thompson et al.2007).Most molecular complexes of the Gould Belt harbor bright young OB stellar clusters or star-forming regions while the rest show little sign of star formation.For instance,the Orion complex is a widely studied giant molecular region with abundant clustering of OB stars and turbulent massive star formation (e.g.,Lada et al.1991;Tatematsu et al.1998).Similar to Orion,the Serpens/Aquila Rift is a rich complex with well-known massive star-forming regions,e.g.,the W40 HII region that contains embedded young high-mass stars(e.g.,Kawamura et al.1999).Although the Cepheus region contains an OB star (HD 200775 in Cep 1172),it has been generally considered as a low to intermediate mass star-forming region.The Lupus dark-cloud complex was found to be surrounded by about 70 T Tauri stars,with no indication of a massive OB star inside (e.g.,Hara et al.1999).The Chamaeleon-Musca darkcloud complex,including Cha I,II,III and the Musca dark lane,is a region with low-mass star formation(e.g.,Cambrésy1999;Mizuno et al.2001).IC 5146 is a filamentary dark cloud with scattered low star formation activity(e.g.,Dobashi et al.1994).The Pipe Nebula has been a primary example with little signs of disturbance from star formation(e.g.,Onishi et al.1999).No star formation was found in the Polaris Flare,a high-latitude translucent cloud (e.g.,Heithausen &Thaddeus1990).

    Utilizing the Spectral and Photometric Imaging Receiver(SPIRE) and Photodetector Array Camera and Spectrometer(PACS) instruments on board the Herschel10Herschel is a European Space Agency (ESA) space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Space Observatory,the Herschel Gould Belt Survey (HGBS) covered a substantial fraction of the Gould Belt.Specifically,images were taken at 250,350 and 500 μm for regions withAV>3 mag with SPIRE and at 70 and 160 μm for those withAV>6 mag with PACS.This survey covers the following 14 molecular complexes: Aquila,Cepheus,Chamaeleon,Corona Australis,IC 5146,Lupus,Musca,ρ Oph,Orion,Perseus,Pipe Nebula,Polaris,Taurus and Serpens.

    The dust radiative transfer model,DUSTY (Ivezic &Elitzur1997;Nenkova et al.2000) accommodates different kinds of geometry and radiation parameters.Li et al.(2003)demonstrated the utilities of the DUSTY code to derive the UV intensity of the Orion clouds based on fitting the dust temperature data.We further develop the recipe and apply it to the full set of HGBS data.

    This paper is organized as follows.In Section2,we introduce information on column density,dust temperature and SFR toward the HGBS molecular complexes.The DUSTY radiative transfer code and method for calculating the UV radiation intensity map are described in Section3.Results and further discussions are presented in Sections4and5,respectively.The summary is in Section6.

    2.Data

    2.1.Herschel Dust Continuum Emission

    Dust emission is almost always optically thin at(sub)millimeter wavelengths and can thus act as a surrogate tracer of the total(gas+dust)mass along the line of sight(LOS)(Roy et al.2014).The HGBS took a census of the nearby(0.5 kpc)molecular cloud complexes for an extensive imaging survey of the densest portions of the Gould Belt,down to a 5σ column sensitivityNH2~1021cm?2orAV~1 mag (André et al.2010).We use the HGBS data to generate the column density map of 23 molecular clouds that belong to 14 molecular complexes of the Gould Belt.The molecular clouds studied in this paper are Aquila M2(André et al.2010),Cep 1151,Cep 1172,Cep 1228,Cep 1241,Cep 1251(Di Francesco et al.2020),Cham I,Cham II,Cham III(Winston et al.2012),(Alves de Oliveira et al.2014),CraNS (Bresnahan et al.2018),IC 5146 (Arzoumanian et al.2019),Lup I,Lup III,Lup IV(Rygl et al.2013),Musca(Cox et al.2016),ρ Oph(Roy et al.2014),Orion B(K?nyves et al.2020),Orion A(S.Jiao et al.2022,in preparation),Perseus(Pezzuto et al.2012),Pipe(Peretto et al.2012),Polaris (André et al.2010),Taurus (Arzoumanian et al.2019) and Serpens (Fiorellino et al.2021).

    2.2.Deriving Dust Temperature and Column Density Based on SED Fitting

    The dust temperature and column density map toward 22 of 23 regions were downloaded from the HGBS Archive.11The website of HGBS Archive:http://www.herschel.fr/cea/gouldbelt/en/index.php.We obtained dust distribution and improved the image quality of the Orion A region,based on a novel image combination technique(S.Jiao et al.2022,in preparation).12The column density and dust temperature of Orion A were not published on the website of HGBS archive by 2022.The procedure to derive the dust temperature and dust/gas column density images of Orion A is similar to that in Roy et al.(2014).Before performing any spectral energy distribution (SED) fitting,all images at multiple bands were convolved into a beam size of 363 at 500 μm.We weighted the data points by the measured noise level in the least-squares fits.We adopted the dust opacity per unit mass at 300 μm of 0.1 cm2g?2(Hildebrand1983),and assumed a gas-to-dust mass ratio of 100.As a modified blackbody assumption,the flux densitySνat a certain observing frequency ν is given by

    whereBν(Td)is the Planck function at temperatureTdand Ωmis the beam size.The total column densityNof gas and dust can be approximated by

    where the dust opacity κλ=κ300μm(λ/300 μm)β(β was fixed to a constant value of 1.8),μ=2.8 is the mean molecular weight andmHis the mass of a hydrogen atom.The graybody dust temperature (Td) thus calculated has ignored the dependence of dust temperature on grain size (Li et al.1999),but has been shown to be within a couple of kelvins of the gas temperatures in well coupled regions(Goldsmith2001;Li et al.2013;Wang et al.2020;Xie et al.2021).The effect of scattering opacity (e.g.,Liu2019) can be safely ignored in the case focusing on >0.05 pc scale structures.

    2.3.Star Formation Rates

    The SFRs were determined through SFR=N(YSO)〈M〉т?1,in whichN(YSO) is the YSO number in the molecular region,〈M〉 is the mean mass of stars and т is the relevant evolution timescale.

    The identification of YSOs requires careful discrimination against background stars and galaxies.Star-forming galaxies were the most problematic source of contaminants.A combination of color–color and color–magnitude diagrams of both Spitzer and 2MASS data was adopted to reject contaminants.The detailed descriptions of this process are provided in Evans et al.(2009).Dunham et al.(2013)provide a YSO catalog for Gould Belt clouds.To convert number of YSOs to mass of forming stars,Evans et al.(2014) adopted mean mass of starsM?=0.5M⊙,based on a fully sampled initial mass function (IMF) (Kroupa2002).The relevant timescales were derived by classifying YSOs into standard SED classes based on 2 to 24 μm data.

    Table1lists the SFRs (Lada et al.2010;Evans et al.2014)we adopted in this paper.

    Table 1Star Formation Rate of 15 Molecular Regions

    3.Method

    3.1.The DUSTY Code

    The public DUSTY code (Ivezic &Elitzur1997) solves the radiative transfer problems through a fully scale-free method.By adopting this scaling method,the DUSTY code solves the spherically symmetric (1-D) problem with a single central radiation source and surrounding spherically symmetric dusty envelope,in which the radial dust density profile is arbitrary.In addition,a dusty plane-parallel slab with illumination from one or both sides at an arbitrary angle is also available.

    This code utilizes the scaling properties to minimize the number of input parameters.Parameters describing the external radiation,dust and gas properties,and cloud geometry are needed for inputs.For the case of spherical geometry,they include number,spectral shape and flux of the external source,chemical composition of dust,the lower and upper limits of dust optical depth,and density distribution of dust.For the case of slab geometry,an extra selection of source side is needed.

    Once the input parameters are chosen,the DUSTY code outputs the value of dust temperature as a function of gas optical depth.

    3.2.Parameter Setting in DUSTY Code

    We adopted the slab geometry for our calculations.The incident angle between UV radiation and the slab,θ,is treated as 0 degree,θ=0°,indicating perpendicular UV radiation toward the slab.The selected radiation wavelength of 0.365 μm is located in the central wavelength of the UV band.The dust sublimation temperature,which is the highest temperature at which the dust grains can exist,is chosen to be the common value of 1500 K.The value ranges of gas optical depth and dust temperature are chosen as [0,30] and [0,50] K,respectively.

    With the above selections,the UV radiation intensity,G0is the only parameter that determines the relationship between dust temperature and gas optical depth.As for the optional UV radiation flux received by one side of the slab,six sets of UV intensity(G0=1,10,31.6,100,316,and 1000)compared to a standard Habing field (e.g.,Hughes et al.2017) of 1.6×10?6W m?2are introduced for calculation.

    3.3.Distribution of UV Intensity Field

    In order to produce the spatial distribution of UV radiation field of the Gould Belt,we combined the DUSTY model calculations and the HGBS data.

    The derived H2column density and dust temperature map of HGBS molecular complexes with pixel size of 3″ were convolved and re-sampled with the beam size of 363 at 500 μm.We are focusing on dense molecular regions,and the contribution from atomic hydrogen can be ignored.Thus the H2column density was converted into gas optical depth atVband through the following equation (Bohlin et al.1978;Greenberg1968;Rachford et al.2009)

    As an example,the derived relationship betweenTdustand gas optical depth (тV) of all pixels for the ρ Oph cloud can be found in Figure1.We obtained the UV intensity of each pixel by interpolating the results from observations with those from DUSTY model calculations.The spatial distribution of the specific UV radiation field of each HGBS molecular complex can be derived.

    Figure 1.Relationship between dust temperature and optical depth.Results for the observed ρ Oph data are shown with gray points.Solid colored lines represent model calculations from the DUSTY code with different UV intensity values,G0.

    Figure 2.Contours of UV intensity overlaid on H2 column density map of the Orion A(left panel) and Orion B (right panel)regions.The column density N(H2) is shown with log10 N(H2) value.The red star implies the location of an OB star in this region.

    4.Results

    After applying the procedures described in Section3,we obtained the UV intensity distribution of 23 regions in 14 molecular complexes of the Gould Belt.

    4.1.Spatial Distribution of UV Intensity

    As an example,we present the spatial distribution of selected UV intensity (G0=1,10,31.6,100,316 and 1000) for three molecular complexes:Orion(Category I),Aquila(Category II)and Polaris(Category III).Descriptions of the other complexes are presented in Appendix.

    4.1.1.Orion

    The Orion molecular complex is the most active star-forming region within 500 pc(Megeath et al.2012).Orion A and Orion B molecular clouds are covered by HGBS.Located in Orion A,the Orion Nebula cluster is a significant laboratory for understanding the IMF.The Orion B molecular cloud is one of the clouds scattered along the region named Orion-Eridanus superbubble,which was created by supernova explosions(K?nyves et al.2020).The Orion B cloud is ~423 pc away and covers an area of ~6.8×8.6 deg2(Evans et al.2014).The total mass of these two molecular clouds exceeds 2×105M⊙(Megeath et al.2012).

    As affirmed in Figure2,the UV intensity of these two regions displays a tight correlation with the OB stars.

    4.1.2.Aquila

    The Aquila field is a very active star-forming region at a distance of about 260 pc (Evans et al.2014).With size of~7.56 pc,the mass of this molecular complex is about 24 446M⊙,of which two-thirds is composed of dense cores(Evans et al.2014).The existence of a dense cloud leads to the highest level of background cloud emission in HGBS.A cluster of YSOs but no OB stars was detected in this region.The number of YSOs in this region exceeds 1000.

    As shown in Figure3,the intensity of the radiation field distribution varies fromG0=1 toG0=1000.We found a certain correlation between the spatial distribution of YSOs and UV radiation field.The possible reason responsible for this is discussed in Section5.

    4.1.3.Polaris

    The Polaris Flare has a distance of about 352 pc and total mass of about 5500M⊙(Zucker et al.2019).It is a high-latitude translucent cloud with little or no obvious star formation activity.It is expected to have the lowest level of background cloud emission (Heithausen &Thaddeus1990).Neither OB stars nor YSOs were detected in this region.As depicted in Figure4,the UV intensityG0of almost the whole region is smaller than 10.

    4.2.UV Intensity vs. N(H2)

    We present a statistical result between UV intensityG0and peak H2column densityN(H2) of each molecular cloud in Figure5.The correlation betweenG0andN(H2) can be fitted with a linear function of

    Figure 3.Contours of UV intensity overlaid on H2 column density map of the Aquila molecular complex.The column density N(H2) is shown with log10 N(H2) value.The cyan dots represent the locations of YSOs.

    Figure 4.Contours of UV intensity overlaid on H2 column density map of the Polaris region.The labels of the figure are the same as those in Figure 3.No YSOs or OB stars were found in this region.

    Figure 5.The relationship between UV intensity G0 and peak H2 column density N(H2).Filled stars,triangles and circles represent categories I,II and III,respectively.The blue solid line corresponds to a linear fit of all clouds.The red solid line signifies a linear fit when Orion A is excluded.

    Figure 6.The relationship between total UV flux and SFR in 15 molecular clouds including Lupus,Corona Australis,Pipe,Musca,ρ Oph,Perseus,Aquila,Orion A,Orion B,Serpens,IC 5146 and Chamaeleon.The blue line indicates the formula in Equation (6).Regions with massive OB stars fit the blue line better than regions with YSOs.

    for all complexes.It becomes

    when Orion A was not included.

    5.Discussion

    In this paper,we obtained the distribution of UV radiation field toward 23 regions of 14 molecular complexes in the Gould Belt through dust radiative analysis.

    5.1.Uncertainty Analysis

    The main assumption of such analysis is that the heating of dust was mainly due to UV radiation from massive stars.This has been demonstrated to be valid in the presence of massive stars,particularly OB clusters (e.g.,Li et al.1999,2003).In more quiescent regions,however,dynamic feedback through outflows and bubbles from low-mass stars have proven to be capable of sustaining the turbulence in,e.g.,Taurus (Li et al.2015),which thus presumably may result in some dust heating.However,even supposing the gas and dust are closely coupled,there is no sign of elevated temperatures close to low-mass YSOs in Taurus (Goldsmith et al.2008).We thus consider the heating of dust from low-mass YSOs to be minor.

    In testing the model,we find that the incident angle more strongly affects absolute value of the derived UV field,rather than its distribution.To obtain robust results for the Gould belt sample in a systematic way,we set the incident angle to zero.Further investigation of the individual radiation geometry is warranted.

    5.2.Compare with Star Formation Rate

    We obtain the total UV fluxes in Aquila,Cham I,Cham II,Cham III,IC 5146,Lupus III,Lupus IV,Serpens,Musca,ρ Oph,Orion A,Orion B,Pipe,Perseus and Taurus by adding up the DUSTY outputs for each region and comparing them with the SFR in Lada et al.(2010),Evans et al.(2014).

    UV emission is a direct tracer of the recent SFR since it traces the photospheric emission of young stars.The investigation of SFR of extragalaxies has been revolutionized with observations by the Galaxy Evolution Explorer (GALEX)telescope (Martin et al.2005).By combining the UV data and IMF,the relationship between SFR and UV luminosity (Hao et al.2011;Kennicutt &Evans2012) can be described as

    The relationship between UV intensity and SFR for 15 molecular regions of the Gould Belt is presented in Figure6.The blue line signifies the correlation between UV flux by OB stars and SFR.The correlation conforms to the general expectation.Regions with prominent OB clusters tend to be more consistent with the expectation.The scatter is bigger where there is no OB star.Different regions in the same molecular cloud tend to have similar UV fields,but different SFR.The less massive YSOs seem to have little effect on the UV distribution.

    6.Summary

    By interpreting dust continuum data through radiative transfer analysis,we obtained the UV intensity distribution toward 23 molecular regions in the Gould Belt.The main results of this study are summarized as follows,

    1.The UV intensityG0of molecular clouds ranges from 1 to over 1000,relative to the Habing interstellar field.

    2.The UV distribution in the majority of the molecular regions shows a tight correlation with that of OB stars and/or YSOs.

    3.The UV intensity of 10 molecular regions conforms to an expected linear correlation with the SFR.

    Acknowledgments

    This work is supported by the National Natural Science Foundation of China(NSFC,Grant Nos.11988101,11725313,11721303 and U1731238),the International Partnership Program of Chinese Academy of Sciences grant No.114A11KYSB20160008,the National Key R&D Program of China No.2016YFA0400702,Q.-J.Z.is supproted by the Guizhou Provincial Science and Technology Foundation(Nos.[2016]4008,[2017]5726-37,) and the Foundation of Guizhou Provincial Education Department (No.KY (2020) 003).This research was carried out in part at the Jet Propulsion Laboratory,California Institute of Technology,under contract with the National Aeronautics and Space Administration.This research made use of APLPY,an open-source plotting package for Python (Robitaille &Bressert2012).

    Appendix

    UV Distribution of the Gould Belt Complexes

    A.1.Cepheus

    Located at a high decl.,the Cepheus molecular complex includes many regions that have loose association with compact dark clouds.HGBS contains five regions in the Cepheus molecular complex,Cep 1157 (FigureA1) (also known as L1157,the same below),Cep 1172 (FigureA2),Cep 1228(FigureA3),Cep 1241 (FigureA4) and Cep 1251 (FigureA5).The distances of the five regions are considered to be 200–300 pc.The masses of L1157,L1172,L1228,L1241 and L1251 are 1400M⊙,1900M⊙,1600M⊙,3200M⊙and 1800M⊙(Di Francesco et al.2020).L1172 is the host of the bright NGC 7023 reflection nebula,which contains the bright B star HD 200775 in these five regions.L1241 and L1251 lie within the Cepheus Flare Shell.L1241 is the only one region without YSOs nor OB star.Some YSOs are found in L1251.The L1228 is located at the edge of the Cepheus Flare Shell,while L1157 and L1172 are located outside of the Cepheus Flare Shell.

    Figure A1.Contours of UV intensity overlaid on H2 column density map of the L1157 region.The labels of the figure are the same as those in Figure 3.

    Figure A2.Contours of UV intensity overlaid on H2 column density map of the L1172 region.The labels in the figure are the same as those in Figure 3.The red star implies the location of an OB star in this region.

    Figure A3.Contours of UV intensity overlaid on H2 column density map of the L1228 region.The labels in the figure are the same as those in Figure 3.

    Figure A4.Contours of UV intensity overlaid on H2 column density map of the L1241 region.The labels in the figure are the same as those in Figure 3.There are neither YSOs nor an OB star in this region.

    Figure A5.Contours of UV intensity overlaid on H2 column density map of the L1251 region.The labels in the figure are the same as those in Figure 3.

    Figure A6.Contours of UV intensity overlaid on H2 column density map of the Cham I region.The labels of the figure are the same as those in Figure A2.

    The radiation field distribution of these five regions is quite different depending on the existence of massive stars and YSOs.As demonstrated in FigureA2,the UV intensity of L1172 around HD 200775 can exceed 1000G0.For the L1157(FigureA1),L1228 (FigureA3) and L1251 (FigureA5)regions,obvious higher UV intensity can be found around the YSOs.The UV intensity in L1241 is smaller than 31.6G0as there are neither massive stars nor YSOs in this region.

    Figure A7.Contours of UV intensity overlaid on H2 column density map of the Cham II region.The labels of the figure are the same as those in Figure 3.

    A.2.Chamaeleon

    Chamaeleon is a nearby low-mass star-forming region containing Cham I,Cham II and Cham III.The distance from the regions in Chamaeleon is about 150 pc(Evans et al.2014).The entire Cham I region covers an area about 5 deg2,containing about 200 known low-mass YSOs,making it one of the closest and richest star-forming regions.The total mass of this cloud is about 482M⊙,one third of which is dense gas(Evans et al.2014).Though there is abundant low-mass YSOs in Cham I,there is only one B star: HD 97300 in the northern part of the cloud (Winston et al.2012).

    The Cham II region contains a smaller number (~60) of YSOs compared to the Cha I region.The size of Cham II is about 1.78 pc.The total mass of Cham II is about 637M⊙while one-tenth is dense gas.As the largest cloud among the three regions with a total mass of 746M⊙,Cham III contains little dense gas and only a few YSOs (Alves de Oliveira et al.2014).

    Due to the differences in containing YSOs and dense gas,the UV intensity distributions of Cham I,Cham II and Cham III are expected to vary significantly.As shown in FiguresA6,A7andA8,the maximum UV intensity value decreases from Cham I to Cham III,which is proportional with the existence of OB stars.

    A.3.CraNS

    With distance of around 130 pc and being out of the Galactic plane,the CraNS (Corona Australis) molecular cloud is a lowmass star-forming region.The total mass of this region is about 279M⊙,half of which is dense gas(Evans et al.2014).There is an OB star (V*R CrA) and a cluster of YSOs in this region(Bresnahan et al.2018).As affirmed in FigureA9,the derived UV intensityG0around the OB star can exceed 1000.

    A.4.IC 5146

    With a distance of ~460 pc,the IC 5146 region covers an area of ~3.1×2.5 deg2.The total mass of this cloud is about 3.7×103M⊙(Arzoumanian et al.2019).There is little dense gas and not an OB star in this region (Evans et al.2014).Abundant YSOs exist in this region.We present UV intensity distribution for IC 5146 in FigureA10.The UV intensityG0can reach 31.6 around the YSOs.

    Figure A8.Contours of UV intensity overlaid on H2 column density map of the Cham III region.The labels of the figure are the same as those in Figure 3.

    Figure A9.Contours of UV intensity overlaid on H2 column density map of the CraNS region.The labels of the figure are the same as those in Figure 3.

    Figure A10.Contours of UV intensity overlaid on H2 column density map of the IC 5146 region.The labels of the figure are the same as those in Figure 3.

    Figure A11.Contours of UV intensity overlaid on H2 column density map of the Lupus I region.The labels in the figure are the same as those in Figure 3.

    A.5.Lupus

    The distance of the Lupus molecular complex is about 189 pc(Zucker et al.2019).The HGBS surveyed three clouds in this complex:the Lupus I,Lupus III and Lupus IV clouds.Among the three clouds,the Lupus I cloud is the youngest.The mass of Lupus I is about 512M⊙.Lup III is the most evolved cloud with a mass of ~912M⊙.The Lupus IV cloud has a middle property between the Lupus I and III clouds.The mass of dense gas in the Lupus IV cloud is 50M⊙,accounting for about one quarter of the cloud mass(Evans et al.2014).These three clouds contain YSOs but there are no massive stars inside.

    As shown in FiguresA11,A12andA13,the UV intensity distribution correlates with the existence of YSOs.

    A.6.Musca

    With distance of ~200 pc,the Musca cloud is a 10.5 pc long filament with low-mass star formation(Cox et al.2016).The mass of the Musca molecular cloud is about 335M⊙(Evans et al.2014).There are no massive stars in this region.As is clear from FigureA14,UV intensity increases in some dense regions.

    A.7.ρOph

    With distance of 125 pc (Evans et al.2014),the ρ Oph molecular cloud is one of the most conspicuous nearby regions where low and intermediate-mass star formation is taking place.The total mass of the ρ Oph cloud is about 3128M⊙,one third of which is dense gas.The ρ Oph cloud consists of two massive,centrally condensed cores,L1688 and L1689 (Loren1989).Being different from L1689 with little star formation activity,L1688 harbors a rich cluster of YSOs at various evolutionary stages and is distinguished by high star formation efficiency (Wilking &Lada1983).Two OB stars(HD 147 889 and ρ Oph A) are found in this region.

    The UV radiation distribution of the ρ Oph cloud is depicted in FigureA15.A strong correlation between UV intensity and star distribution was found.The UV intensityG0can exceed 1000 in a dense gas region and regions around OB stars.

    A.8.Perseus

    The Perseus molecular cloud is ~250 pc away with sky coverage of ~10 deg2.It is a low and intermediate-mass starforming region.The total mass of the Perseus molecular cloud is about 6586M⊙,one third of which is dense gas(Evans et al.2014).As demonstrated in FigureA16,the UV radiation field correlates with the locations of OB stars and YSOs in this region.

    Figure A13.Contours of UV intensity overlaid on H2 column density map of the Lupus IV region.The labels in the figure are the same as those in Figure 3.

    Figure A14.Contours of UV intensity overlaid on an H2 column density map of the Musca region.The labels of the figure are the same as those in Figure 3.

    Figure A15.Contours of UV intensity overlaid on an H2 column density map of the ρ Oph region.The labels in the figure are the same as those in Figure A2.

    Figure A16.Contours of UV intensity overlaid on an H2 column density map of the Perseus region.The labels in the figure are the same as those in Figure A2.

    A.9.Pipe

    The Pipe Nebula has a distance of ~145 pc (Alves &Franco2007).Composed of an elongated dark cloud with length of 18 pc,the Pipe Nebula is one of the closest starforming regions.The Pipe Nebula is an ideal target for investigating core formation.The mass of the Pipe Nebula is about 1.7×104M⊙(Lombardi et al.2006).A few identified YSOs were found in this region (Peretto et al.2012).As affirmed in FigureA17,the UV intensity is very low (G0<31.6) toward most regions in this molecular complex.

    Figure A17.Contours of UV intensity overlaid on the H2 column density map of the Pipe region.The labels in the figure are the same as those in Figure 3.

    Figure A18.Contours of UV intensity overlaid on an H2 column density map of the Serpens region.The labels in the figure are the same as those in Figure A2.

    A.10.Serpens

    The Serpens star-forming region located at ~429 pc was covered ~15 deg2by HGBS(Evans et al.2014).Its total mass is ~6583M⊙,two-thirds of which is dense gas (Evans et al.2014).About 81% of the prestellar cores are found in the filamentary structure of Serpens (Fiorellino et al.2021).Serpens is confirmed to be a low-mass and active star-forming region at a young age.As shown in FigureA18,lots of YSOs and an OB star are found in this region.

    Figure A19.Contours of UV intensity overlaid on an H2 column density map of the Taurus region.The labels in the figure are the same as those in Figure 3.

    A.11.Taurus

    The distance of the Taurus cloud to our solar system is about 140 pc (Palmeirim et al.2013).The total mass of the Taurus molecular cloud is about 2–4×104M⊙,ten percent of which is dense gas(Evans et al.2014).HGBS covered about 52 deg2of this region (Kirk et al.2013).No OB stars were found in the Taurus molecular cloud.As verified in FigureA19,the UV radiation intensity correlates with the distribution of dense gas.

    ORCID iDs

    tocl精华| 国产精品99久久99久久久不卡| 老司机靠b影院| 国产高清激情床上av| av在线天堂中文字幕| 香蕉国产在线看| 欧美中文综合在线视频| 国产熟女xx| 身体一侧抽搐| 久久久水蜜桃国产精品网| 国产精华一区二区三区| 午夜久久久在线观看| 好看av亚洲va欧美ⅴa在| 好男人电影高清在线观看| 国产精品二区激情视频| 最近在线观看免费完整版| 国产高清videossex| 女性被躁到高潮视频| 亚洲自拍偷在线| 国产精品香港三级国产av潘金莲| 亚洲黑人精品在线| 日本三级黄在线观看| 99国产精品一区二区三区| 亚洲av成人不卡在线观看播放网| 国产精品av久久久久免费| 日本 欧美在线| 欧美日韩亚洲国产一区二区在线观看| 欧美性长视频在线观看| 国产又色又爽无遮挡免费看| 大型av网站在线播放| 性欧美人与动物交配| 中文资源天堂在线| 亚洲欧美日韩无卡精品| 免费搜索国产男女视频| 精品久久久久久久久久久久久 | 国产午夜精品久久久久久| 禁无遮挡网站| 可以在线观看毛片的网站| 身体一侧抽搐| a级毛片a级免费在线| 中文字幕精品亚洲无线码一区 | 欧美黄色片欧美黄色片| 麻豆成人午夜福利视频| 精品卡一卡二卡四卡免费| 精品电影一区二区在线| 黄色视频,在线免费观看| 精品一区二区三区四区五区乱码| 亚洲一区二区三区不卡视频| 啦啦啦免费观看视频1| 一夜夜www| 欧美一级毛片孕妇| 变态另类成人亚洲欧美熟女| 国产成年人精品一区二区| 午夜福利视频1000在线观看| 丁香六月欧美| 村上凉子中文字幕在线| av视频在线观看入口| 欧美成人免费av一区二区三区| 不卡av一区二区三区| 日韩成人在线观看一区二区三区| 一夜夜www| 91麻豆av在线| 国产精品亚洲一级av第二区| 波多野结衣高清作品| 久久九九热精品免费| 久久伊人香网站| 欧美一级a爱片免费观看看 | 亚洲人成伊人成综合网2020| 国产极品粉嫩免费观看在线| 中出人妻视频一区二区| 最新美女视频免费是黄的| 一级毛片女人18水好多| 两性午夜刺激爽爽歪歪视频在线观看 | 日韩有码中文字幕| 国产成人一区二区三区免费视频网站| 精品午夜福利视频在线观看一区| 欧美久久黑人一区二区| 国产精品亚洲美女久久久| 日本成人三级电影网站| 久久国产乱子伦精品免费另类| 91麻豆精品激情在线观看国产| 18美女黄网站色大片免费观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲一区二区三区色噜噜| 长腿黑丝高跟| e午夜精品久久久久久久| 搡老熟女国产l中国老女人| 2021天堂中文幕一二区在线观 | 国产精品99久久99久久久不卡| 在线永久观看黄色视频| 欧美日韩一级在线毛片| 国产伦在线观看视频一区| 久久久国产欧美日韩av| 免费看十八禁软件| 淫妇啪啪啪对白视频| 老汉色∧v一级毛片| 欧美激情极品国产一区二区三区| 久久久久久亚洲精品国产蜜桃av| 亚洲一区中文字幕在线| 亚洲av美国av| 老司机午夜十八禁免费视频| 亚洲色图av天堂| 丰满的人妻完整版| 18禁黄网站禁片午夜丰满| 男男h啪啪无遮挡| av中文乱码字幕在线| 18禁美女被吸乳视频| 美女扒开内裤让男人捅视频| 999精品在线视频| 日本精品一区二区三区蜜桃| 美女 人体艺术 gogo| 国产激情欧美一区二区| 男女午夜视频在线观看| 免费看十八禁软件| 91在线观看av| 香蕉av资源在线| 一本一本综合久久| 欧美性长视频在线观看| 老汉色av国产亚洲站长工具| x7x7x7水蜜桃| 国产黄片美女视频| 亚洲精品国产精品久久久不卡| 女警被强在线播放| 久久精品亚洲精品国产色婷小说| 91麻豆精品激情在线观看国产| 1024手机看黄色片| 国产三级黄色录像| 婷婷丁香在线五月| 精品不卡国产一区二区三区| 欧美性猛交黑人性爽| 欧美色欧美亚洲另类二区| 天天一区二区日本电影三级| 男女床上黄色一级片免费看| 一级作爱视频免费观看| 久久久久国产精品人妻aⅴ院| 国产免费av片在线观看野外av| 嫁个100分男人电影在线观看| 欧美最黄视频在线播放免费| 久久国产精品男人的天堂亚洲| 日本 欧美在线| 91老司机精品| 久久人人精品亚洲av| 精品国产乱码久久久久久男人| 校园春色视频在线观看| 欧美一区二区精品小视频在线| 国产精品自产拍在线观看55亚洲| 日韩欧美国产在线观看| 99国产极品粉嫩在线观看| 亚洲av第一区精品v没综合| www.熟女人妻精品国产| 伊人久久大香线蕉亚洲五| 少妇裸体淫交视频免费看高清 | 99精品在免费线老司机午夜| 国内揄拍国产精品人妻在线 | 欧美精品亚洲一区二区| 一二三四社区在线视频社区8| 久久这里只有精品19| 久久久久国产精品人妻aⅴ院| 国产私拍福利视频在线观看| 最新在线观看一区二区三区| 国产午夜福利久久久久久| 一个人免费在线观看的高清视频| 午夜成年电影在线免费观看| 久久久久亚洲av毛片大全| 国产亚洲精品久久久久5区| √禁漫天堂资源中文www| 久久久久久免费高清国产稀缺| 午夜福利免费观看在线| 黄色丝袜av网址大全| 99久久久亚洲精品蜜臀av| 欧美日韩亚洲综合一区二区三区_| 午夜福利成人在线免费观看| 动漫黄色视频在线观看| 亚洲欧美一区二区三区黑人| 成人欧美大片| 国产精品久久久人人做人人爽| 麻豆成人午夜福利视频| 亚洲欧美精品综合一区二区三区| 天堂√8在线中文| 最新在线观看一区二区三区| 欧美三级亚洲精品| 最近最新中文字幕大全免费视频| 精品久久久久久久人妻蜜臀av| 亚洲国产精品999在线| 久久久久国内视频| 看片在线看免费视频| 国产又色又爽无遮挡免费看| 麻豆国产av国片精品| 美国免费a级毛片| 国产一卡二卡三卡精品| 99久久国产精品久久久| 熟女电影av网| 国产成人精品久久二区二区91| 亚洲在线自拍视频| 久久精品aⅴ一区二区三区四区| 1024手机看黄色片| 在线观看66精品国产| 女性生殖器流出的白浆| 91大片在线观看| 亚洲精品一区av在线观看| 国产精品久久视频播放| 国产伦在线观看视频一区| 黄片小视频在线播放| 成年免费大片在线观看| 亚洲熟女毛片儿| 欧美激情极品国产一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 亚洲精华国产精华精| 亚洲人成伊人成综合网2020| 亚洲av中文字字幕乱码综合 | 在线观看免费日韩欧美大片| 高清在线国产一区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲真实伦在线观看| 精品久久久久久久毛片微露脸| 1024手机看黄色片| 啦啦啦观看免费观看视频高清| 又紧又爽又黄一区二区| 香蕉av资源在线| 嫁个100分男人电影在线观看| 欧美久久黑人一区二区| 97人妻精品一区二区三区麻豆 | 国产精品一区二区精品视频观看| 极品教师在线免费播放| 91大片在线观看| 亚洲成人精品中文字幕电影| 精品欧美国产一区二区三| 亚洲最大成人中文| 日韩三级视频一区二区三区| 九色国产91popny在线| 日韩成人在线观看一区二区三区| 午夜老司机福利片| 麻豆成人av在线观看| 叶爱在线成人免费视频播放| 91老司机精品| 国产欧美日韩一区二区三| 美女 人体艺术 gogo| 亚洲人成网站在线播放欧美日韩| 亚洲一码二码三码区别大吗| 韩国av一区二区三区四区| 久久天堂一区二区三区四区| 国产亚洲欧美精品永久| 国产三级在线视频| 三级毛片av免费| 一边摸一边做爽爽视频免费| 日本a在线网址| 亚洲 欧美一区二区三区| 国产高清激情床上av| 非洲黑人性xxxx精品又粗又长| 一边摸一边做爽爽视频免费| 一个人观看的视频www高清免费观看 | 男女之事视频高清在线观看| 热re99久久国产66热| 国产91精品成人一区二区三区| 十分钟在线观看高清视频www| 精品一区二区三区视频在线观看免费| 国产高清有码在线观看视频 | 岛国在线观看网站| 国内毛片毛片毛片毛片毛片| 欧美一级a爱片免费观看看 | 午夜免费激情av| 欧美国产精品va在线观看不卡| 久久久久久国产a免费观看| svipshipincom国产片| 国产男靠女视频免费网站| tocl精华| 精品国产超薄肉色丝袜足j| 国产成人精品久久二区二区91| 热re99久久国产66热| 精品乱码久久久久久99久播| 亚洲欧美精品综合久久99| 男人舔奶头视频| 大香蕉久久成人网| 亚洲色图 男人天堂 中文字幕| 99国产精品一区二区三区| 琪琪午夜伦伦电影理论片6080| 制服人妻中文乱码| 国产免费av片在线观看野外av| 国产精品亚洲av一区麻豆| 一区二区三区高清视频在线| 成人手机av| 亚洲av五月六月丁香网| 狠狠狠狠99中文字幕| 看片在线看免费视频| 免费在线观看完整版高清| 一卡2卡三卡四卡精品乱码亚洲| 久久久久亚洲av毛片大全| 好男人在线观看高清免费视频 | 亚洲一卡2卡3卡4卡5卡精品中文| 欧美三级亚洲精品| 一本久久中文字幕| 久久精品亚洲精品国产色婷小说| 亚洲中文av在线| 午夜久久久在线观看| 免费看a级黄色片| 成年人黄色毛片网站| 国产精品免费视频内射| 免费搜索国产男女视频| 激情在线观看视频在线高清| 成人亚洲精品一区在线观看| 日日夜夜操网爽| 日韩欧美三级三区| 制服人妻中文乱码| 国产一卡二卡三卡精品| 国产人伦9x9x在线观看| 男人舔女人下体高潮全视频| 欧美日韩亚洲国产一区二区在线观看| 美女午夜性视频免费| 欧美色欧美亚洲另类二区| 国内少妇人妻偷人精品xxx网站 | 视频在线观看一区二区三区| 国产精品1区2区在线观看.| 男女之事视频高清在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产一区二区激情短视频| 成人18禁高潮啪啪吃奶动态图| 国产高清激情床上av| 91麻豆av在线| 美女大奶头视频| 国产视频内射| 精品人妻1区二区| 日本一区二区免费在线视频| 老熟妇仑乱视频hdxx| 亚洲五月婷婷丁香| 一边摸一边做爽爽视频免费| 男女视频在线观看网站免费 | 午夜福利高清视频| 一进一出抽搐动态| 男人舔奶头视频| 久99久视频精品免费| 亚洲精品在线美女| 欧美成狂野欧美在线观看| 亚洲熟女毛片儿| 18美女黄网站色大片免费观看| 手机成人av网站| 最近最新中文字幕大全免费视频| 亚洲自偷自拍图片 自拍| av在线天堂中文字幕| 亚洲av片天天在线观看| 久久久精品欧美日韩精品| 波多野结衣巨乳人妻| 亚洲精品美女久久av网站| 欧美一级a爱片免费观看看 | 人人妻人人澡人人看| 日韩中文字幕欧美一区二区| 最近最新免费中文字幕在线| 在线观看66精品国产| 亚洲精华国产精华精| 成年版毛片免费区| 18美女黄网站色大片免费观看| 久久久久国产精品人妻aⅴ院| 露出奶头的视频| 国产1区2区3区精品| 国产精品九九99| 精品久久蜜臀av无| 久久国产乱子伦精品免费另类| 99热6这里只有精品| 大型黄色视频在线免费观看| 国产国语露脸激情在线看| 999久久久国产精品视频| 国产熟女午夜一区二区三区| 少妇粗大呻吟视频| 非洲黑人性xxxx精品又粗又长| 又黄又爽又免费观看的视频| 91av网站免费观看| 国产精品 欧美亚洲| 日韩精品青青久久久久久| 露出奶头的视频| 精品久久蜜臀av无| 国产成+人综合+亚洲专区| 国产又色又爽无遮挡免费看| 嫁个100分男人电影在线观看| 久久国产亚洲av麻豆专区| 久久国产乱子伦精品免费另类| 最近最新免费中文字幕在线| 久久国产精品人妻蜜桃| 波多野结衣av一区二区av| 免费看十八禁软件| 欧美最黄视频在线播放免费| 国产精品久久久久久亚洲av鲁大| 精品久久久久久久毛片微露脸| 国产成人av教育| 99久久99久久久精品蜜桃| 亚洲精品色激情综合| 欧美一级毛片孕妇| 男女做爰动态图高潮gif福利片| 国产区一区二久久| 亚洲全国av大片| 国产成人av教育| 嫩草影视91久久| 在线看三级毛片| 色在线成人网| 婷婷丁香在线五月| 他把我摸到了高潮在线观看| 黄片播放在线免费| 亚洲男人天堂网一区| 怎么达到女性高潮| 露出奶头的视频| av电影中文网址| 国产亚洲精品久久久久5区| 在线十欧美十亚洲十日本专区| 国产成人精品无人区| 成年版毛片免费区| 日韩大码丰满熟妇| 黄色 视频免费看| 精品熟女少妇八av免费久了| 亚洲精品一区av在线观看| 国产成人欧美在线观看| 亚洲精品久久成人aⅴ小说| 黄色丝袜av网址大全| 日韩欧美三级三区| 精品久久久久久久人妻蜜臀av| 精品久久久久久久毛片微露脸| 一本综合久久免费| cao死你这个sao货| 精品国产亚洲在线| 一进一出抽搐动态| 国产在线观看jvid| 丰满人妻熟妇乱又伦精品不卡| 国产av一区二区精品久久| 观看免费一级毛片| 女性生殖器流出的白浆| 亚洲自偷自拍图片 自拍| 亚洲一码二码三码区别大吗| 中文亚洲av片在线观看爽| 精品欧美国产一区二区三| 亚洲专区中文字幕在线| 国产精品亚洲av一区麻豆| 一a级毛片在线观看| 国产av一区在线观看免费| 给我免费播放毛片高清在线观看| 999精品在线视频| 99精品久久久久人妻精品| 一级a爱视频在线免费观看| 在线观看免费日韩欧美大片| 成人国产一区最新在线观看| 在线av久久热| 国产精品久久久久久精品电影 | 亚洲av成人av| 99久久99久久久精品蜜桃| 18禁美女被吸乳视频| 一二三四在线观看免费中文在| 成人手机av| 色哟哟哟哟哟哟| 非洲黑人性xxxx精品又粗又长| ponron亚洲| 最新在线观看一区二区三区| 国产av一区二区精品久久| 中文字幕av电影在线播放| 久久久久久大精品| 日韩精品中文字幕看吧| 男人的好看免费观看在线视频 | 国产亚洲欧美在线一区二区| 免费在线观看视频国产中文字幕亚洲| 国产精品久久视频播放| 国产精品综合久久久久久久免费| 国产亚洲欧美98| 一区福利在线观看| 国产精品一区二区免费欧美| 天堂√8在线中文| 国产熟女xx| 亚洲一码二码三码区别大吗| 精品国产亚洲在线| 99久久精品国产亚洲精品| www日本黄色视频网| 久久久久精品国产欧美久久久| 男女床上黄色一级片免费看| 国产熟女xx| 男女视频在线观看网站免费 | 国产黄a三级三级三级人| 久久人妻av系列| 天堂√8在线中文| 一本综合久久免费| 亚洲aⅴ乱码一区二区在线播放 | 亚洲精品粉嫩美女一区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品久久国产高清桃花| 日韩免费av在线播放| www国产在线视频色| 午夜免费观看网址| 色播在线永久视频| 啪啪无遮挡十八禁网站| 久久久久久人人人人人| 黄色片一级片一级黄色片| 97人妻精品一区二区三区麻豆 | 久久国产乱子伦精品免费另类| 国内久久婷婷六月综合欲色啪| 亚洲精品美女久久久久99蜜臀| 91九色精品人成在线观看| 日本 欧美在线| 日韩欧美 国产精品| www国产在线视频色| 国产91精品成人一区二区三区| 精品高清国产在线一区| 男女视频在线观看网站免费 | 成人免费观看视频高清| 激情在线观看视频在线高清| 久久久国产成人免费| 91成人精品电影| svipshipincom国产片| 91麻豆精品激情在线观看国产| 精品久久久久久久人妻蜜臀av| 大型av网站在线播放| 亚洲国产高清在线一区二区三 | 欧美日韩精品网址| 欧美日韩一级在线毛片| 一a级毛片在线观看| 日本一本二区三区精品| 日本精品一区二区三区蜜桃| 国产99久久九九免费精品| 国产精品自产拍在线观看55亚洲| 少妇 在线观看| 又大又爽又粗| 精品国产超薄肉色丝袜足j| 欧美日韩一级在线毛片| 国产精品香港三级国产av潘金莲| 日日夜夜操网爽| 国产成人精品无人区| 亚洲成人久久性| 欧美一级毛片孕妇| 国产主播在线观看一区二区| 国产1区2区3区精品| 色播亚洲综合网| 欧美一区二区精品小视频在线| 精品一区二区三区四区五区乱码| 在线永久观看黄色视频| 精品国产国语对白av| 久久精品成人免费网站| 久久欧美精品欧美久久欧美| 级片在线观看| 久久中文字幕人妻熟女| 动漫黄色视频在线观看| 精品久久蜜臀av无| 亚洲熟妇熟女久久| 亚洲一区中文字幕在线| 日韩有码中文字幕| 婷婷六月久久综合丁香| 亚洲国产欧美网| 在线观看午夜福利视频| 精品人妻1区二区| 久久午夜综合久久蜜桃| 叶爱在线成人免费视频播放| 精品国产超薄肉色丝袜足j| 国产成人欧美在线观看| 久久精品aⅴ一区二区三区四区| 国产99久久九九免费精品| 大型av网站在线播放| 日本免费一区二区三区高清不卡| 日本三级黄在线观看| 国产av不卡久久| 手机成人av网站| 国产成人av教育| 精品国产美女av久久久久小说| 91在线观看av| 给我免费播放毛片高清在线观看| 一级a爱片免费观看的视频| 啦啦啦韩国在线观看视频| 亚洲av熟女| 日韩欧美 国产精品| 色综合欧美亚洲国产小说| 国产午夜精品久久久久久| 国产精品一区二区精品视频观看| x7x7x7水蜜桃| 午夜免费观看网址| 50天的宝宝边吃奶边哭怎么回事| 黄频高清免费视频| 在线观看免费视频日本深夜| 亚洲成国产人片在线观看| 天堂√8在线中文| 国产乱人伦免费视频| 99热6这里只有精品| 国产精品,欧美在线| 中文字幕久久专区| 精品久久久久久久毛片微露脸| 美国免费a级毛片| 亚洲av熟女| 精品不卡国产一区二区三区| 午夜免费激情av| 999久久久国产精品视频| 国产高清videossex| 欧美日韩乱码在线| 黄色 视频免费看| 午夜成年电影在线免费观看| 国产精品自产拍在线观看55亚洲| 久久久久久免费高清国产稀缺| 色av中文字幕| 成人亚洲精品一区在线观看| 亚洲中文字幕日韩| 女人被狂操c到高潮| 久久精品aⅴ一区二区三区四区| 久久久久久久久中文| 禁无遮挡网站| 男女下面进入的视频免费午夜 | 天堂√8在线中文| 亚洲欧美精品综合一区二区三区| 国产亚洲欧美98| 在线天堂中文资源库| 一级a爱视频在线免费观看| 国产成人一区二区三区免费视频网站| 欧美激情 高清一区二区三区| 女性被躁到高潮视频| 精品无人区乱码1区二区| 欧美黑人欧美精品刺激| 欧美日韩精品网址| 夜夜夜夜夜久久久久| 亚洲精品粉嫩美女一区| 久久香蕉精品热| 精品午夜福利视频在线观看一区| 露出奶头的视频| 999精品在线视频| 国产精品永久免费网站| 91av网站免费观看| 男人舔女人的私密视频| 最新美女视频免费是黄的| 亚洲aⅴ乱码一区二区在线播放 |