杜 青,羅亞林,卿龍邦
(河北工業(yè)大學(xué) 土木與交通學(xué)院,天津 300401)
橋墩的震害形式多樣,震后過大的殘余變形尤為突出,因此,在保證橋墩耗能能力下,減少其震后殘余變形成為了學(xué)者們研究的熱點之一。F. HOSSSEINI等[1]就提出用超彈性合金(SEA)來解決這一問題。
形狀記憶合金(shape memory alloy, SMA)具有獨特的形狀記憶效應(yīng)和超彈性[2]。SMA中的馬氏體相變成就了它的特殊性能,在自由應(yīng)力狀態(tài)高溫下SMA材料以母相(奧氏體相)存在,溫度降低時,轉(zhuǎn)變?yōu)轳R氏體相。SMA的形狀記憶效應(yīng)是指,在低于奧氏體相變開始溫度As下,對SMA施加荷載,再通過簡單加熱到奧氏體相變結(jié)束溫度Af以上,卸載完成后的殘余應(yīng)變得到完全恢復(fù)。如果在大于奧氏體相變結(jié)束溫度Af下加載,此時SMA就具有超彈性性質(zhì),卸載后沒有殘余應(yīng)變的產(chǎn)生,SMA又稱為超彈性合金。相比于普通的鋼筋,SEA具有強度高,殘余應(yīng)變小,減震能力強,耐腐蝕等優(yōu)點[3-4]。
目前,國內(nèi)外已經(jīng)有大量關(guān)于在混凝土結(jié)構(gòu)內(nèi)添加SEA桿的力學(xué)試驗研究,但這些試驗大都關(guān)注試件的整體力學(xué)性能,例如滯回曲線等,而對于鋼筋應(yīng)力以及試件塑性鉸的相關(guān)參數(shù),研究較少?;谝陨嫌^點,筆者在試驗的基礎(chǔ)上,利用有限分析軟件ABAQUS建立了內(nèi)置SEA桿的橋墩有限元模型 ,用以研究在循環(huán)荷載作用下橋墩的整體力學(xué)性能、橋墩配筋的受力狀態(tài)以及塑性鉸長度的發(fā)展趨勢。
為研究含SEA桿的混凝土橋墩在循環(huán)荷載作用下的力學(xué)性能,構(gòu)建了兩根1/4比例尺寸的試件,分別是只含普通鋼筋的橋墩(RC-Column)和潛在塑性鉸區(qū)部分縱筋替換成SEA桿的橋墩(PSEA-Column)。每個試件包含508 mm×508 mm×254 mm柱帽和635 mm×635 mm×394 mm承臺,承臺頂與柱帽上表面之間的凈高為660.4 mm。試件的柱體部分是直徑為203.2 mm的圓柱體。試驗中的所有柱體都是提前預(yù)制的,試件組裝時,柱體插入承臺和柱帽的深度分別為203 mm和152 mm。在PSEA-Column中,潛在塑性鉸區(qū)域內(nèi)的縱向鋼筋全部設(shè)計為無粘結(jié)形式,無粘結(jié)區(qū)域長度為250 mm,同時,利用螺紋套筒將長250 mm、直徑9.5 mm的SEA金屬桿與直徑12.7 mm的普通鋼筋連接在一起,無粘結(jié)筋插入承臺的深度為66 mm。此外,兩個試件都布置了直徑3.9 mm、間距32 mm的螺旋箍筋。詳細的試件尺寸和鋼筋布置信息如圖1。
圖1 試件尺寸及配筋(單位:mm)Fig. 1 Size and reinforcement of specimens
選用的混凝土和鋼筋材料參數(shù)經(jīng)試驗測得數(shù)據(jù)列于表1、表2。
表1 混凝土材料參數(shù)Table 1 Concrete material parameters
表2 鋼筋材料參數(shù)Table 2 Rebar material parameters
試驗中采用了一種多軸試驗裝置對水平和軸向荷載進行組合加載,該裝置可以在作用平面內(nèi)施加任意組合形式的荷載。柱帽內(nèi)布置了12根高強預(yù)應(yīng)力鋼筋用于連接加載裝置的壓板,柱頂?shù)暮奢d再通過8根高強預(yù)應(yīng)力鋼筋傳到地面固定端。試驗時,加載裝置在平面內(nèi)的轉(zhuǎn)動約束被釋放,構(gòu)件處于懸臂約束狀態(tài),保證了所有荷載都能施加在同一平面。以位移加載的方式在柱帽頂面施加相對位移為0.25%~9.5%的水平循環(huán)荷載,每圈循環(huán)2次,同時在整個試驗過程中對加載面施加100 kN的軸向力,軸力大小約為柱體截面抗壓強度的7.5%。此外,相對位移定義為加載面水平位移與加載面到承臺上表面高度( 有效高度)的比值。詳細的加載制度見圖2。
圖2 加載制度Fig. 2 Loading protocol
在幾何模型的建立中,將試件分為3部分,分別是柱帽部分、柱體部分和承臺部分。柱帽和承臺的三維模型在柱體安裝位置預(yù)留了圓柱體凹槽,此外,為降低建模難度,將試驗中的螺旋箍筋建立成較為簡單的環(huán)形箍筋?;谠囼灥慕M裝過程,柱體與承臺、柱帽的接觸位置設(shè)置了面-面綁定約束。柱體內(nèi)的有粘結(jié)鋼筋設(shè)置為嵌入式約束,對于SEA-Column試件,將SEA金屬桿和普通鋼筋位于連接處的兩個節(jié)點進行六自由度全耦合,以模擬套筒的作用。而對于柱體塑性鉸區(qū)的縱向鋼筋,采用局部坐標(biāo)耦合的方式[5],將鋼筋節(jié)點及其周圍混凝體單元的8個節(jié)點偶合起來,釋放鋼筋軸向的平動位移,以模擬鋼筋與混凝土的無粘結(jié)效應(yīng)。值得注意的是,為防止無粘結(jié)區(qū)域的過約束,將鋼筋單元的劃分長度定為混凝土單元長度的2倍。此外,在柱帽頂面(加載面)中點設(shè)置了參考點RP-1,該參考點與加載面定義了完全耦合,可以替代加載面的運動情況。承臺底面設(shè)置了完全約束,同時,約束了RP-1在Y方向的平動以及X和Z方方向的轉(zhuǎn)動,以防止平面外失穩(wěn)。劃分單元時,為了降低收斂難度,混凝土單元采用六面體8節(jié)點的C3D8R單元,共劃分出5 176個單元,鋼筋采用兩節(jié)點三維線性桁架T3D2單元,共劃分出552個單元,具體模型見圖3。
圖3 有限元模型Fig. 3 Finite element model
2.2.1 混凝土本構(gòu)模型
采用ABAQUS提供的混凝土損傷塑性模型(CDP)對混凝土進行模擬。CDP模型考慮了材料拉壓性能的差異, 主要用于模擬低靜水壓力下由損傷引起的不可恢復(fù)的材料退化。
圖4給出了混凝土在單軸受壓時的力學(xué)行為。在彈性階段,該模型采用線彈性模型對材料的力學(xué)性能進行描述,此時材料無損傷,無損材料卸載時沿初始剛度E0卸載;當(dāng)應(yīng)力超過彈性極限應(yīng)力σ0后,材料進入損傷階段,材料損傷后的彈性模量降低為(1-d)E0,其中d為損傷因子,損傷材料卸載時將沿著此剛度進行。
圖4 混凝土單軸應(yīng)力-應(yīng)變曲線Fig. 4 Uniaxial stress-strain curve of concrete
(1)
(2)
因此,在定義CDP模型參數(shù)前,需要先定義混凝土的單軸受壓和受拉的應(yīng)力-應(yīng)變曲線以及對應(yīng)的損傷因子。
1)混凝土單軸受壓及受拉本構(gòu)關(guān)系
目前,國內(nèi)外對混凝土軸心受壓的力學(xué)性能進行了大量的研究。選取文獻[6]提出的受壓應(yīng)力-應(yīng)變曲線,該曲線的無量綱數(shù)學(xué)表達式為:
(3)
式中:y=σ/fc、x=ε/ε0,fc為混凝土軸心抗壓強度,ε0為軸心受壓峰值應(yīng)變。此外,式(3)還包含上升段參數(shù)A1和下降段參數(shù)α1,在計算過程中發(fā)現(xiàn),過大的α1值會導(dǎo)致模型承載力發(fā)生突降,這顯然是不合理的,經(jīng)過大量試算,選用文獻[7]擬合的α1。A1和α1的計算公式分別表示為:
(4)
(5)
式中:fcu為混凝土立方體抗壓強度。
混凝土的受拉應(yīng)力-應(yīng)變曲線由式(6)、式(7)確定:
σ=(1-dt)Ecε
(6)
(7)
式中:x=ε/εt,r;αt為混凝土單軸受拉應(yīng)力-應(yīng)變曲線下降段參數(shù);ρt=ft, r/(Ecεt,r);ft, r為混凝土單軸抗拉強度,εt, r為ft, r對應(yīng)的混凝土受拉峰值應(yīng)變。
在分析中,將混凝土受壓及受拉曲線的彈性段取到應(yīng)變?yōu)?.5ε0處。曲線的截斷位置,取到應(yīng)變?yōu)?.9ε0處,ε0為比例極限應(yīng)變。
2)損傷因子
筆者選用基于能量等價原理提出的材料損傷模型,該模型是一種理想的損傷模型,在數(shù)值模擬中具有很大的優(yōu)勢。針對一維混凝土損傷模型,損傷因子d可以表示為[8]:
(8)
式中:σ為應(yīng)力;ε為應(yīng)變;E0為材料初始彈性模量?;炷翐p傷參數(shù)取值到0.95以上[9]?;炷敛牧媳緲?gòu)的參數(shù)及部分取值列于表3。
表3 混凝土本構(gòu)模型參數(shù)Table 3 Concrete constitutive model parameters
2.2.2 普通鋼筋本構(gòu)模型
鋼筋與混凝土之間的粘結(jié)滑移作用是滯回曲線產(chǎn)生“捏攏”的關(guān)鍵因素。在鋼筋和混凝土節(jié)點之間定義非線性彈簧單元是目前常用的手法,但在復(fù)雜構(gòu)件中這種方法難以實現(xiàn),因此,筆者引入鋼筋的滯回模型[10],定義橋墩中普通鋼筋的材料本構(gòu)。該模型通過對鋼筋在循環(huán)荷載作用下的剛度進行削減,模擬鋼筋與混凝土之間的粘結(jié)滑移作用,使得構(gòu)件的滯回曲線出現(xiàn)“捏攏”效應(yīng)。
該滯回模型通過在ABAQUS中調(diào)用子程序的方式,給鋼筋單元賦予材料屬性,需要輸入的3個參數(shù)分別為:鋼筋初始剛度;鋼筋屈服應(yīng)力;硬化階段的剛度折減系數(shù)取0.001。具體的取值列于表4。
表4 普通鋼筋本構(gòu)模型參數(shù)Table 4 Rebar constitutive model parameters
2.2.3 SEA本構(gòu)模型
采用ABAUQUS提供的Super Elasticity模型對SEA桿進行模擬。該模型假定:整個加載過程,奧氏體和馬氏體均遵循各向同性線彈性。
圖5 SEA數(shù)值模擬與試驗結(jié)果對比Fig. 5 Comparison of SEA numerical simulation and test results
表5 SEA本構(gòu)模型參數(shù)Table 5 SEA constitutive model parameters
有限元模型以位移加載的方式對加載面上的參考點RP-1進行循環(huán)加載,同時對RP-1施加大小為100 kN的軸向力??紤]到有限元分析是理想的彈塑性分析,在加載過程中,每一圈只循環(huán)一次。
數(shù)值模擬的橋墩滯回曲線與試驗曲線對比見圖6。由圖6可知,有限元模擬結(jié)果與試驗結(jié)果吻合良好,滯回曲線存在明顯的“捏攏”效應(yīng),試件展現(xiàn)出了剛度退化和強度退化的現(xiàn)象,證明了建模的準(zhǔn)確性以及各項參數(shù)設(shè)置的合理性。RC-Column滯回曲線的計算值較試驗值顯示出了更加明顯的強度退化現(xiàn)象。此外,與SEA-Column的滯回曲線計算值相比,RC-Column在卸載時的剛度退化更符合試驗趨勢。
圖6 滯回曲線對比Fig. 6 Comparison of hysteretic curve
為了定量的對比數(shù)值模擬與試驗結(jié)果,從滯回曲線中提取出試件的初始剛度E0、屈服點、峰值強度Vm和極限強度Vu、及他們對應(yīng)的應(yīng)變Δm和Δu和耗能值。其中,E0定義為強度值在40%Vm~70%Vm之間所對應(yīng)的平均剛度;Vu定義為峰值強度Vm的75%;屈服點的選取,根據(jù)剛度下降法,先確定屈服位移Δy,再確定對應(yīng)的屈服強度Vv;在試驗中,1根SEA桿在試件加載到7%相對位移時發(fā)生了斷裂,而筆者所建立的模型無法模擬鋼筋的斷裂,因此,Δp定義為加載峰值為7%時,正向加載和反向加載的殘余變形平均值;橋墩的耗能能力定義為峰值加載7%所對應(yīng)的的耗能值,通過等效粘滯阻尼系數(shù)ξeq表示,ξeq由式(9)、式(10)確定:
(9)
(10)
式中:ED為滯回曲線所包含的面積;Ke為有效剛度;εp和εn分別為滯回環(huán)最大正向和反向位移;Fp和Fn分別為對應(yīng)的荷載值。
表6列出了試件在數(shù)值模擬和試驗中的各個力學(xué)參數(shù)對比情況。由表6可知,試件的受力狀態(tài)比位移狀態(tài)模擬得更加準(zhǔn)確。試件在彈性階段均顯示出較高的剛度,這是因為ABAQUS過度考慮了鋼筋與混凝土的約束,在一定程度放大了鋼筋的作用,導(dǎo)致初始剛度試驗值與計算值之間的誤差較大。因為在模擬過程中試件的初始剛度偏大,RC-Column的峰值強度在加載過程中來得更早,Δm的誤差達到了49.8%,而在PSEA-Column中只有19.6%,同時,對比Δu,PSEA-Column的誤差值也較RC-Column低,只有4.6%,反映到滯回曲線圖中即為PSEA-Column的強度退化更為平緩。值得注意的是,PSEA-Column試件的潛在塑性鉸區(qū)中配置了無粘結(jié)形式的鋼筋,從而證明:①塑性鉸區(qū)的受力狀態(tài)對試件的力學(xué)性能影響較大;②通過Coupling約束定義的鋼筋與混凝土之間的相互作用要優(yōu)于Embed約束。此外,PSEA-Column的最大殘余變形值不論是試驗還是模擬都較RC-Column小,證明SEA桿在減小試件殘余變形方面有著優(yōu)越的性能。
表6 力學(xué)參數(shù)的試驗與模擬結(jié)果對比Table 6 Comparison of experimental and simulated results ofmechanical parameters
圖7繪制了數(shù)值模擬中,縱筋在每個峰值加載點處的最大應(yīng)變以及試件的最大塑性鉸長度,該長度通過縱筋的屈服區(qū)域來定義。
圖7(a)中,峰值加載達到相對位移1.5%之后,兩個試件的縱筋應(yīng)變差距越來越大,這可能是因為,ABAQUS提供的Superel Elasticity材料是理想的超彈性材料,卸載過程中,殘余應(yīng)變得到完全恢復(fù),而通過滯回模型定義的普通縱筋,在屈服后殘余應(yīng)變逐漸累積,從而導(dǎo)致RC-Column在后續(xù)的加載中,縱筋的應(yīng)變大于PSEA-Column。圖7(b)中,PSEA-Column的塑性鉸長度更大,這是因為,對于無粘結(jié)鋼筋的模擬來說,由于釋放了縱筋軸向的約束,導(dǎo)致同一根鋼筋在加載過程中,其截面應(yīng)力會保持在同一水平,這符合無粘結(jié)鋼筋的受力規(guī)律。此外,2個試件的塑性鉸區(qū)長度最終都處于250 mm左右,證明了試驗對潛在塑性鉸區(qū)域的設(shè)置合理。
圖7 縱筋的應(yīng)變與塑性鉸長度Fig. 7 Strain of longitudinal rebars and plastic hinge length
通過對內(nèi)置SEA桿的混凝土橋墩力學(xué)性能進行數(shù)值分析,從模擬結(jié)果與試驗結(jié)果的對比中,得到以下結(jié)論:
1)有限元模型的建立過程合理,數(shù)值模擬結(jié)果與試驗結(jié)果吻合良好,比較準(zhǔn)確的反映了橋墩的力學(xué)性能。
2)鋼筋滯回模型的使用,使得滯回曲線出現(xiàn)明顯的“捏攏”效應(yīng),這證明通過對鋼筋剛度的削減,模擬鋼筋與混凝土之間的粘結(jié)滑移是一種有效的方法。
3)通過閱讀相關(guān)文獻和大量試算所確定的參數(shù),使ABAQUS提供的Super Elasticity與CDP模型在模擬超彈性合金和混凝土的過程中,得到了較為準(zhǔn)確的結(jié)果。所涉及的模型的建立過程及材料參數(shù)的選取,可以用來評估高性能材料和橋墩的地震反應(yīng),同時,對于地震地區(qū)橋墩的設(shè)計及其改進有一定的參考價值。