• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-precision Measurements of Cosmic Curvature from Gravitational Wave and Cosmic Chronometer Observations

    2022-09-02 12:25:24YuanHeYuPanDongPingShiJinLiShuoCaoandWeiCheng

    Yuan HeYu PanDong-Ping ShiJin LiShuo Caoand Wei Cheng

    1 School of Science,Chongqing University of Posts and Telecommunications,Chongqing 400065,China; panyu@cqupt.edu.cn

    2 School of Electronic and Electrical Engineering,Chongqing University of Arts and Sciences,Chongqing 402160,China; dpshi@cqwu.edu.cn

    3 Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics,Chongqing University,Chongqing 401331,China

    4 Department of Astronomy,Beijing Normal University,Beijing 100875,China; caoshuo@bnu.edu.cn

    Abstract Although the spatial curvature has been measured with very high precision,it still suffers from the well-known cosmic curvature tension.In this paper,we use an improved method to determine the cosmic curvature,by using the simulated data of binary neutron star mergers observed by the second generation space-based DECi-hertz Interferometer Gravitational-wave Observatory (DECIGO).By applying the Hubble parameter observations of cosmic chronometers to the DECIGO standard sirens,we explore different possibilities of making measurements of the cosmic curvature referring to a distant past: one is to reconstruct the Hubble parameters through the Gaussian process without the influence of hypothetical models,and the other is deriving constraints on ΩK in the framework of the non-flat Λ cold dark matter model.It is shown that in the improved method DECIGO could provide a reliable and stringent constraint on the cosmic curvature (ΩK=?0.007±0.016),while we could only expect the zero cosmic curvature to be established at the precision of ΔΩK=0.11 in the second model-dependent method.Therefore,our results indicate that in the framework of methodology proposed in this paper,the increasing number of well-measured standard sirens in DECIGO could significantly reduce the bias of estimations for cosmic curvature.Such a constraint is also comparable to the precision of Planck 2018 results with the newest cosmic microwave background (CMB) observations (ΔΩK ≈0.018),based on the concordance ΛCDM model.

    Key words: (cosmology:) cosmological parameters–gravitational waves–cosmology: observations

    1.Introduction

    The determination of cosmic curvature is an essential topic of cosmology.Following the cosmological principles,the spacetime of our universe can be described by the Friedmann-Lemaitre-Robertson-Walker metric.Cosmic curvature can help us understand whether universe’s space is open,closed,or flat.It is worth mentioning that in the research of some scholars,the cosmic curvature is not entirely independent but depends on dark energy (Clarkson et al.2007;Wang &Mukherjee2007;Hlozek et al.2008).

    To determine the cosmic curvature,scholars did some researches from two aspects.On the one hand,based on the model assumption of the cold dark matter model,it is feasible to fix the dark energy parameters in the model and introduce the cosmic curvature density parameter.In this research,the constraint result of the curvature density parameter by the Planck 2018 cosmic microwave background(CMB)is?0.095<ΩK

    The successful detection of gravitational waves (GW)opens a new window for cosmological research (Abbott et al.2016,2017).Looking for merging events of binary black holes or merging events of two neutron stars with electromagnetic radiation can be used as standard sirens to study cosmology (Dalal et al.2006;Hlozek et al.2008;Zhao et al.2011;Liao et al.2017a;Cai &Yang2017;Pan et al.2021;Chen et al.2021;Du&Xu2022;Chen et al.2022;Shao et al.2022).Recently,black hole-neutron star merging events have also been successfully detected(Abbott et al.2021).Moreover,the coupling coefficient between GW and matter is trifling,which can carry more primordial wave source information,which benefits cosmology.In this paper,the data from the space gravitational wave detector DECi-hertz Interferometer Gravitational wave Observatory (DECIGO) are used to simulate the gravitational wave events detected by DECIGO in the future.We use two methods to test curvature.In the former method,we directly test the curvature density parameters in the luminosity distance,but the cosmological model is not added to the luminosity distance.In the second method,we add a cosmological model including curvature to the luminosity distance and constrain the curvature density parameters in the model.First,we use the improved method proposed (Wei &Wu2017) to test the curvature.Taking into account the impact of the number of data samples on the constraints,we reconstruct the expansion rate,and the curvature parameters are constrained.Then,we utilize gravitational wave data to constrain ΩKin the framework of the nonflat Λ cold dark matter model to compare the curvature constraint effect of the two methods.In addition,in the second method,we use electromagnetic wave (EM) (supernova and quasar) data to constrain the curvature in the non-flat Λ cold dark matter model to compare with the constraints from DECIGO data.Finally,we compare and analyze the results with the researches of other scholars.

    The structure of this paper is reproduced below.In Section2,we briefly introduce the data and methods we used.In Section3,we give the results and analysis.In Section4,we make a summary of this article.

    2.Data and Method

    2.1.Gravitational Wave Detection From DECIGO

    For GW events,we know that the luminosity distance of the merging event of two stars can be obtained by detection,and the redshift information can be obtained by directly detecting the merging event with neutron stars (Holz &Hughes2005;Zhao et al.2011;Abbott et al.2017).So this kind of binary merging event can be used as a standard siren to study cosmology(Piórkowska-Kurpas et al.2021;Cao et al.2021,2022b).

    DECIGO (Seto et al.2001;Kawamura et al.2006) is a GW detection project under construction in Japan,which means DECi-hertz Interferometer Gravitational wave Observatory.DECIGO’s detection frequency ranges from 0.1 to 10 Hz(Kawamura et al.2019).DECIGO has excellent detection ability.First,DECIGO in space is less affected by ground noise.Second,among the space-based gravitational wave detectors,the frequency band and objectives of DECIGO are special,its frequency band fills the gap between the sensitivity window of ground-based detectors and space detector.DECIGO is expected to measure the gravitational waves from neutron star binaries even at a redshift of 5,five years before the coalescences(Kawamura et al.2019).This means that DECIGO can estimate the time of merging and let other electromagnetic telescopes aim at the target in advance and observe other phenomena accompanied by merging,which is of great help for us to find electromagnetic counterparts.DECIGO expects to detect 10,000 neutron star binary gravitational signals a year(Kawamura et al.2019),and a large amount of data can help us better measure cosmological parameters.In this paper,we use DECIGO as the detector to simulate the standard siren information supplied by gravitational waves (see Geng et al.2020for details).

    We consider two systems with massesm1andm2,whose Fourier transform can be expressed as

    where ?ameans to derive the parameter θa.It can be seen from the data released by DECIGO that it has eight equivalent detectors (Seto et al.2001;Kawamura et al.2006).Therefore,if all detectors are taken into account,the coefficient of Гabshould be eight times that of a single detector.Noise spectrum analysis from DECIGO (Kawamura et al.2006;Nishizawa et al.2010;Kawamura et al.2019):

    where the first line on the right represents shot noise,the second line represents radiation pressure noise,and the last line represents acceleration noise.

    The relationship between the Fisher matrix and the instrumental uncertainty of the measurement of the luminosity distancecan be estimated as

    wherecis the speed of light andH0is the Hubble constant.

    The distribution of wave sources that can be observed on the Earth is (Sathyaprakash et al.2010;Cai &Yang2017):

    whereH(z) represents the Hubble parameter,DC(z) represents the comoving distance,and the representation ofR(z) has been used in many articles (Schneider et al.2001;Cutler &Harms2006;Cai &Yang2017)

    The error expression of luminosity distance is:

    Through the analysis of Kawamura et al.(2019),DECIGO expects to detect more than 10,000 binary merging events every year.Based on the analysis of Cutler&Holz(2009),it is feasible to determine the redshift of these events through their electromagnetic counterparts.Therefore,we simulate the luminosity distance and the corresponding redshift of 10,000 GW events,see Figure1.

    Figure 1.Luminosity distance and redshift data simulated by 10,000 GW events.

    Figure 2.We reconstruct 31 Hubble parameter data from the cosmic chronometer and show its error within 1σ.

    2.2.Luminosity Distance from the Cosmic Chronometer

    In the Friedmann–Lemaitre–Robertson-Walker (FLRW)metric(Cao et al.2019b;Qi et al.2019a),the luminosity distance can be expressed as

    ΩKrepresents the curvature density parameter andzrepresents the redshift.E(z)=H(z)/H0is given by the ratio ofH(z)toH0.H(z) (Hubble parameter) denotes the expansion rate atz,andH0is the Hubble parameter atz=0,which is called the Hubble constant.To eliminate the influence of the model,we can introduce comoving distance:

    If we expressdp(z)in terms of the Hubble parameter,we can get a luminosity distance given by the Hubble parameter,

    In this paper,we set the Hubble constant toH0=69.6±0.7 km s?1Mpc?1(Bennett et al.2014),so the only free parameter contained in the(z)is ΩK.We will expand the photometric distance data from the cosmic chronometer in Section2.3and combine it with the gravitational wave samples from DECIGO in Section3to test the curvature density parameters.

    2.3.Gaussian Process

    In this paper,to calculate the data at different redshifts at the same redshift,we use the Gaussian process method to reconstruct the data.This method was first used by Seikel et al.(2012)and has been studied by many scholars (Zhang &Li2018;Liao et al.2019;Fu et al.2013;Li et al.2016a;Wu et al.2020;Liu et al.2020b;Zhou &Li2020;Liu et al.2021).

    The Gaussian process (GP) is a method of smoothing data.For the input data set,multiple smooth data in a given range can be reconstructed,and the tasks of data set expansion and redshift reconstruction can be well completed.Seikel et al.(2012) used GP to reconstruct the dark energy state parameter equation,which includes the use of GP,for which they have developed a third-party library GaPP based on Python.

    In this paper,we use the Gaussian process to reconstruct Hubble parameter data.The evolution of the Hubble parameter with redshift represents the change of cosmic expansion rate with the increase of distance (Cao &Liang2013;Cao et al.2011).Jimenez&Loeb(2002)pointed out that we can use the relative galactic age to constrain the cosmological parameters,the Hubble parameter is expressed as

    In this work,we use 31 redshift from 0.09 to 1.965H(z)data from cosmic-chronometer approach (Jimenez et al.2003;Simon et al.2005;Stern et al.2010;Moresco et al.2012;Moresco2015;Moresco et al.2016;Ratsimbazafy et al.2017).

    We reconstruct 31 Hubble parameter data from the cosmic chronometer,and the results are shown in Figure2.In addition,we also integrate the reconstruction results and get thedp(z)and its error within 1σ,and the results are shown in Figure3.

    Figure 3.We get dp(z) and its error for the reconstructed Hz integral,and the red line represents the error of dp(z) within 1σ.

    Figure 4.The constraint results of the reconstructed cosmic chronometer and DECIGO on the curvature parameter.

    Figure 5.Comparison of the results of four kinds of data using modelindependent method.

    3.Results and Discussion

    3.1.Improved Curvature Test Method

    In Section2.3,we use the Gaussian process to reconstruct the Hubble parameter data and obtain the luminosity distance(z)) given by H(z).It is worth noting that the luminositydistance obtained by this method is not the same as that given by GW,so we smooth theConsidering that there may be unknown errors in gravitational wave detection,we add 10%systematic error toTherefore,we can constrain the curvature density parameter through the χ2method:

    The curvature parameter result is shown in Figure4.To show the constraint effect more intuitively,we compare the constraint results of curvature parameters given by other observation data using the same method (see Table1).

    Table 1The Results Obtained by Using the Model-independent Method to Constrain Curvature

    As shown in Table1,the cosmic curvature density parameter,which is constrained by the luminosity distance obtained from the reconstructedH(z) and the simulated GW data from DECIGO is ΩK=?0.007±0.016.To better compare the constraint ability of DECIGO to curvature parameters.We add the research results of other scholars to the table.The constraint result given by the third generation gravitational wave detector ET is ΩK=0.035±0.039.The curvature constraint ability of DECIGO is better than that of ET.

    Table 2Results of Non-flat Λ Cold Dark Matter Model with Different Data Constraints

    We also show the curvature constraint results of supernovae and quasars.It is easy to see that the curvature constraint accuracy given by the GW data is more than 90% higher than that given by quasar (ΩK=0.0±0.3) and supernova sample(ΩK=0.09±0.25),respectively.In addition,we also noticed that Zheng et al.(2021) used the GW simulation data of DECIGO and ET to test the cosmic curvature,and they used the third-order logarithm polynomial approximation ofDL(z)with undetermined coefficients in their research and directly constrained the cosmic curvature through the research results of Clarkson et al.(2007).They use DECIGO (0

    Figure 6.The result of constraining the non-flat Λ cold dark matter model using DECIGO and EM,respectively.

    Figure 7.Curvature density parameters in non-flat Λ cold dark matter model.

    3.2.Curvature Test from Cosmological Model

    In addition,we also investigate the constraint effect of DECIGO on curvature density parameters under the assumption of the cosmological model.The non-flat Λ cold dark matter model is,

    At the same time,we also combine the supernova sample(Scolnic et al.2018) with the quasar sample (Cao et al.2017a,2017b) (EM) to constrain curvature parameter to discuss the constraint effect of GW data and EM data on the curvature density parameters in the non-flat Λ cold dark matter model (see Figure6).When using the supernovae,we fix the absolute magnitude at 19.32 (Suzuki et al.2012).Meanwhile,we divide the sub-samples of simulated GW with redshifts 0

    As shown in Table2,the results of constraining the non-flat Λ cold dark matter model in the table show that the curvature best values and their 68%confidence errors are ΩK=?0.012±0.11 and ΩK=?0.031±0.05 constrained by sub-sample DECIGO data at the redshift 0 to 2 and full sample atz=0 to 5 respectively.In addition,when two kinds of EM (supernova +quasar) data are used,the constraint of the curvature density parameter is ΩK=?0.034±0.15.For intuitive comparison,we also show the model-based constraint results of three kinds of data in Figure7.

    Our results show that in the method of directly assuming cosmological models (non-flat Λ cold dark matter model),the accuracy of curvature parameter error (ΔΩK=0.05) given by the full sample with redshift(z?[0,5])is higher,which is only 0.5 times of the curvature error(ΔΩK=0.11)given by the subsample(z?[0,2]),and only 0.3 times of the error(ΔΩK=0.15)given by the EM data sample.It can be seen that the error given by the full sample (z?[0,5]) is more than twice the result of Planck data constraint ΔΩK=0.018 (Aghanim et al.2020).In addition,it is worth noting that the accuracy of the curvature parameter (ΔΩK=0.11) is lower than that of the improved curvature test method(ΔΩK=0.016)error given under the same redshift range (z?[0,2]),as shown in Table1.However,the curvature constraint results obtained by the improved curvature test method are similar to those obtained by Planck data.For EM data,compared with the constraint result of using supernova sample alone on the model is ΩK=(Gao et al.2020),the accuracy of curvature is improved after adding quasars.However,it is still lower than those from GW data.Therefore,for gravitational waves,an improved curvature test method to constrain the curvature can be able to obtain higher accuracy results.In addition,for the constraint results of matter density parameters (Ωm) in the non-flat Λ cold dark matter model,the constraint accuracy of GW data is also higher than that of EM data,and this constraint ability becomes stronger with the increase of the number of events with the higher redshift of GW.For the Hubble constant (H0),the error results constrained by the two kinds of GW data are slightly larger than those given by EM data,but they are consistent within the 1σerror range.In particular,we use the non-flat Λ cold dark matter model to simulate the gravitational wave data and repeat the above work.The results show that the selection of curvature density parameters in the non-flat Λ cold dark matter model has little effect on testing curvature accuracy using simulated gravitational wave data.

    4.Conclusion

    Gravitational waves as a standard siren may open up a new window for the study of cosmology,and more interesting results are expected through gravitational wave detection.In this paper,we use an improved curvature test method to study the curvature.First,31 sets of Hubble parameter data from the cosmic chronometer are reconstructed using the Gaussian process.After integrating the reconstructed data,a group of luminosity distancegiven byH(z) is obtained.Then,we use the data from DECIGO to simulate 10,000 GW events and obtain their redshift,luminosity distance,and corresponding error.By comparing the luminosity distance given by the two kinds of data,the curvature parameters are constrained.In our work,1.We simulated 10,000 GW events based on the estimation of future detection events by the DECIGO project.2.The curvature constraint results of the third generation GW detectors (ET) and the space gravitational wave detectors(DECIGO)are compared in our study.When the cosmic curvature is constrained by the improved curvature test method,ET and DECIGO get the constraint results of ΩK=0.035±0.039,ΩK=?0.007±0.016,respectively.The results demonstrate that the space gravitational wave detectors can provide a stronger constraint effect.3.We also compare the results of using the improved curvature test method and the method of using the non-flat Λ cold dark matter model to constrain curvature based on DECIGO data,which are ΩK=?0.007±0.016,ΩK=?0.031±0.05.It is shown that for DECIGO,the improved curvature test method can get a stronger constraint effect.The curvature constraint accuracy obtained by the improved curvature test method can be similar to that of curvature constraint given by Planck 2018 microwave background (ΔΩK=0.018) (Aghanim et al.2020).

    At the same time,we also compare the constraint results given by other observation data.Compared with the thirdgeneration gravitational wave detector ET(Wei2018),Type Ia supernovae (Gao et al.2020) and compact radio quasars (Cao et al.2019a),the error given by DECIGO is half that of ET,and the accuracy is one order of magnitude higher than that of supernovae and quasars.

    In addition,we also use DECIGO to constrain the non-flat Λ cold dark matter model and take the EM data as the control group.The results demonstrate that in the case of the constraint model,the curvature constraint effect of DECIGO is slightly higher than that of EM.Meanwhile,GW has excellent potential for curvature constraints under improved curvature test method conditions.By comparing the current constraint results,the gravitational wave detector DECIGO has a higher constraint ability of curvature constraints than ET and some additional current research results.At the same time,some scholars have proposed a framework including multiple measurements of gravitational waves acting as standard probes,which provides complementary model-independent constraints on the cosmic curvature with DECIGO (Zhang et al.2022).Therefore,the GW observations provide a powerful and novel method to estimate the spatial curvature in different cosmological-modelindependent ways.

    Acknowledgments

    This work was supported in part by the National Natural Science Foundation of China (Grant Nos.12105032,11873001,12047564,12075041 and 12147102);the Fundamental Research Funds for the Central Universities of China(Grant Nos.2021CDJQY-011 and 2020CDJQY-Z003);the Science Foundation of Chongqing(Grant No.D63012022005);Chongqing Science and Technology research project (Grant No.KJ111206);the Natural Science Foundation of Chongqing(Grant No.cstc2021jcyj-msxmX0481);the Scientific Research and Innovation Project of Graduate Students in Chongqing(Grant No.CYS20272).

    男女床上黄色一级片免费看| 少妇的逼水好多| 日本成人三级电影网站| 国内揄拍国产精品人妻在线| 99久久无色码亚洲精品果冻| 成熟少妇高潮喷水视频| 国产精品亚洲美女久久久| 在线观看av片永久免费下载| 色综合站精品国产| 欧美日韩福利视频一区二区| 亚洲在线观看片| 成年版毛片免费区| 婷婷六月久久综合丁香| 一个人观看的视频www高清免费观看| 国产69精品久久久久777片| 日韩大尺度精品在线看网址| 日韩欧美 国产精品| 国产精品,欧美在线| 欧美在线一区亚洲| 午夜福利成人在线免费观看| 成人国产综合亚洲| 婷婷六月久久综合丁香| 国模一区二区三区四区视频| av黄色大香蕉| av天堂中文字幕网| 国产精品免费一区二区三区在线| 18禁裸乳无遮挡免费网站照片| 午夜福利成人在线免费观看| 免费av不卡在线播放| 国产一区在线观看成人免费| 日韩av在线大香蕉| 欧美另类亚洲清纯唯美| 好看av亚洲va欧美ⅴa在| 中文字幕av成人在线电影| 97超视频在线观看视频| 午夜免费激情av| 色尼玛亚洲综合影院| 欧美激情久久久久久爽电影| 国产主播在线观看一区二区| 免费看十八禁软件| 男女那种视频在线观看| 精品一区二区三区人妻视频| 久久久久久久久久黄片| 久久九九热精品免费| 中文字幕人妻熟人妻熟丝袜美 | 少妇裸体淫交视频免费看高清| 午夜激情欧美在线| 国产伦精品一区二区三区四那| 国产一区二区三区视频了| 18禁国产床啪视频网站| 最后的刺客免费高清国语| 国产久久久一区二区三区| 日韩欧美在线乱码| 国产精品98久久久久久宅男小说| 欧美午夜高清在线| 噜噜噜噜噜久久久久久91| 国产亚洲av嫩草精品影院| 精品99又大又爽又粗少妇毛片 | 可以在线观看毛片的网站| 国产高潮美女av| 床上黄色一级片| 日韩亚洲欧美综合| 日韩欧美在线乱码| 日韩欧美国产在线观看| 韩国av一区二区三区四区| 波多野结衣高清无吗| 色综合站精品国产| 夜夜夜夜夜久久久久| 国产亚洲精品av在线| 人人妻人人澡欧美一区二区| 狠狠狠狠99中文字幕| 免费看日本二区| 老司机深夜福利视频在线观看| 亚洲美女黄片视频| 欧美在线一区亚洲| 久久久精品大字幕| 男人舔奶头视频| 极品教师在线免费播放| 人妻久久中文字幕网| 成人高潮视频无遮挡免费网站| 亚洲精品日韩av片在线观看 | 看片在线看免费视频| 午夜福利高清视频| 99国产综合亚洲精品| 国产亚洲欧美98| 好看av亚洲va欧美ⅴa在| 日韩成人在线观看一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 内地一区二区视频在线| 久久精品91蜜桃| 岛国视频午夜一区免费看| 给我免费播放毛片高清在线观看| 精品久久久久久久人妻蜜臀av| 成人国产一区最新在线观看| 欧美zozozo另类| 老司机福利观看| 久久久久国产精品人妻aⅴ院| 中文字幕人成人乱码亚洲影| 十八禁人妻一区二区| 久久国产精品人妻蜜桃| 国产乱人视频| 免费观看人在逋| 欧美中文日本在线观看视频| 亚洲成人免费电影在线观看| 国产一区二区亚洲精品在线观看| 国产亚洲欧美98| 欧美日韩瑟瑟在线播放| 热99在线观看视频| 麻豆国产av国片精品| 美女被艹到高潮喷水动态| 久久精品国产亚洲av涩爱 | 偷拍熟女少妇极品色| 欧美中文日本在线观看视频| 亚洲成人免费电影在线观看| 精品久久久久久久毛片微露脸| 女人被狂操c到高潮| 免费看光身美女| 最近在线观看免费完整版| 欧美一级a爱片免费观看看| 日韩欧美 国产精品| 亚洲av电影在线进入| 国产亚洲欧美98| 757午夜福利合集在线观看| 国内揄拍国产精品人妻在线| 成人av在线播放网站| 一级毛片高清免费大全| 色噜噜av男人的天堂激情| 中亚洲国语对白在线视频| 精品人妻一区二区三区麻豆 | 99久久无色码亚洲精品果冻| 最新美女视频免费是黄的| 身体一侧抽搐| 黄色视频,在线免费观看| 首页视频小说图片口味搜索| 全区人妻精品视频| 露出奶头的视频| 久久久国产成人精品二区| 日韩精品中文字幕看吧| 久久久久久久久大av| 午夜精品在线福利| 国产伦一二天堂av在线观看| 国产一区二区在线观看日韩 | 老司机深夜福利视频在线观看| avwww免费| 99riav亚洲国产免费| 可以在线观看毛片的网站| 国产野战对白在线观看| 国产成人影院久久av| 窝窝影院91人妻| 人人妻,人人澡人人爽秒播| 免费观看人在逋| 在线播放国产精品三级| 波多野结衣高清无吗| 亚洲av熟女| 午夜久久久久精精品| 每晚都被弄得嗷嗷叫到高潮| 国产高清有码在线观看视频| 日韩大尺度精品在线看网址| 一a级毛片在线观看| www.www免费av| 脱女人内裤的视频| 日本 av在线| 免费观看的影片在线观看| 成人欧美大片| 亚洲乱码一区二区免费版| 久久天躁狠狠躁夜夜2o2o| 午夜精品一区二区三区免费看| 男人舔奶头视频| 国产高清有码在线观看视频| 日日摸夜夜添夜夜添小说| 美女免费视频网站| 久9热在线精品视频| 韩国av一区二区三区四区| 国产精品av视频在线免费观看| 禁无遮挡网站| 又黄又爽又免费观看的视频| 久久香蕉国产精品| 亚洲第一电影网av| 亚洲专区中文字幕在线| a在线观看视频网站| 日日摸夜夜添夜夜添小说| 啦啦啦免费观看视频1| 18禁裸乳无遮挡免费网站照片| 一区二区三区国产精品乱码| 他把我摸到了高潮在线观看| 国产亚洲欧美98| 国产老妇女一区| 琪琪午夜伦伦电影理论片6080| 欧美成人免费av一区二区三区| 国产亚洲精品久久久久久毛片| 久久精品综合一区二区三区| 色尼玛亚洲综合影院| 99久久久亚洲精品蜜臀av| 超碰av人人做人人爽久久 | 国产不卡一卡二| 免费观看的影片在线观看| 欧美日韩国产亚洲二区| 精品乱码久久久久久99久播| 欧美丝袜亚洲另类 | 久久国产精品人妻蜜桃| 一级a爱片免费观看的视频| 黄片大片在线免费观看| 99久久99久久久精品蜜桃| 黄色女人牲交| 日本黄色片子视频| 九九在线视频观看精品| 性色av乱码一区二区三区2| 制服人妻中文乱码| 久久人人精品亚洲av| 久久久久国内视频| 精品久久久久久久久久免费视频| 真人一进一出gif抽搐免费| 午夜免费激情av| 欧美日本视频| 久久人妻av系列| 精品国产亚洲在线| 69av精品久久久久久| 日韩大尺度精品在线看网址| 一区福利在线观看| 欧美黄色淫秽网站| 又粗又爽又猛毛片免费看| 亚洲aⅴ乱码一区二区在线播放| 成人一区二区视频在线观看| 精品国产美女av久久久久小说| 可以在线观看的亚洲视频| 色老头精品视频在线观看| 床上黄色一级片| 一卡2卡三卡四卡精品乱码亚洲| 日本黄大片高清| 日本免费a在线| 真实男女啪啪啪动态图| 2021天堂中文幕一二区在线观| 日韩高清综合在线| 欧美精品啪啪一区二区三区| 国产精品爽爽va在线观看网站| 日韩欧美国产在线观看| 午夜a级毛片| 欧美日韩福利视频一区二区| 精品国产超薄肉色丝袜足j| 一夜夜www| 日韩大尺度精品在线看网址| 国产精品一及| 国产精品久久久久久久久免 | 国产亚洲精品一区二区www| av天堂在线播放| 亚洲欧美一区二区三区黑人| 看黄色毛片网站| 日韩欧美一区二区三区在线观看| 老司机午夜福利在线观看视频| 日本黄大片高清| 免费人成视频x8x8入口观看| 国产伦在线观看视频一区| 波多野结衣高清作品| 成人亚洲精品av一区二区| 国产精品综合久久久久久久免费| 久久九九热精品免费| 欧美精品啪啪一区二区三区| 欧美性感艳星| 麻豆一二三区av精品| 久久这里只有精品中国| 老司机福利观看| 国产精品久久久久久亚洲av鲁大| 欧美日韩一级在线毛片| av福利片在线观看| 国产精品久久久久久人妻精品电影| 免费一级毛片在线播放高清视频| 国产高清视频在线观看网站| 观看免费一级毛片| 欧美在线黄色| 久久精品国产99精品国产亚洲性色| 身体一侧抽搐| 毛片女人毛片| 精品不卡国产一区二区三区| 69av精品久久久久久| 国产亚洲精品av在线| 亚洲精品美女久久久久99蜜臀| 亚洲精品乱码久久久v下载方式 | 国产高清三级在线| 美女免费视频网站| 国产单亲对白刺激| 嫩草影视91久久| 欧美乱妇无乱码| 白带黄色成豆腐渣| 69人妻影院| 亚洲午夜理论影院| 国产精品日韩av在线免费观看| 99久久成人亚洲精品观看| 村上凉子中文字幕在线| 97超级碰碰碰精品色视频在线观看| 国产一级毛片七仙女欲春2| 丝袜美腿在线中文| 欧美激情久久久久久爽电影| 狠狠狠狠99中文字幕| 99久久99久久久精品蜜桃| 老汉色av国产亚洲站长工具| 久久久精品大字幕| 日本精品一区二区三区蜜桃| 欧洲精品卡2卡3卡4卡5卡区| av欧美777| 国产日本99.免费观看| 亚洲精品在线美女| 日韩欧美精品免费久久 | 啦啦啦免费观看视频1| 别揉我奶头~嗯~啊~动态视频| 国产亚洲精品久久久久久毛片| 免费人成视频x8x8入口观看| 免费看光身美女| 亚洲狠狠婷婷综合久久图片| 可以在线观看毛片的网站| 美女高潮喷水抽搐中文字幕| 级片在线观看| 国产精品久久久人人做人人爽| 精品日产1卡2卡| 国产av在哪里看| 黄色片一级片一级黄色片| 动漫黄色视频在线观看| 99riav亚洲国产免费| 免费无遮挡裸体视频| 天美传媒精品一区二区| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利免费观看在线| 午夜日韩欧美国产| 国产黄a三级三级三级人| 亚洲天堂国产精品一区在线| 丰满的人妻完整版| 熟女少妇亚洲综合色aaa.| 亚洲国产精品sss在线观看| 少妇人妻精品综合一区二区 | 精品久久久久久,| 国产麻豆成人av免费视频| 亚洲精品在线美女| 一本久久中文字幕| 精品不卡国产一区二区三区| 俺也久久电影网| 欧美日韩精品网址| 日韩av在线大香蕉| 国产精品1区2区在线观看.| 69av精品久久久久久| 亚洲va日本ⅴa欧美va伊人久久| 深爱激情五月婷婷| 好看av亚洲va欧美ⅴa在| a级毛片a级免费在线| 脱女人内裤的视频| 久久久久久国产a免费观看| 99热精品在线国产| 亚洲内射少妇av| 国产在线精品亚洲第一网站| 美女高潮喷水抽搐中文字幕| 午夜精品一区二区三区免费看| 亚洲,欧美精品.| 丰满人妻熟妇乱又伦精品不卡| 一区福利在线观看| 尤物成人国产欧美一区二区三区| 丰满人妻一区二区三区视频av | 亚洲国产精品sss在线观看| av片东京热男人的天堂| 日本五十路高清| bbb黄色大片| 精品人妻偷拍中文字幕| 中文字幕精品亚洲无线码一区| 国产高潮美女av| 久9热在线精品视频| av在线蜜桃| 禁无遮挡网站| 每晚都被弄得嗷嗷叫到高潮| 狂野欧美白嫩少妇大欣赏| 一区二区三区高清视频在线| 亚洲精品美女久久久久99蜜臀| 欧美中文日本在线观看视频| 中文字幕人成人乱码亚洲影| svipshipincom国产片| 一区福利在线观看| 亚洲不卡免费看| 国产精品香港三级国产av潘金莲| 蜜桃久久精品国产亚洲av| 精华霜和精华液先用哪个| 女人被狂操c到高潮| 无遮挡黄片免费观看| 国产单亲对白刺激| 久久精品夜夜夜夜夜久久蜜豆| 亚洲国产中文字幕在线视频| 婷婷六月久久综合丁香| 观看免费一级毛片| 国产国拍精品亚洲av在线观看 | 亚洲天堂国产精品一区在线| 岛国视频午夜一区免费看| 亚洲人成网站高清观看| 19禁男女啪啪无遮挡网站| 免费观看精品视频网站| 亚洲国产欧美人成| 久久久久免费精品人妻一区二区| 亚洲七黄色美女视频| 国产精品乱码一区二三区的特点| 女人十人毛片免费观看3o分钟| 免费看光身美女| 亚洲欧美日韩卡通动漫| 女同久久另类99精品国产91| 日韩亚洲欧美综合| 亚洲av成人不卡在线观看播放网| 国产视频内射| 亚洲成人中文字幕在线播放| 欧美日韩亚洲国产一区二区在线观看| 国产真人三级小视频在线观看| 亚洲欧美精品综合久久99| 人人妻人人澡欧美一区二区| 亚洲av电影不卡..在线观看| 黄色女人牲交| 天堂网av新在线| 19禁男女啪啪无遮挡网站| 波多野结衣巨乳人妻| 嫩草影院精品99| 又黄又粗又硬又大视频| 亚洲av一区综合| 久久久久国产精品人妻aⅴ院| 欧美成人a在线观看| 在线观看免费视频日本深夜| 亚洲国产色片| 国产精品影院久久| 特大巨黑吊av在线直播| 久久精品国产清高在天天线| 亚洲在线自拍视频| 国产欧美日韩精品亚洲av| 国产激情偷乱视频一区二区| 我要搜黄色片| 色老头精品视频在线观看| 色精品久久人妻99蜜桃| 日韩精品中文字幕看吧| 嫁个100分男人电影在线观看| 一区二区三区激情视频| 18禁黄网站禁片午夜丰满| 免费看a级黄色片| 久久久国产成人精品二区| 国产精品香港三级国产av潘金莲| 国产 一区 欧美 日韩| 国产国拍精品亚洲av在线观看 | 天堂动漫精品| 亚洲成av人片在线播放无| 国产精品女同一区二区软件 | 黑人欧美特级aaaaaa片| 丰满人妻一区二区三区视频av | 欧美午夜高清在线| 国产激情欧美一区二区| 超碰av人人做人人爽久久 | 99国产综合亚洲精品| 欧美日韩瑟瑟在线播放| 黄片大片在线免费观看| 久久精品人妻少妇| 亚洲一区高清亚洲精品| 国产精品久久久人人做人人爽| 亚洲在线观看片| a级毛片a级免费在线| 久久精品国产亚洲av涩爱 | 国产在视频线在精品| 长腿黑丝高跟| netflix在线观看网站| 欧美性猛交黑人性爽| 欧美乱码精品一区二区三区| 69av精品久久久久久| 国产精品久久久久久久电影 | 国产一级毛片七仙女欲春2| 亚洲人与动物交配视频| www日本黄色视频网| 日本在线视频免费播放| 亚洲熟妇熟女久久| 亚洲无线观看免费| 午夜福利在线观看吧| 亚洲中文字幕一区二区三区有码在线看| 狂野欧美白嫩少妇大欣赏| 97人妻精品一区二区三区麻豆| www.熟女人妻精品国产| 有码 亚洲区| 内射极品少妇av片p| 中国美女看黄片| 精品一区二区三区人妻视频| 欧美丝袜亚洲另类 | 国产午夜精品久久久久久一区二区三区 | 欧美日韩国产亚洲二区| 亚洲五月天丁香| 成年女人看的毛片在线观看| 精品无人区乱码1区二区| 欧美bdsm另类| 精品久久久久久久久久免费视频| 听说在线观看完整版免费高清| 手机成人av网站| 好男人在线观看高清免费视频| 久久欧美精品欧美久久欧美| 午夜福利成人在线免费观看| www.999成人在线观看| 搡老熟女国产l中国老女人| 老鸭窝网址在线观看| 三级男女做爰猛烈吃奶摸视频| 黄片大片在线免费观看| 99国产极品粉嫩在线观看| 少妇的丰满在线观看| 国内揄拍国产精品人妻在线| 国产精品一区二区免费欧美| a级毛片a级免费在线| 欧美不卡视频在线免费观看| 国产淫片久久久久久久久 | 精品乱码久久久久久99久播| 欧美日本视频| 久久久久国内视频| 亚洲精品在线观看二区| 在线播放国产精品三级| a级毛片a级免费在线| 成年版毛片免费区| 国产真实乱freesex| 搡老岳熟女国产| 国产精品一区二区免费欧美| 免费看美女性在线毛片视频| 又紧又爽又黄一区二区| 女警被强在线播放| 搡女人真爽免费视频火全软件 | 亚洲,欧美精品.| 美女被艹到高潮喷水动态| 狠狠狠狠99中文字幕| 亚洲中文字幕一区二区三区有码在线看| 两人在一起打扑克的视频| 亚洲片人在线观看| 天堂av国产一区二区熟女人妻| 99国产精品一区二区蜜桃av| 成年女人看的毛片在线观看| 国产成人欧美在线观看| 中文字幕人妻丝袜一区二区| 欧美+日韩+精品| 18美女黄网站色大片免费观看| 欧美+亚洲+日韩+国产| 亚洲不卡免费看| 久久精品综合一区二区三区| 国产精品99久久99久久久不卡| 国产精品美女特级片免费视频播放器| 在线观看一区二区三区| 亚洲欧美日韩高清在线视频| 少妇裸体淫交视频免费看高清| 夜夜看夜夜爽夜夜摸| x7x7x7水蜜桃| 国产精品香港三级国产av潘金莲| 国产伦精品一区二区三区四那| 亚洲国产精品成人综合色| 国产爱豆传媒在线观看| 亚洲国产精品久久男人天堂| 国产一区二区亚洲精品在线观看| 亚洲av二区三区四区| 操出白浆在线播放| 男女做爰动态图高潮gif福利片| 成人精品一区二区免费| 免费人成视频x8x8入口观看| 又粗又爽又猛毛片免费看| 久久伊人香网站| 成年女人永久免费观看视频| 亚洲av五月六月丁香网| 51国产日韩欧美| 免费av毛片视频| 波多野结衣巨乳人妻| 一区二区三区免费毛片| 男女午夜视频在线观看| 久久久久久久亚洲中文字幕 | 精品久久久久久成人av| 久久久久久大精品| 亚洲人成网站在线播放欧美日韩| 女人被狂操c到高潮| 亚洲国产欧洲综合997久久,| 又黄又爽又免费观看的视频| 18禁黄网站禁片午夜丰满| 国产精品久久久人人做人人爽| 久久精品国产综合久久久| 国模一区二区三区四区视频| 国产三级在线视频| 亚洲欧美日韩高清在线视频| 色播亚洲综合网| 麻豆久久精品国产亚洲av| 欧美丝袜亚洲另类 | 国产免费av片在线观看野外av| 99久久99久久久精品蜜桃| 午夜福利视频1000在线观看| www日本黄色视频网| 免费一级毛片在线播放高清视频| 欧美xxxx黑人xx丫x性爽| 日韩欧美国产一区二区入口| 九色国产91popny在线| а√天堂www在线а√下载| 免费在线观看影片大全网站| 精品午夜福利视频在线观看一区| 久久精品综合一区二区三区| 久久香蕉精品热| 两人在一起打扑克的视频| 91麻豆精品激情在线观看国产| 又黄又粗又硬又大视频| av女优亚洲男人天堂| 最新中文字幕久久久久| 9191精品国产免费久久| 成年人黄色毛片网站| 午夜a级毛片| 久久精品国产综合久久久| 午夜精品在线福利| 精品国产三级普通话版| 国产熟女xx| 99在线视频只有这里精品首页| 草草在线视频免费看| 亚洲国产欧美网| 一本久久中文字幕| 国产真人三级小视频在线观看| 成人精品一区二区免费| 免费观看的影片在线观看| 村上凉子中文字幕在线| 国产精品电影一区二区三区| 亚洲精品久久国产高清桃花| 丁香欧美五月| 午夜免费男女啪啪视频观看 | 婷婷精品国产亚洲av在线| 国产成人av激情在线播放| 欧美成人a在线观看| 村上凉子中文字幕在线| 窝窝影院91人妻| 高清毛片免费观看视频网站|