• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    電化學蝕刻鉭箔制備高容量薄膜鉭電解電容器

    2021-02-02 05:17:42郭永富王日明于淑會初寶進
    集成技術 2021年1期
    關鍵詞:電解電容器薄膜

    郭永富 王日明 于淑會 初寶進 孫 蓉

    1(深圳先進電子材料國際創(chuàng)新研究院 深圳 518103)

    2(中國科學院深圳先進技術研究院 深圳 518055)

    3(中國科學技術大學納米科學技術學院 蘇州 215123)

    4(中國科學技術大學 中國科學院能量轉換材料重點實驗室 合肥 230026)

    1 Introduction

    Fig. 1 Schematic illustration of (a) commercially available copper/dielectric layer/copper structured embedded capacitors, and (b) discrete thin film tantalum electrolytic capacitors圖1 埋入式電容與分立式薄膜電解電容對比圖: (a)商用銅/介電層/銅結構嵌入式電容器;(b)分立薄膜電解電容器

    Electronic devices are continuously progressing toward miniaturization, which puts forward requirements on the size of constituent components. However, the limited surface area on an integrated circuit (IC) board creates a bottleneck on the development of high-density integrated circuits. To solve this problem, the idea of embedding components in the printed circuit board or IC substrate has been proposed[1-6]. Capacitors account for more than half of the passive components on an IC board, covering around 40% of the surface area[7]. Thus, the development of embedded capacitors with high energy density is of vital importance in the advancement of high-density IC[8-9]. However, the current commercial embedded capacitors with BaTiO3filled polymer as dielectric layer (Fig. 1(a)) can only afford very small capacitance of <0.1 nF/mm2, which hinders its wide application[10]. Due to its small specific capacitance value, the embedded capacitance of this ceramic/polymer composite material needs to occupy a large internal space in the circuit board when a large capacitance is needed. So an alternative strategy of using small-sized surface-mounted capacitors as embedded components (Fig. 1(b)) is put forward[11]. Among all types of capacitors, multilayered ceramic capacitors (MLCC) and Tantalum (Ta) electrolytic capacitors are playing dominant roles. Although MLCC has been widely used in electronic devices for its excellent high-voltage and high-frequency performance, MLCC severely suffers from the unstable capacitance with the fluctuation of voltage, temperature, and stress[12-16]. By comparison, Ta possesses a small thermal expansion coefficient[17], and tantalum pentoxide (Ta2O5) exhibits stable physical and chemical properties[18], which both contribute to the outstanding stability of Ta electrolytic capacitors, endowing Ta electrolytic capacitors great potential for their application as embedded capacitors in high-density IC system. Traditionally, the anode of Ta electrolytic capacitors is produced by the sintering of Ta powders[19-20], and the Ta electrolytic capacitor based on sintered Ta anode can provide a high specific capacitance of 0.1 μF~1 000 μF. However, the sintering process is complicated, and usually requires a highly vacuum condition under a temperature of over 1 200 °C[21-25]. The thickness of the obtained Ta electrolytic capacitor is usually beyond millimeter level, and such a huge thickness impedes its application as embedded capacitors, because the substrate where the passives are embedded has a limited thickness of several hundred micrometers.

    Ta and Niobium (Nb) foils etchings have been reported, which involves the electrolyte containing hydrofluoric acid or its mixture[26], and the etched foils were used for catalysis. Similarly, isopropyl alcohol and n-butanol solutions of hydrofluoric acid were used to etch niobium foil, and a better etching effect was obtained[27-28]. Herein, we propose the utilization of invasive electrolyte (hydrofluoric acid n-butyl alcoholic solution) for the electrochemical etching of the Ta foils to fabricate anode for Ta electrolytic capacitors. The equation to calculate the capacitance of a parallel plate capacitor is listed as follows:

    whereεis the permittivity of the dielectric (ε=25 for the anodic oxide of Ta),ε0=8.85×10-14F/cm is the permittivity of free space,Sis the surface area, anddis the dielectric thickness. Based on this equation, it is clear that large capacitance requires largeSwhendis fixed.

    With the electrochemical etching approach, a thin Ta foil can be controllably etched, and the thin foil with enlarged surface area shows a specific capacitance as high as 74 nF/mm2with an oxidation voltage of 12 V when measured in 0.1 mol/L H2SO4. The etched Ta foils is then fabricated into electrolytic capacitors after the deposition of cathode layer, graphite layer, and silver paste[29]in sequence. The electrolytic capacitors based on electrochemically etched Ta foils demonstrate a stable capacitance of >30 nF/mm2over the frequency range of 100 Hz~1 MHz and a low leakage current of 2.7×10-6A. The electrolytic capacitor has a thickness of 75 μm, which is thin enough for their application as embedded capacitors.

    2 Experimental

    2.1 Materials

    Tantalum foils (99.9% purity) with a thickness of 50 μm were purchased from Sigma-Aldrich, China. Phosphoric acid (H3PO4, ≥85wt%) and hydrofluoric acid (HF, ≥40wt%) were purchased from Sinopharm Chemical Reagent. n-butanol (AR, 99%) was purchased from Aladdin. Platinum electrodes were used as counter electrode for both Ta etching and oxidation process. A polytetrafluoroethylene electrolytic cell (Shanghai Honghe Sealing Material Co. LTD), with a volume of 50 mL, was used for etching.

    2.2 Electrochemical etching of Ta foils

    Hydrofluoric acid was diluted to 2 wt% with n-butanol, and was used as etching electrolyte. The tantalum foil was cut to an area of 5 mm×5 mm, the same size as the counter electrode. Tantalum foils were ultra-sonicated in 2-butanone for 10 min, followed by washing with ethanol and drying in oven at 80 ℃, and 20 mL etching electrolyte was added into an electrolytic cell. A series of samples were obtained by applying a pre-defined etching voltage (in the range of 20~80 V) at ambient temperature. The duration of etching time was 2~5 h. The electrochemically etched Ta foils were denoted as Ta-20V2H, Ta-40V2H, Ta-60V2H, Ta-80V2H, Ta-40V3H, Ta-40V4H, and Ta-40V5H, respectively, where the first two digits represented the applied voltage, i.e., 20 V, 40 V, 60 V, and 80 V, and the last digit represented etching hours, i.e., 2 hours, 3 hours, 4 hours, and 5 hours. During the etching process, the speed of the magnetic stirring was set as 800 r/min.

    2.3 Oxidation (Ta2O5 formation)

    The Ta foils were oxidized at a constant voltage of 12 V (formation voltage) for 3 h in 0.1 wt% H3PO4aqueous solution at 80 ℃.

    2.4 Characterizations

    The morphology of pristine and etched Ta foils was examined by field-emission scanning electric microscope (FE-SEM, FEI NovaNano SEM450). The surface elements of tantalum foil before etching, after etching and after oxidation were analyzed by X-ray photoelectron spectroscopy (XPS, Thermo Fisher EscaLab 250Xi). 3D Laser Scanning Microscope was used to analyze the surface of etched tantalum foil. Three 1 000 μm×1 000 μm areas were randomly selected for measurement, and the multi-line roughness Ra was measured.

    2.5 Measurement of specific capacitance

    The capacitance (C) was measured in 0.1 mol/L H2SO4by Precision Impedance Analyzer (Agilent 4294a) in the frequency range of 100 Hz~110 MHz as shown in Fig. 2 (a, c). The counter electrode material is platinum foil. The capacitor lead reserved on the tantalum anode is clamped with a platinum clip and the anode is immersed in sulfuric acid solution. The specific capacitance was acquired by dividing C tested at 100 Hz with the surface area of tantalum foils.

    Fig. 2 Schematic illustration of (a) and (c) measuring capacitance of anode in 0.1 mol/L H2SO4, (b) and (d) measuring capacitance of tantalun capacitor圖2 鉭薄膜電容的濕法測試和器件測試過程: (a)、(c)鉭電容陽極電容值的測量,(b)、(d)鉭電容器件的測試

    The oxidized Ta foils are also fabricated into Ta electrolytic capacitor by the deposition of Poly (2,3-dihydrothieno-1,4-dioxin), graphite layer, and silver paste. The leakage current was measured by an electrochemical workstation (Shanghai Chenhua Instrument Co., Ltd), and the testing process is shown in Fig. 2(b, d). The capacitive performance of Ta electrolytic capacitor is measured by Precision Impedance Analyzer (Agilent 4294A) in the frequency range of 100 Hz~110 MHz as shown in Fig. 2 (b, d).

    3 Results and Discussions

    3.1 Physical characterizations of electrochemically etched Ta foils

    The surface of pristine Ta foil is not absolutely smooth and has certain roughness before etching (Fig. 3(a)). After electrochemical etching, the surface roughness is enhanced. SEM images (Fig. 3(b-d)) indicate that the surface roughness is linked with the applied voltage, and the surface is more roughened with higher applied voltage. Although the surface of Ta-80V2H appears to be less rough (Fig. 3(e)), large density of holes and even cracks can be found under higher magnification (Fig. 3(f)). The cracks in Ta-80V2H significantly lowers the mechanical property of Ta foils, which makes it impossible to fabricate electrolytic capacitors.

    Fig. 3 SEM images of (a) pristine Ta foils, (b) Ta-20V2H, (c) Ta-40V2H, (d) Ta-60V2H, and (e-f) Ta-80V2H圖3 不同蝕刻條件下得到的鉭箔表面 SEM 圖:(a)無蝕刻,(b) Ta-20V2H,(c) Ta-40V2H,(d) Ta-60V2H,(e-f) Ta-80V2H

    The SEM images of Ta foils etched with 40 V for different hours are shown in Fig. 4, and deep etched holes can be found on all the samples. However, limited by the qualitative nature of SEM images, no significant difference is identified among the SEM images of different etching hours under either low magnification (Fig. 4(a, c, e, g)) or high magnification (Fig. 4(b, d, f, h)). Therefore, 3D Laser Scanning Microscope is used to quantify the influence of electrochemical etching on the Ta surface roughness.

    Fig. 4 SEM images of (a-b) Ta-40V2H, (c-d) Ta-40V3H, (e-f) Ta-40V4H, and (g-h) Ta-40V5H圖4 不同蝕刻條件下得到的鉭箔表面 SEM 圖:(a-b) Ta-40V2H,(c-d) Ta-40V3H,(e-f) Ta-40V4H,(g-h) Ta-40V5H

    Fig. 6 XPS regional spectra of (a) pristine Ta foils, (b) Ta-40V2H foil, and (c) oxidized Ta-40V2H foil圖6 蝕刻和氧化前后鉭箔表面元素的 XPS 區(qū)域光譜變化:(a)無蝕刻鉭箔;(b)蝕刻后鉭箔;(c)氧化后鉭箔

    Ra represents the arithmetic mean of the absolute value of contour offset on the sample surface, and can be used to approximately quantify the surface roughness. Fig. 5 shows the Ra value of the pristine Ta foil and etched Ta foils. The Ra shows a steady increasing trend with both etching voltage and etching time, both of which first undergo a slight increase and then go up sharply. The pristine Ta foil has a Ra of 3 μm, while the Ra of Ta-80V2H foil is almost twice of pristine Ta foil (Fig. 5(a)). Ta-40V5H foil possesses a Ra of ~17 μm, about 5.7 times higher than pristine Ta foil (Fig. 5(b)).

    The surface elements of pristine Ta foil, Ta-40V2H foil, and oxidized Ta-40V2H foil are analyzed by XPS. Ta4f regional spectra of all three samples exhibit strong Ta2O5peaks, and the regional Ta4f spectra of the above-mentioned foils are shown in Fig. 6. And pristine Ta foils (Fig. 6(a)) and HFetched Ta foils also show clear peaks corresponding to metallic Ta (Fig. 6(b)), while no metallic Ta peaks are seen on oxidized Ta foils (Fig. 6(c)). The Ta2O5observed on pristine Ta foils is native oxide as reported in literature[30], which also explains the difficulty of Ta electrochemical etching in noninvasive electrolytes, i.e. the inert native oxide films on the surface of pristine Ta foils severely impede the electrochemical etching.

    After electrochemical etching in HF electrolyte, the Ta2O5is still obvious in XPS regional spectra (Fig. 6(b)), which may be caused by the continuous formation of Ta2O5during electrochemical etching. Considering that metallic Ta is resistant to HF corrosion, we speculate that the electrochemical etching of Ta foils is a combination of the following two reactions[31]:

    The XPS results (Table 1) also demonstrate that a large percent of oxygens exist in all three samples.

    Table 1 Elemental contents of pristine Ta foil, Ta-40V2H, and oxidized Ta-40V2H as determined by XPS表1 原始鉭箔、Ta-40V2H 鉭箔和氧化 Ta-40V2H 鉭箔的元素含量數(shù)據(jù)

    Since Ta is leaching into the electrolyte during electrochemical etching, the weight loss percentage is measured (Fig. 7). The weight loss percentage shows a nearly linear relation with etching voltage and etching time, highlighting the controllable manner of electrochemical methods. Similar with Ra values, the weight loss percentage shows a steeper slope with etching time than etching voltage.

    3.2 Capacitance enhancement by electrochemical etching

    The specific capacitance of the pristine Ta foil and etched Ta foils are summarized in Fig. 8. In line with Ra and weight loss percentage, the specific capacitance steadily increases with etching voltage (Fig. 8(a)) and time (Fig. 8(b)). Fig. 8(a) shows that the increase of etching voltage leads to the increase of weight loss, and accordingly, the specific capacitance goes up, except for the etching voltage of 80 V, where the specific capacitance almost levels up with 60 V. The weight loss is nearly proportional to the applied voltage in the range from 20 V to 80 V, while the increase of specific capacitance slows down at higher voltage, which may indicate the limited effect of applied voltage on the specific capacitance. It means that the high voltage, such as 80 V, can still increase the weight loss, but does not contribute to the enhancement of surface roughness.

    Fig. 7 Weight loss percentage of (a) Ta foils etched with various voltages for 2 hours, and (b) Ta foils etched with 40 V voltage for various hours圖7 以電壓和時間為變量時鉭箔蝕刻后質(zhì)量變化:(a) 鉭箔在不同電壓下蝕刻 2 h 的失重百分比;(b) 鉭箔在 40 V 電壓下蝕刻不同時間的失重百分比

    Fig. 8 Specific capacitance of (a) Ta foils etched with various voltages for 2 hours, and (b) Ta foils etched with 40 V voltage for various hours圖8 以電壓和時間為變量時鉭箔蝕刻并氧化后電容值的變化:(a) 鉭箔在不同電壓下蝕刻 2 h 的電容值;(b) 鉭箔在 40 V 電壓下蝕刻不同時間的電容值

    The longer etching time results in more weight loss, and the specific capacitance is raised simultaneously, as displayed in Fig. 8(b). Although the SEM images does not show clear difference between the samples with difference etching time, the specific capacitance varies among these samples. It is speculated that the longer etching time at 40 V contributes to deeper etching, thereby increasing the weight loss. At the same time, deeper etching results in the increase of specific area, thus, the specific capacitance is raised.

    3.3 Capacitive performance of Ta electrolytic capacitors fabricated with etched Ta foils

    Fig. 9 Capacitive performance of the Ta electrolytic capacitor fabricated with Ta-40V5H anode, (a) capacitance over the frequency range of 100 Hz~110 MHz with the capacitor area 3 mm×3 mm, (b) equivalent series resistance (ESR) over the frequency range of 100 Hz~110 MHz, (c) the leakage current under 10 V DC voltage, and (d) the comparison of capacitance variation between the thin-film tantalum capacitor and commercial tantalum capacitor over the frequency range of 100 Hz~110 MHz圖9 采用 Ta-40V5H 鉭芯子制作鉭電解電容器,在頻率為 100 Hz~110 MHz 時測試其電學性能:(a)電容值的變化; (b)等效串聯(lián)電阻的變化; (c)10 V 直流電壓下的泄漏電流;(d)薄膜鉭電容器和商業(yè)鉭電容器電容變化對比

    The electrochemically etched Ta foil, Ta-40V5H, was fabricated into Ta electrolytic capacitor after oxidation and the deposition of cathode material (Poly(2,3-dihydrothieno-1,4-dioxin), graphite layer and silver layer). The frequency dependent capacitance and Equivalent Series Resistance (ESR) are summarized in Fig. 9(a) & (b). The Ta electrolytic capacitor based on etched Ta foils shows a high capacitance of >250 nF at the frequency of 1 kHz, and more than 70% of the capacitance is maintained even when the frequency rises to 1 MHz, as shown in Fig. 9(a). As seen from Fig. 9(b), the ESR is about 1 Ω at the low frequency range (<10 kHz), and gradually decreases to 0.5 Ω at MHz level. The leakage current under 10 V is shown in Fig. 9(c), and a relatively stable leakage current of ~10-6A is exhibited which is slightly larger than the commercial capacitor. The effective frequency is more than two orders of magnitude higher than commercial Ta electrolytic capacitors (Fig. 9(d)). The effective frequency of traditional Ta electrolytic capacitors is usually limited to 10 kHz, because the highly porous structure contains large amount of cascaded resistance-capacitance (RC) networks, which causes capacitance drop as frequency rises over 100 kHz[20]. The etched surface can diminish this phenomenon, since the cascaded RC network is restricted on the Ta surface with electrochemical etching method. However, there are disadvantages for embedded tantalum capacitors based on electrochemically etched Ta anode. One is that they are prone to short circuit, so tantalum capacitors are usually used at reduced voltage. As shown in Fig. 9(d), the leakage current of the capacitor is about 2×10-6A, which is slightly larger than that of the commercial capacitor.

    The size of fabricated Ta electrolytic capacitor is compared with the commercial one in Fig. 10(a). A thickness of ~75 μm of our Ta electrolytic capacitor is highlighted in Fig. 10(b), while the commercial Ta capacitor has thickness of ~1.6 mm. A cross-sectional SEM image of the Ta electrolytic capacitor fabricated with Ta-40V5H anode is shown in Fig. 10(c). The thickness of the anode is about 55 μm, while the cathode material accounts for a thickness of around 20 μm. A total thickness of ~75 μm endows this Ta electrolytic capacitor configuration a promising potential for its application as embedded capacitors in IC industry.

    Fig. 10 (a) Sizes of chip tantalum electrolytic capacitors and thin film tantalum electrolytic capacitors, (b) optical microscope cross section of tantalum thin film electrolytic capacitor, and (c) SEM cross section of tantalum film electrolytic capacitor圖10 鉭薄膜電解電容器的實物圖:(a)片狀鉭電解電容器和薄膜鉭電解電容器的尺寸;(b)鉭薄膜電解電容器的光學顯微鏡截面圖;(c)鉭薄膜電解電容器的 SEM 截面圖

    3.4 Discussion and analysis

    Ta and Nb foil etching has been reported[26-28], but the etching results were mediocre according to their SEM images, and the etched Ta or Nb foils were not made into capacitors. In this study, in order to apply the etching method to tantalum capacitors, a thin Ta electrolytic capacitor has been developed based on electrochemically etched Ta foils, and an enhanced capacitance is demonstrated. On the other hand, tantalum thin film capacitors have been studied at home and abroad with the method of tantalum powder sintering[19,20,32]. Electrochemical etching of Ta foils, instead of tantalum powder sintering, has less cost and simpler fabrication process. However, compared with the method of tantalum powder sintering, the capacitance of thin film tantalum capacitors prepared by electrochemical etching is smaller. In addition, the electrical property of tantalum capacitors produced by electrochemical etching needs to be improved, especially the proneness to short circuit.

    4 Conclusions

    In conclusion, we proposed the use of electro- chemical etching as an efficient method to produce thin Ta anode to facilitate its application as embedded capacitor. Both qualitative and quantitative techniques are used to characterize the influence of electrochemical etching on the surface roughness. The applied voltage and the electrochemical etching duration play important roles in determining the surface roughness, which shows a very close relation with specific capacitance. By optimizing the electrochemical etching parameters, the specific capacitance of etched Ta anode can reach as high as 74 nF/mm2. The Ta electrolytic capacitor device fabricated based on the etched Ta foils shows a stable capacitance of >30 nF/mm2in the frequency range of 100 Hz~1 MHz, and a low leakage current of 2.7×10-6A under 10 V DC. The electrochemical etching of thin Ta foils holds promising potential to produce Ta electrolytic capacitor for embedded application.

    猜你喜歡
    電解電容器薄膜
    復合土工薄膜在防滲中的應用
    電容器的實驗教學
    物理之友(2020年12期)2020-07-16 05:39:20
    輕輕松松學“電解”
    含有電容器放電功能的IC(ICX)的應用及其安規(guī)符合性要求
    電子制作(2019年22期)2020-01-14 03:16:28
    無功補償電容器的應用
    山東冶金(2019年5期)2019-11-16 09:09:38
    β-Ga2O3薄膜的生長與應用
    光源與照明(2019年4期)2019-05-20 09:18:18
    高強化平行流電解提高A級銅表面質(zhì)量實踐
    山東冶金(2018年6期)2019-01-28 08:15:06
    一種不易起皮松散的柔軟型聚四氟乙烯薄膜安裝線
    電線電纜(2017年2期)2017-07-25 09:13:35
    石墨烯在超級電容器中的應用概述
    CIGS薄膜太陽電池柔性化
    電源技術(2015年12期)2015-08-21 08:58:58
    久热爱精品视频在线9| 国产精品成人在线| √禁漫天堂资源中文www| 丁香六月欧美| 悠悠久久av| 免费在线观看完整版高清| 纵有疾风起免费观看全集完整版| 国产亚洲午夜精品一区二区久久| 中文字幕精品免费在线观看视频| 国产精品麻豆人妻色哟哟久久| 五月开心婷婷网| 香蕉国产在线看| 国产精品 欧美亚洲| 免费在线观看视频国产中文字幕亚洲 | 丰满饥渴人妻一区二区三| 国产精品香港三级国产av潘金莲| 亚洲七黄色美女视频| 日本wwww免费看| 丰满迷人的少妇在线观看| 狂野欧美激情性bbbbbb| 午夜福利乱码中文字幕| 汤姆久久久久久久影院中文字幕| 久久综合国产亚洲精品| 飞空精品影院首页| av有码第一页| 热99re8久久精品国产| 一区二区三区四区激情视频| 嫩草影视91久久| 日韩三级视频一区二区三区| 18禁黄网站禁片午夜丰满| 一级毛片女人18水好多| 每晚都被弄得嗷嗷叫到高潮| 午夜福利免费观看在线| 首页视频小说图片口味搜索| 老熟妇乱子伦视频在线观看 | 日韩有码中文字幕| 国产免费一区二区三区四区乱码| 一个人免费看片子| 亚洲国产欧美一区二区综合| 多毛熟女@视频| 曰老女人黄片| 国产一卡二卡三卡精品| 久9热在线精品视频| 黄色a级毛片大全视频| 国产精品一二三区在线看| 日韩欧美一区二区三区在线观看 | 午夜福利乱码中文字幕| 亚洲精品久久久久久婷婷小说| 男女高潮啪啪啪动态图| 婷婷成人精品国产| 国产成人精品在线电影| 亚洲第一欧美日韩一区二区三区 | 日韩中文字幕欧美一区二区| www.av在线官网国产| 久久香蕉激情| 久久 成人 亚洲| 成年av动漫网址| 女人久久www免费人成看片| 中文字幕人妻熟女乱码| 搡老熟女国产l中国老女人| 国产精品影院久久| 久久99一区二区三区| 老司机福利观看| 在线十欧美十亚洲十日本专区| 亚洲国产毛片av蜜桃av| 国产精品 国内视频| 欧美另类亚洲清纯唯美| 一边摸一边抽搐一进一出视频| 国产又爽黄色视频| 日韩人妻精品一区2区三区| 欧美另类一区| 成人av一区二区三区在线看 | 欧美国产精品va在线观看不卡| tube8黄色片| 欧美激情高清一区二区三区| 欧美少妇被猛烈插入视频| 侵犯人妻中文字幕一二三四区| 欧美变态另类bdsm刘玥| 汤姆久久久久久久影院中文字幕| 精品国内亚洲2022精品成人 | 精品少妇内射三级| 在线观看人妻少妇| 亚洲av欧美aⅴ国产| 国产精品 欧美亚洲| 黑人巨大精品欧美一区二区mp4| 蜜桃在线观看..| 汤姆久久久久久久影院中文字幕| 高清av免费在线| 国产成人av激情在线播放| 建设人人有责人人尽责人人享有的| 午夜精品国产一区二区电影| 午夜福利在线免费观看网站| 自拍欧美九色日韩亚洲蝌蚪91| 欧美精品啪啪一区二区三区 | 久久久久久亚洲精品国产蜜桃av| 国产精品久久久久成人av| 亚洲第一av免费看| 最近最新免费中文字幕在线| 精品少妇久久久久久888优播| 少妇粗大呻吟视频| 中文字幕人妻丝袜制服| 欧美大码av| 欧美日韩黄片免| 久久久久精品人妻al黑| 国产精品秋霞免费鲁丝片| netflix在线观看网站| 涩涩av久久男人的天堂| 亚洲国产欧美一区二区综合| 国精品久久久久久国模美| 黑人巨大精品欧美一区二区蜜桃| 国产av精品麻豆| 久久久久国产一级毛片高清牌| 国产精品1区2区在线观看. | 91字幕亚洲| 久久国产精品大桥未久av| 成年女人毛片免费观看观看9 | 丰满人妻熟妇乱又伦精品不卡| 午夜两性在线视频| 黄色视频,在线免费观看| 成人国语在线视频| 亚洲三区欧美一区| 老司机影院毛片| 精品欧美一区二区三区在线| 超碰97精品在线观看| 国产一区二区激情短视频 | 国产精品国产av在线观看| 嫁个100分男人电影在线观看| 高潮久久久久久久久久久不卡| 国产欧美日韩一区二区三区在线| 国产精品av久久久久免费| 亚洲第一欧美日韩一区二区三区 | www.自偷自拍.com| cao死你这个sao货| 久久久久久久久免费视频了| 亚洲精品一区蜜桃| 1024视频免费在线观看| 国产1区2区3区精品| 女人高潮潮喷娇喘18禁视频| a在线观看视频网站| 脱女人内裤的视频| 国产xxxxx性猛交| a在线观看视频网站| 中文字幕av电影在线播放| 国产日韩欧美亚洲二区| 亚洲人成电影观看| 一本久久精品| 中文字幕人妻丝袜一区二区| 色综合欧美亚洲国产小说| 一级黄色大片毛片| 99国产综合亚洲精品| 2018国产大陆天天弄谢| 飞空精品影院首页| 纵有疾风起免费观看全集完整版| 久久国产亚洲av麻豆专区| 国产成人系列免费观看| 国产av又大| 国产免费一区二区三区四区乱码| 80岁老熟妇乱子伦牲交| 亚洲国产av影院在线观看| 色老头精品视频在线观看| 人妻一区二区av| 三级毛片av免费| 色婷婷久久久亚洲欧美| 亚洲精品美女久久av网站| 首页视频小说图片口味搜索| 婷婷成人精品国产| 男女下面插进去视频免费观看| 亚洲情色 制服丝袜| www.自偷自拍.com| 欧美日韩成人在线一区二区| 国产成+人综合+亚洲专区| 少妇被粗大的猛进出69影院| 亚洲国产av影院在线观看| 欧美日韩av久久| 十八禁网站网址无遮挡| 午夜成年电影在线免费观看| 韩国精品一区二区三区| 亚洲av国产av综合av卡| 亚洲欧美清纯卡通| 精品乱码久久久久久99久播| 首页视频小说图片口味搜索| 久久久久久人人人人人| a级毛片在线看网站| av国产精品久久久久影院| 在线观看人妻少妇| 亚洲美女黄色视频免费看| 人妻人人澡人人爽人人| 欧美日本中文国产一区发布| 2018国产大陆天天弄谢| 精品亚洲乱码少妇综合久久| 国产精品 国内视频| 免费一级毛片在线播放高清视频 | 母亲3免费完整高清在线观看| 久久久久久久久免费视频了| av欧美777| 精品熟女少妇八av免费久了| 老司机亚洲免费影院| 午夜福利,免费看| 性少妇av在线| 少妇粗大呻吟视频| 交换朋友夫妻互换小说| 国产成人精品久久二区二区免费| 国产主播在线观看一区二区| 日韩大片免费观看网站| 亚洲精品在线美女| 香蕉丝袜av| 丰满迷人的少妇在线观看| 久久久国产欧美日韩av| 最黄视频免费看| 男人爽女人下面视频在线观看| 亚洲精品美女久久久久99蜜臀| 在线av久久热| 狠狠精品人妻久久久久久综合| 国产福利在线免费观看视频| 黄色毛片三级朝国网站| 久久中文看片网| 国产97色在线日韩免费| 成人av一区二区三区在线看 | 老司机靠b影院| 亚洲精品中文字幕一二三四区 | 三上悠亚av全集在线观看| 狠狠狠狠99中文字幕| 日本av手机在线免费观看| 日本欧美视频一区| 日韩制服骚丝袜av| 黄色 视频免费看| 亚洲av日韩在线播放| 精品少妇久久久久久888优播| 欧美97在线视频| 久久精品久久久久久噜噜老黄| av免费在线观看网站| 色婷婷av一区二区三区视频| 美女视频免费永久观看网站| 日韩人妻精品一区2区三区| 色播在线永久视频| 欧美黑人欧美精品刺激| 国产亚洲午夜精品一区二区久久| 亚洲国产毛片av蜜桃av| 最黄视频免费看| 国产精品免费视频内射| 在线看a的网站| 国产av国产精品国产| 久久精品aⅴ一区二区三区四区| 热99re8久久精品国产| 99热全是精品| cao死你这个sao货| 高清欧美精品videossex| 捣出白浆h1v1| 91大片在线观看| 亚洲成人免费av在线播放| 老鸭窝网址在线观看| 大片免费播放器 马上看| 亚洲,欧美精品.| 久久久久视频综合| 女人高潮潮喷娇喘18禁视频| 人人妻人人澡人人看| 亚洲精品成人av观看孕妇| 国产有黄有色有爽视频| 99久久99久久久精品蜜桃| 亚洲第一青青草原| 婷婷丁香在线五月| 丁香六月天网| 精品一区二区三区四区五区乱码| 999精品在线视频| 欧美精品一区二区大全| 一本久久精品| 女人久久www免费人成看片| 国产高清国产精品国产三级| 在线观看免费视频网站a站| 免费在线观看黄色视频的| 久久久久国产精品人妻一区二区| 久久99一区二区三区| 国产成人精品久久二区二区免费| 欧美黄色片欧美黄色片| 欧美另类一区| 国产又爽黄色视频| 各种免费的搞黄视频| 在线亚洲精品国产二区图片欧美| 欧美日韩成人在线一区二区| 9191精品国产免费久久| 国产精品香港三级国产av潘金莲| 人成视频在线观看免费观看| www.熟女人妻精品国产| 999精品在线视频| 国产精品九九99| 亚洲欧美成人综合另类久久久| 色播在线永久视频| 欧美av亚洲av综合av国产av| 国产精品久久久久久人妻精品电影 | 国产成人影院久久av| 高潮久久久久久久久久久不卡| 亚洲全国av大片| 丝袜美腿诱惑在线| 一级片'在线观看视频| 丰满饥渴人妻一区二区三| 国产在线免费精品| 两人在一起打扑克的视频| 亚洲国产精品成人久久小说| 宅男免费午夜| 99热国产这里只有精品6| 久久精品亚洲熟妇少妇任你| 日韩熟女老妇一区二区性免费视频| 亚洲av电影在线观看一区二区三区| 男人添女人高潮全过程视频| 欧美一级毛片孕妇| 亚洲欧美色中文字幕在线| 日本一区二区免费在线视频| 欧美日韩亚洲高清精品| 91国产中文字幕| 欧美精品亚洲一区二区| 亚洲七黄色美女视频| 久久精品国产综合久久久| 十八禁网站网址无遮挡| 黄色怎么调成土黄色| 80岁老熟妇乱子伦牲交| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久久av美女十八| 性少妇av在线| 女人高潮潮喷娇喘18禁视频| 夜夜夜夜夜久久久久| 999久久久国产精品视频| 成年人黄色毛片网站| av免费在线观看网站| 国产成人精品无人区| 午夜91福利影院| 亚洲精品美女久久久久99蜜臀| 青春草亚洲视频在线观看| 男人添女人高潮全过程视频| 一本色道久久久久久精品综合| 亚洲精品国产av蜜桃| 国产av又大| 韩国高清视频一区二区三区| 国产成人影院久久av| 97人妻天天添夜夜摸| 天堂中文最新版在线下载| 欧美乱码精品一区二区三区| 国产一区二区三区在线臀色熟女 | 99国产综合亚洲精品| 中文字幕高清在线视频| 国产一区二区三区在线臀色熟女 | 久久99一区二区三区| 9191精品国产免费久久| 一个人免费在线观看的高清视频 | 亚洲视频免费观看视频| 黑人猛操日本美女一级片| 国产淫语在线视频| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产欧美在线一区| 免费黄频网站在线观看国产| 可以免费在线观看a视频的电影网站| 亚洲精品一区蜜桃| 午夜老司机福利片| 91字幕亚洲| 日本一区二区免费在线视频| 女人被躁到高潮嗷嗷叫费观| 久久香蕉激情| 久久人人97超碰香蕉20202| 欧美日韩福利视频一区二区| 每晚都被弄得嗷嗷叫到高潮| 国产精品成人在线| 动漫黄色视频在线观看| 中国美女看黄片| 欧美日韩av久久| 交换朋友夫妻互换小说| 黄色视频在线播放观看不卡| 视频在线观看一区二区三区| 亚洲精品成人av观看孕妇| 满18在线观看网站| 水蜜桃什么品种好| 1024视频免费在线观看| 亚洲欧美日韩另类电影网站| 欧美精品一区二区免费开放| 啦啦啦啦在线视频资源| 国产色视频综合| 亚洲熟女毛片儿| 汤姆久久久久久久影院中文字幕| 国产日韩欧美视频二区| 18在线观看网站| 国产日韩欧美视频二区| tocl精华| 999精品在线视频| 欧美精品一区二区免费开放| 三上悠亚av全集在线观看| 日韩有码中文字幕| av在线app专区| 性少妇av在线| 日韩视频在线欧美| 欧美另类一区| 99re6热这里在线精品视频| 欧美久久黑人一区二区| 十八禁网站网址无遮挡| 在线观看免费高清a一片| 视频区欧美日本亚洲| 国产成人精品久久二区二区免费| 免费观看人在逋| 一本大道久久a久久精品| 免费观看人在逋| 我要看黄色一级片免费的| 肉色欧美久久久久久久蜜桃| 老熟妇乱子伦视频在线观看 | 欧美 亚洲 国产 日韩一| 亚洲欧美一区二区三区黑人| 亚洲欧美精品综合一区二区三区| 大香蕉久久成人网| 黄网站色视频无遮挡免费观看| 成人手机av| 亚洲精品国产区一区二| 三级毛片av免费| 精品亚洲成a人片在线观看| 最新在线观看一区二区三区| 日韩电影二区| 91大片在线观看| 99精品欧美一区二区三区四区| 午夜免费鲁丝| 日韩三级视频一区二区三区| 天天躁日日躁夜夜躁夜夜| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产精品成人久久小说| 汤姆久久久久久久影院中文字幕| 黄色 视频免费看| 视频区图区小说| 女人高潮潮喷娇喘18禁视频| 国产亚洲欧美精品永久| 国产精品国产av在线观看| 精品一区二区三区av网在线观看 | 美女视频免费永久观看网站| 亚洲激情五月婷婷啪啪| 99国产精品一区二区三区| 91精品三级在线观看| av网站在线播放免费| 成人av一区二区三区在线看 | 色婷婷久久久亚洲欧美| 亚洲精品粉嫩美女一区| www.精华液| www.自偷自拍.com| 一区二区三区精品91| 中文字幕精品免费在线观看视频| 亚洲精品美女久久av网站| 国产片内射在线| 午夜影院在线不卡| 亚洲人成电影免费在线| 又紧又爽又黄一区二区| 国产精品av久久久久免费| 50天的宝宝边吃奶边哭怎么回事| 热99久久久久精品小说推荐| 极品人妻少妇av视频| 日韩制服丝袜自拍偷拍| 久久这里只有精品19| 久久久久久久大尺度免费视频| 久久精品久久久久久噜噜老黄| 精品亚洲成a人片在线观看| 各种免费的搞黄视频| 日韩 欧美 亚洲 中文字幕| 欧美精品av麻豆av| 精品人妻熟女毛片av久久网站| 一级毛片女人18水好多| 丝袜美腿诱惑在线| 国产精品一区二区精品视频观看| 超色免费av| 午夜精品国产一区二区电影| 各种免费的搞黄视频| 日韩电影二区| 黄色a级毛片大全视频| 日韩视频在线欧美| 99热网站在线观看| 老汉色∧v一级毛片| 一区二区三区精品91| 午夜激情av网站| 免费观看人在逋| 色视频在线一区二区三区| 一区二区日韩欧美中文字幕| 日韩大片免费观看网站| 嫩草影视91久久| 久久九九热精品免费| 曰老女人黄片| 大陆偷拍与自拍| 高潮久久久久久久久久久不卡| 在线永久观看黄色视频| 婷婷丁香在线五月| 精品人妻1区二区| 99精品久久久久人妻精品| 亚洲三区欧美一区| 久久久久国内视频| 亚洲一区中文字幕在线| 最近中文字幕2019免费版| 久久99热这里只频精品6学生| 蜜桃在线观看..| 国产精品欧美亚洲77777| 无遮挡黄片免费观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲成人免费av在线播放| www.熟女人妻精品国产| 亚洲精品一二三| 高清av免费在线| 国产又爽黄色视频| 国产97色在线日韩免费| 久久久久久久大尺度免费视频| 日韩人妻精品一区2区三区| 黄色视频在线播放观看不卡| 欧美激情高清一区二区三区| 午夜日韩欧美国产| 五月开心婷婷网| 久久久久久久精品精品| 亚洲国产精品999| 一级毛片电影观看| 欧美97在线视频| 久久久久视频综合| 午夜影院在线不卡| 成人国语在线视频| 十八禁高潮呻吟视频| 操出白浆在线播放| 国产一级毛片在线| 麻豆国产av国片精品| 在线观看www视频免费| 亚洲美女黄色视频免费看| 黄网站色视频无遮挡免费观看| 1024视频免费在线观看| 一级黄色大片毛片| 国产一区二区三区av在线| 99国产极品粉嫩在线观看| 法律面前人人平等表现在哪些方面 | 免费高清在线观看日韩| 我的亚洲天堂| 亚洲成人国产一区在线观看| svipshipincom国产片| 精品国产一区二区三区四区第35| 亚洲免费av在线视频| 老熟女久久久| 一区二区av电影网| 成人国产一区最新在线观看| 午夜老司机福利片| 精品人妻1区二区| 精品一区二区三区四区五区乱码| 成人国产一区最新在线观看| 国产欧美日韩综合在线一区二区| 欧美日韩亚洲高清精品| 麻豆国产av国片精品| 欧美亚洲日本最大视频资源| 久久香蕉激情| 国产高清视频在线播放一区 | 少妇粗大呻吟视频| 午夜精品久久久久久毛片777| 久久久久久免费高清国产稀缺| 视频区图区小说| 午夜福利一区二区在线看| 国产成人a∨麻豆精品| 最近最新中文字幕大全免费视频| 久久久久久久大尺度免费视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久精品人妻al黑| 手机成人av网站| 69精品国产乱码久久久| 国产又爽黄色视频| 国精品久久久久久国模美| 亚洲av日韩在线播放| 久久久久久人人人人人| 亚洲国产中文字幕在线视频| 久久久国产精品麻豆| 久久国产精品影院| 亚洲免费av在线视频| 亚洲av美国av| 亚洲自偷自拍图片 自拍| 欧美成狂野欧美在线观看| 午夜影院在线不卡| 国产99久久九九免费精品| 国产精品久久久久久人妻精品电影 | 精品亚洲成国产av| 久久国产精品人妻蜜桃| 亚洲欧美一区二区三区黑人| 午夜视频精品福利| 日本猛色少妇xxxxx猛交久久| 性高湖久久久久久久久免费观看| 水蜜桃什么品种好| 两人在一起打扑克的视频| 午夜福利,免费看| 色婷婷久久久亚洲欧美| bbb黄色大片| 欧美变态另类bdsm刘玥| 午夜福利影视在线免费观看| 嫁个100分男人电影在线观看| 韩国精品一区二区三区| 老司机午夜福利在线观看视频 | 亚洲av成人不卡在线观看播放网 | av天堂在线播放| 亚洲国产欧美在线一区| 另类亚洲欧美激情| 国产精品一区二区免费欧美 | 最近最新免费中文字幕在线| 麻豆乱淫一区二区| 日本一区二区免费在线视频| 国产日韩欧美亚洲二区| 欧美另类亚洲清纯唯美| 美女高潮喷水抽搐中文字幕| 一级毛片精品| 欧美激情高清一区二区三区| 97精品久久久久久久久久精品| 免费人妻精品一区二区三区视频| 妹子高潮喷水视频| 日韩有码中文字幕| 99国产极品粉嫩在线观看| 夜夜夜夜夜久久久久| 国产精品香港三级国产av潘金莲| 男女国产视频网站| 亚洲精品美女久久av网站| 男人爽女人下面视频在线观看| 午夜老司机福利片| 深夜精品福利| 欧美精品啪啪一区二区三区 | 国产一级毛片在线| 法律面前人人平等表现在哪些方面 | 男女高潮啪啪啪动态图| 久久中文字幕一级| 国产精品久久久久久精品古装| √禁漫天堂资源中文www| 国产一区二区三区在线臀色熟女 |