• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    電化學蝕刻鉭箔制備高容量薄膜鉭電解電容器

    2021-02-02 05:17:42郭永富王日明于淑會初寶進
    集成技術 2021年1期
    關鍵詞:電解電容器薄膜

    郭永富 王日明 于淑會 初寶進 孫 蓉

    1(深圳先進電子材料國際創(chuàng)新研究院 深圳 518103)

    2(中國科學院深圳先進技術研究院 深圳 518055)

    3(中國科學技術大學納米科學技術學院 蘇州 215123)

    4(中國科學技術大學 中國科學院能量轉換材料重點實驗室 合肥 230026)

    1 Introduction

    Fig. 1 Schematic illustration of (a) commercially available copper/dielectric layer/copper structured embedded capacitors, and (b) discrete thin film tantalum electrolytic capacitors圖1 埋入式電容與分立式薄膜電解電容對比圖: (a)商用銅/介電層/銅結構嵌入式電容器;(b)分立薄膜電解電容器

    Electronic devices are continuously progressing toward miniaturization, which puts forward requirements on the size of constituent components. However, the limited surface area on an integrated circuit (IC) board creates a bottleneck on the development of high-density integrated circuits. To solve this problem, the idea of embedding components in the printed circuit board or IC substrate has been proposed[1-6]. Capacitors account for more than half of the passive components on an IC board, covering around 40% of the surface area[7]. Thus, the development of embedded capacitors with high energy density is of vital importance in the advancement of high-density IC[8-9]. However, the current commercial embedded capacitors with BaTiO3filled polymer as dielectric layer (Fig. 1(a)) can only afford very small capacitance of <0.1 nF/mm2, which hinders its wide application[10]. Due to its small specific capacitance value, the embedded capacitance of this ceramic/polymer composite material needs to occupy a large internal space in the circuit board when a large capacitance is needed. So an alternative strategy of using small-sized surface-mounted capacitors as embedded components (Fig. 1(b)) is put forward[11]. Among all types of capacitors, multilayered ceramic capacitors (MLCC) and Tantalum (Ta) electrolytic capacitors are playing dominant roles. Although MLCC has been widely used in electronic devices for its excellent high-voltage and high-frequency performance, MLCC severely suffers from the unstable capacitance with the fluctuation of voltage, temperature, and stress[12-16]. By comparison, Ta possesses a small thermal expansion coefficient[17], and tantalum pentoxide (Ta2O5) exhibits stable physical and chemical properties[18], which both contribute to the outstanding stability of Ta electrolytic capacitors, endowing Ta electrolytic capacitors great potential for their application as embedded capacitors in high-density IC system. Traditionally, the anode of Ta electrolytic capacitors is produced by the sintering of Ta powders[19-20], and the Ta electrolytic capacitor based on sintered Ta anode can provide a high specific capacitance of 0.1 μF~1 000 μF. However, the sintering process is complicated, and usually requires a highly vacuum condition under a temperature of over 1 200 °C[21-25]. The thickness of the obtained Ta electrolytic capacitor is usually beyond millimeter level, and such a huge thickness impedes its application as embedded capacitors, because the substrate where the passives are embedded has a limited thickness of several hundred micrometers.

    Ta and Niobium (Nb) foils etchings have been reported, which involves the electrolyte containing hydrofluoric acid or its mixture[26], and the etched foils were used for catalysis. Similarly, isopropyl alcohol and n-butanol solutions of hydrofluoric acid were used to etch niobium foil, and a better etching effect was obtained[27-28]. Herein, we propose the utilization of invasive electrolyte (hydrofluoric acid n-butyl alcoholic solution) for the electrochemical etching of the Ta foils to fabricate anode for Ta electrolytic capacitors. The equation to calculate the capacitance of a parallel plate capacitor is listed as follows:

    whereεis the permittivity of the dielectric (ε=25 for the anodic oxide of Ta),ε0=8.85×10-14F/cm is the permittivity of free space,Sis the surface area, anddis the dielectric thickness. Based on this equation, it is clear that large capacitance requires largeSwhendis fixed.

    With the electrochemical etching approach, a thin Ta foil can be controllably etched, and the thin foil with enlarged surface area shows a specific capacitance as high as 74 nF/mm2with an oxidation voltage of 12 V when measured in 0.1 mol/L H2SO4. The etched Ta foils is then fabricated into electrolytic capacitors after the deposition of cathode layer, graphite layer, and silver paste[29]in sequence. The electrolytic capacitors based on electrochemically etched Ta foils demonstrate a stable capacitance of >30 nF/mm2over the frequency range of 100 Hz~1 MHz and a low leakage current of 2.7×10-6A. The electrolytic capacitor has a thickness of 75 μm, which is thin enough for their application as embedded capacitors.

    2 Experimental

    2.1 Materials

    Tantalum foils (99.9% purity) with a thickness of 50 μm were purchased from Sigma-Aldrich, China. Phosphoric acid (H3PO4, ≥85wt%) and hydrofluoric acid (HF, ≥40wt%) were purchased from Sinopharm Chemical Reagent. n-butanol (AR, 99%) was purchased from Aladdin. Platinum electrodes were used as counter electrode for both Ta etching and oxidation process. A polytetrafluoroethylene electrolytic cell (Shanghai Honghe Sealing Material Co. LTD), with a volume of 50 mL, was used for etching.

    2.2 Electrochemical etching of Ta foils

    Hydrofluoric acid was diluted to 2 wt% with n-butanol, and was used as etching electrolyte. The tantalum foil was cut to an area of 5 mm×5 mm, the same size as the counter electrode. Tantalum foils were ultra-sonicated in 2-butanone for 10 min, followed by washing with ethanol and drying in oven at 80 ℃, and 20 mL etching electrolyte was added into an electrolytic cell. A series of samples were obtained by applying a pre-defined etching voltage (in the range of 20~80 V) at ambient temperature. The duration of etching time was 2~5 h. The electrochemically etched Ta foils were denoted as Ta-20V2H, Ta-40V2H, Ta-60V2H, Ta-80V2H, Ta-40V3H, Ta-40V4H, and Ta-40V5H, respectively, where the first two digits represented the applied voltage, i.e., 20 V, 40 V, 60 V, and 80 V, and the last digit represented etching hours, i.e., 2 hours, 3 hours, 4 hours, and 5 hours. During the etching process, the speed of the magnetic stirring was set as 800 r/min.

    2.3 Oxidation (Ta2O5 formation)

    The Ta foils were oxidized at a constant voltage of 12 V (formation voltage) for 3 h in 0.1 wt% H3PO4aqueous solution at 80 ℃.

    2.4 Characterizations

    The morphology of pristine and etched Ta foils was examined by field-emission scanning electric microscope (FE-SEM, FEI NovaNano SEM450). The surface elements of tantalum foil before etching, after etching and after oxidation were analyzed by X-ray photoelectron spectroscopy (XPS, Thermo Fisher EscaLab 250Xi). 3D Laser Scanning Microscope was used to analyze the surface of etched tantalum foil. Three 1 000 μm×1 000 μm areas were randomly selected for measurement, and the multi-line roughness Ra was measured.

    2.5 Measurement of specific capacitance

    The capacitance (C) was measured in 0.1 mol/L H2SO4by Precision Impedance Analyzer (Agilent 4294a) in the frequency range of 100 Hz~110 MHz as shown in Fig. 2 (a, c). The counter electrode material is platinum foil. The capacitor lead reserved on the tantalum anode is clamped with a platinum clip and the anode is immersed in sulfuric acid solution. The specific capacitance was acquired by dividing C tested at 100 Hz with the surface area of tantalum foils.

    Fig. 2 Schematic illustration of (a) and (c) measuring capacitance of anode in 0.1 mol/L H2SO4, (b) and (d) measuring capacitance of tantalun capacitor圖2 鉭薄膜電容的濕法測試和器件測試過程: (a)、(c)鉭電容陽極電容值的測量,(b)、(d)鉭電容器件的測試

    The oxidized Ta foils are also fabricated into Ta electrolytic capacitor by the deposition of Poly (2,3-dihydrothieno-1,4-dioxin), graphite layer, and silver paste. The leakage current was measured by an electrochemical workstation (Shanghai Chenhua Instrument Co., Ltd), and the testing process is shown in Fig. 2(b, d). The capacitive performance of Ta electrolytic capacitor is measured by Precision Impedance Analyzer (Agilent 4294A) in the frequency range of 100 Hz~110 MHz as shown in Fig. 2 (b, d).

    3 Results and Discussions

    3.1 Physical characterizations of electrochemically etched Ta foils

    The surface of pristine Ta foil is not absolutely smooth and has certain roughness before etching (Fig. 3(a)). After electrochemical etching, the surface roughness is enhanced. SEM images (Fig. 3(b-d)) indicate that the surface roughness is linked with the applied voltage, and the surface is more roughened with higher applied voltage. Although the surface of Ta-80V2H appears to be less rough (Fig. 3(e)), large density of holes and even cracks can be found under higher magnification (Fig. 3(f)). The cracks in Ta-80V2H significantly lowers the mechanical property of Ta foils, which makes it impossible to fabricate electrolytic capacitors.

    Fig. 3 SEM images of (a) pristine Ta foils, (b) Ta-20V2H, (c) Ta-40V2H, (d) Ta-60V2H, and (e-f) Ta-80V2H圖3 不同蝕刻條件下得到的鉭箔表面 SEM 圖:(a)無蝕刻,(b) Ta-20V2H,(c) Ta-40V2H,(d) Ta-60V2H,(e-f) Ta-80V2H

    The SEM images of Ta foils etched with 40 V for different hours are shown in Fig. 4, and deep etched holes can be found on all the samples. However, limited by the qualitative nature of SEM images, no significant difference is identified among the SEM images of different etching hours under either low magnification (Fig. 4(a, c, e, g)) or high magnification (Fig. 4(b, d, f, h)). Therefore, 3D Laser Scanning Microscope is used to quantify the influence of electrochemical etching on the Ta surface roughness.

    Fig. 4 SEM images of (a-b) Ta-40V2H, (c-d) Ta-40V3H, (e-f) Ta-40V4H, and (g-h) Ta-40V5H圖4 不同蝕刻條件下得到的鉭箔表面 SEM 圖:(a-b) Ta-40V2H,(c-d) Ta-40V3H,(e-f) Ta-40V4H,(g-h) Ta-40V5H

    Fig. 6 XPS regional spectra of (a) pristine Ta foils, (b) Ta-40V2H foil, and (c) oxidized Ta-40V2H foil圖6 蝕刻和氧化前后鉭箔表面元素的 XPS 區(qū)域光譜變化:(a)無蝕刻鉭箔;(b)蝕刻后鉭箔;(c)氧化后鉭箔

    Ra represents the arithmetic mean of the absolute value of contour offset on the sample surface, and can be used to approximately quantify the surface roughness. Fig. 5 shows the Ra value of the pristine Ta foil and etched Ta foils. The Ra shows a steady increasing trend with both etching voltage and etching time, both of which first undergo a slight increase and then go up sharply. The pristine Ta foil has a Ra of 3 μm, while the Ra of Ta-80V2H foil is almost twice of pristine Ta foil (Fig. 5(a)). Ta-40V5H foil possesses a Ra of ~17 μm, about 5.7 times higher than pristine Ta foil (Fig. 5(b)).

    The surface elements of pristine Ta foil, Ta-40V2H foil, and oxidized Ta-40V2H foil are analyzed by XPS. Ta4f regional spectra of all three samples exhibit strong Ta2O5peaks, and the regional Ta4f spectra of the above-mentioned foils are shown in Fig. 6. And pristine Ta foils (Fig. 6(a)) and HFetched Ta foils also show clear peaks corresponding to metallic Ta (Fig. 6(b)), while no metallic Ta peaks are seen on oxidized Ta foils (Fig. 6(c)). The Ta2O5observed on pristine Ta foils is native oxide as reported in literature[30], which also explains the difficulty of Ta electrochemical etching in noninvasive electrolytes, i.e. the inert native oxide films on the surface of pristine Ta foils severely impede the electrochemical etching.

    After electrochemical etching in HF electrolyte, the Ta2O5is still obvious in XPS regional spectra (Fig. 6(b)), which may be caused by the continuous formation of Ta2O5during electrochemical etching. Considering that metallic Ta is resistant to HF corrosion, we speculate that the electrochemical etching of Ta foils is a combination of the following two reactions[31]:

    The XPS results (Table 1) also demonstrate that a large percent of oxygens exist in all three samples.

    Table 1 Elemental contents of pristine Ta foil, Ta-40V2H, and oxidized Ta-40V2H as determined by XPS表1 原始鉭箔、Ta-40V2H 鉭箔和氧化 Ta-40V2H 鉭箔的元素含量數(shù)據(jù)

    Since Ta is leaching into the electrolyte during electrochemical etching, the weight loss percentage is measured (Fig. 7). The weight loss percentage shows a nearly linear relation with etching voltage and etching time, highlighting the controllable manner of electrochemical methods. Similar with Ra values, the weight loss percentage shows a steeper slope with etching time than etching voltage.

    3.2 Capacitance enhancement by electrochemical etching

    The specific capacitance of the pristine Ta foil and etched Ta foils are summarized in Fig. 8. In line with Ra and weight loss percentage, the specific capacitance steadily increases with etching voltage (Fig. 8(a)) and time (Fig. 8(b)). Fig. 8(a) shows that the increase of etching voltage leads to the increase of weight loss, and accordingly, the specific capacitance goes up, except for the etching voltage of 80 V, where the specific capacitance almost levels up with 60 V. The weight loss is nearly proportional to the applied voltage in the range from 20 V to 80 V, while the increase of specific capacitance slows down at higher voltage, which may indicate the limited effect of applied voltage on the specific capacitance. It means that the high voltage, such as 80 V, can still increase the weight loss, but does not contribute to the enhancement of surface roughness.

    Fig. 7 Weight loss percentage of (a) Ta foils etched with various voltages for 2 hours, and (b) Ta foils etched with 40 V voltage for various hours圖7 以電壓和時間為變量時鉭箔蝕刻后質(zhì)量變化:(a) 鉭箔在不同電壓下蝕刻 2 h 的失重百分比;(b) 鉭箔在 40 V 電壓下蝕刻不同時間的失重百分比

    Fig. 8 Specific capacitance of (a) Ta foils etched with various voltages for 2 hours, and (b) Ta foils etched with 40 V voltage for various hours圖8 以電壓和時間為變量時鉭箔蝕刻并氧化后電容值的變化:(a) 鉭箔在不同電壓下蝕刻 2 h 的電容值;(b) 鉭箔在 40 V 電壓下蝕刻不同時間的電容值

    The longer etching time results in more weight loss, and the specific capacitance is raised simultaneously, as displayed in Fig. 8(b). Although the SEM images does not show clear difference between the samples with difference etching time, the specific capacitance varies among these samples. It is speculated that the longer etching time at 40 V contributes to deeper etching, thereby increasing the weight loss. At the same time, deeper etching results in the increase of specific area, thus, the specific capacitance is raised.

    3.3 Capacitive performance of Ta electrolytic capacitors fabricated with etched Ta foils

    Fig. 9 Capacitive performance of the Ta electrolytic capacitor fabricated with Ta-40V5H anode, (a) capacitance over the frequency range of 100 Hz~110 MHz with the capacitor area 3 mm×3 mm, (b) equivalent series resistance (ESR) over the frequency range of 100 Hz~110 MHz, (c) the leakage current under 10 V DC voltage, and (d) the comparison of capacitance variation between the thin-film tantalum capacitor and commercial tantalum capacitor over the frequency range of 100 Hz~110 MHz圖9 采用 Ta-40V5H 鉭芯子制作鉭電解電容器,在頻率為 100 Hz~110 MHz 時測試其電學性能:(a)電容值的變化; (b)等效串聯(lián)電阻的變化; (c)10 V 直流電壓下的泄漏電流;(d)薄膜鉭電容器和商業(yè)鉭電容器電容變化對比

    The electrochemically etched Ta foil, Ta-40V5H, was fabricated into Ta electrolytic capacitor after oxidation and the deposition of cathode material (Poly(2,3-dihydrothieno-1,4-dioxin), graphite layer and silver layer). The frequency dependent capacitance and Equivalent Series Resistance (ESR) are summarized in Fig. 9(a) & (b). The Ta electrolytic capacitor based on etched Ta foils shows a high capacitance of >250 nF at the frequency of 1 kHz, and more than 70% of the capacitance is maintained even when the frequency rises to 1 MHz, as shown in Fig. 9(a). As seen from Fig. 9(b), the ESR is about 1 Ω at the low frequency range (<10 kHz), and gradually decreases to 0.5 Ω at MHz level. The leakage current under 10 V is shown in Fig. 9(c), and a relatively stable leakage current of ~10-6A is exhibited which is slightly larger than the commercial capacitor. The effective frequency is more than two orders of magnitude higher than commercial Ta electrolytic capacitors (Fig. 9(d)). The effective frequency of traditional Ta electrolytic capacitors is usually limited to 10 kHz, because the highly porous structure contains large amount of cascaded resistance-capacitance (RC) networks, which causes capacitance drop as frequency rises over 100 kHz[20]. The etched surface can diminish this phenomenon, since the cascaded RC network is restricted on the Ta surface with electrochemical etching method. However, there are disadvantages for embedded tantalum capacitors based on electrochemically etched Ta anode. One is that they are prone to short circuit, so tantalum capacitors are usually used at reduced voltage. As shown in Fig. 9(d), the leakage current of the capacitor is about 2×10-6A, which is slightly larger than that of the commercial capacitor.

    The size of fabricated Ta electrolytic capacitor is compared with the commercial one in Fig. 10(a). A thickness of ~75 μm of our Ta electrolytic capacitor is highlighted in Fig. 10(b), while the commercial Ta capacitor has thickness of ~1.6 mm. A cross-sectional SEM image of the Ta electrolytic capacitor fabricated with Ta-40V5H anode is shown in Fig. 10(c). The thickness of the anode is about 55 μm, while the cathode material accounts for a thickness of around 20 μm. A total thickness of ~75 μm endows this Ta electrolytic capacitor configuration a promising potential for its application as embedded capacitors in IC industry.

    Fig. 10 (a) Sizes of chip tantalum electrolytic capacitors and thin film tantalum electrolytic capacitors, (b) optical microscope cross section of tantalum thin film electrolytic capacitor, and (c) SEM cross section of tantalum film electrolytic capacitor圖10 鉭薄膜電解電容器的實物圖:(a)片狀鉭電解電容器和薄膜鉭電解電容器的尺寸;(b)鉭薄膜電解電容器的光學顯微鏡截面圖;(c)鉭薄膜電解電容器的 SEM 截面圖

    3.4 Discussion and analysis

    Ta and Nb foil etching has been reported[26-28], but the etching results were mediocre according to their SEM images, and the etched Ta or Nb foils were not made into capacitors. In this study, in order to apply the etching method to tantalum capacitors, a thin Ta electrolytic capacitor has been developed based on electrochemically etched Ta foils, and an enhanced capacitance is demonstrated. On the other hand, tantalum thin film capacitors have been studied at home and abroad with the method of tantalum powder sintering[19,20,32]. Electrochemical etching of Ta foils, instead of tantalum powder sintering, has less cost and simpler fabrication process. However, compared with the method of tantalum powder sintering, the capacitance of thin film tantalum capacitors prepared by electrochemical etching is smaller. In addition, the electrical property of tantalum capacitors produced by electrochemical etching needs to be improved, especially the proneness to short circuit.

    4 Conclusions

    In conclusion, we proposed the use of electro- chemical etching as an efficient method to produce thin Ta anode to facilitate its application as embedded capacitor. Both qualitative and quantitative techniques are used to characterize the influence of electrochemical etching on the surface roughness. The applied voltage and the electrochemical etching duration play important roles in determining the surface roughness, which shows a very close relation with specific capacitance. By optimizing the electrochemical etching parameters, the specific capacitance of etched Ta anode can reach as high as 74 nF/mm2. The Ta electrolytic capacitor device fabricated based on the etched Ta foils shows a stable capacitance of >30 nF/mm2in the frequency range of 100 Hz~1 MHz, and a low leakage current of 2.7×10-6A under 10 V DC. The electrochemical etching of thin Ta foils holds promising potential to produce Ta electrolytic capacitor for embedded application.

    猜你喜歡
    電解電容器薄膜
    復合土工薄膜在防滲中的應用
    電容器的實驗教學
    物理之友(2020年12期)2020-07-16 05:39:20
    輕輕松松學“電解”
    含有電容器放電功能的IC(ICX)的應用及其安規(guī)符合性要求
    電子制作(2019年22期)2020-01-14 03:16:28
    無功補償電容器的應用
    山東冶金(2019年5期)2019-11-16 09:09:38
    β-Ga2O3薄膜的生長與應用
    光源與照明(2019年4期)2019-05-20 09:18:18
    高強化平行流電解提高A級銅表面質(zhì)量實踐
    山東冶金(2018年6期)2019-01-28 08:15:06
    一種不易起皮松散的柔軟型聚四氟乙烯薄膜安裝線
    電線電纜(2017年2期)2017-07-25 09:13:35
    石墨烯在超級電容器中的應用概述
    CIGS薄膜太陽電池柔性化
    電源技術(2015年12期)2015-08-21 08:58:58
    国产精品av视频在线免费观看| 精品国产超薄肉色丝袜足j| 亚洲一区二区三区不卡视频| 欧美性猛交╳xxx乱大交人| 香蕉av资源在线| 中文字幕人成人乱码亚洲影| 国产精品香港三级国产av潘金莲| 亚洲专区中文字幕在线| 999久久久精品免费观看国产| 日韩国内少妇激情av| 亚洲午夜理论影院| 免费人成在线观看视频色| 国产精品一区二区免费欧美| 国产在视频线在精品| 欧美丝袜亚洲另类 | 在线十欧美十亚洲十日本专区| 免费av观看视频| 啦啦啦观看免费观看视频高清| 精品久久久久久久久久久久久| 精品国内亚洲2022精品成人| 亚洲天堂国产精品一区在线| 丰满人妻熟妇乱又伦精品不卡| 亚洲成a人片在线一区二区| 欧美3d第一页| 亚洲avbb在线观看| 在线播放国产精品三级| 中文字幕久久专区| 欧美日本视频| 一区二区三区激情视频| 身体一侧抽搐| 九九在线视频观看精品| 欧美日韩瑟瑟在线播放| 午夜福利高清视频| 人人妻人人澡欧美一区二区| 黄色女人牲交| 亚洲国产欧洲综合997久久,| 欧美日韩中文字幕国产精品一区二区三区| 叶爱在线成人免费视频播放| 国产精品 国内视频| 亚洲五月婷婷丁香| 欧美3d第一页| av女优亚洲男人天堂| 亚洲黑人精品在线| 亚洲内射少妇av| 国产一区二区三区在线臀色熟女| 免费搜索国产男女视频| av女优亚洲男人天堂| 国产单亲对白刺激| 成人18禁在线播放| 亚洲人成网站高清观看| 小蜜桃在线观看免费完整版高清| 99久久精品一区二区三区| 韩国av一区二区三区四区| 亚洲国产日韩欧美精品在线观看 | 亚洲国产欧美人成| 国内毛片毛片毛片毛片毛片| 亚洲国产色片| 亚洲男人的天堂狠狠| 亚洲欧美日韩高清在线视频| 亚洲在线自拍视频| 国产亚洲精品一区二区www| 在线播放无遮挡| 在线观看66精品国产| 亚洲精品亚洲一区二区| 美女免费视频网站| 男女床上黄色一级片免费看| 免费高清视频大片| 亚洲精品粉嫩美女一区| 久久6这里有精品| 嫁个100分男人电影在线观看| 久久久久国内视频| 在线免费观看不下载黄p国产 | 午夜福利18| 国产欧美日韩一区二区三| 听说在线观看完整版免费高清| 精品免费久久久久久久清纯| 日韩欧美精品免费久久 | 99在线视频只有这里精品首页| 成人av在线播放网站| 国产成人啪精品午夜网站| 看免费av毛片| 伊人久久精品亚洲午夜| 一进一出抽搐gif免费好疼| 五月玫瑰六月丁香| 国产黄色小视频在线观看| 黄片大片在线免费观看| 国产麻豆成人av免费视频| 最近最新中文字幕大全电影3| 两个人看的免费小视频| 看免费av毛片| 婷婷亚洲欧美| www日本黄色视频网| 黄片小视频在线播放| 岛国视频午夜一区免费看| 午夜福利免费观看在线| 男女之事视频高清在线观看| 国产麻豆成人av免费视频| 在线观看免费午夜福利视频| 国内精品久久久久久久电影| 国内精品久久久久久久电影| xxx96com| 国产成+人综合+亚洲专区| 国产亚洲精品综合一区在线观看| 色在线成人网| 欧美日韩黄片免| 悠悠久久av| 欧美在线黄色| 女生性感内裤真人,穿戴方法视频| 欧美日韩乱码在线| 久9热在线精品视频| 人妻久久中文字幕网| 狂野欧美激情性xxxx| xxx96com| 日本成人三级电影网站| 嫩草影视91久久| 午夜a级毛片| 亚洲av美国av| 99精品欧美一区二区三区四区| 亚洲18禁久久av| 国产精品三级大全| 亚洲性夜色夜夜综合| 69av精品久久久久久| 免费搜索国产男女视频| 欧美日韩福利视频一区二区| 在线观看免费午夜福利视频| 欧美成狂野欧美在线观看| 俺也久久电影网| 毛片女人毛片| 69av精品久久久久久| 18禁在线播放成人免费| 叶爱在线成人免费视频播放| 淫秽高清视频在线观看| 亚洲性夜色夜夜综合| 69av精品久久久久久| 色播亚洲综合网| 日韩有码中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 一级毛片女人18水好多| 婷婷亚洲欧美| 亚洲精品亚洲一区二区| 国产高清激情床上av| 综合色av麻豆| 啪啪无遮挡十八禁网站| 1024手机看黄色片| 亚洲久久久久久中文字幕| 成人欧美大片| 国产亚洲精品久久久久久毛片| 亚洲乱码一区二区免费版| 国产成人福利小说| 男女视频在线观看网站免费| 亚洲欧美精品综合久久99| 少妇熟女aⅴ在线视频| 国产不卡一卡二| 久久天躁狠狠躁夜夜2o2o| 黑人欧美特级aaaaaa片| 99国产极品粉嫩在线观看| 一夜夜www| 蜜桃久久精品国产亚洲av| 国产精品亚洲一级av第二区| www.999成人在线观看| 18禁黄网站禁片午夜丰满| 免费av观看视频| 丁香欧美五月| 午夜福利视频1000在线观看| 欧美日本视频| 亚洲av免费在线观看| 女警被强在线播放| 亚洲色图av天堂| 五月玫瑰六月丁香| 性欧美人与动物交配| 精品福利观看| 国产三级黄色录像| 99久久成人亚洲精品观看| 国产极品精品免费视频能看的| 久久久精品欧美日韩精品| 亚洲人成网站在线播| 亚洲 欧美 日韩 在线 免费| 国产一区二区在线av高清观看| 免费在线观看亚洲国产| 黄色日韩在线| av国产免费在线观看| 日本五十路高清| 麻豆一二三区av精品| 国产免费男女视频| 久久久久久人人人人人| 久久久久久久久大av| 最近最新中文字幕大全免费视频| 国产视频内射| 波多野结衣巨乳人妻| 国产午夜福利久久久久久| 久久99热这里只有精品18| 国产黄色小视频在线观看| 免费在线观看亚洲国产| 国产欧美日韩精品一区二区| 国产亚洲精品久久久久久毛片| 国内揄拍国产精品人妻在线| 偷拍熟女少妇极品色| 国产成人aa在线观看| xxx96com| 亚洲人成网站在线播放欧美日韩| 国产精品av视频在线免费观看| 两个人视频免费观看高清| 国产日本99.免费观看| 啦啦啦韩国在线观看视频| 精品国产超薄肉色丝袜足j| 亚洲精品色激情综合| 国产精品久久视频播放| 亚洲不卡免费看| 99国产精品一区二区三区| 国产精品久久久久久亚洲av鲁大| 长腿黑丝高跟| 桃红色精品国产亚洲av| 欧美国产日韩亚洲一区| 色老头精品视频在线观看| 无遮挡黄片免费观看| 亚洲无线在线观看| 午夜精品在线福利| 成人18禁在线播放| 老熟妇乱子伦视频在线观看| 美女大奶头视频| 香蕉丝袜av| 久久久国产成人精品二区| 一区二区三区国产精品乱码| 亚洲人成网站在线播放欧美日韩| 精华霜和精华液先用哪个| 午夜免费观看网址| 波多野结衣高清作品| а√天堂www在线а√下载| 97超级碰碰碰精品色视频在线观看| 可以在线观看毛片的网站| 精品一区二区三区视频在线观看免费| 少妇丰满av| 日日干狠狠操夜夜爽| 中文在线观看免费www的网站| 国内少妇人妻偷人精品xxx网站| 国产黄色小视频在线观看| 国产aⅴ精品一区二区三区波| 此物有八面人人有两片| a在线观看视频网站| 看片在线看免费视频| 久久精品国产自在天天线| 国产精品久久久久久人妻精品电影| 老司机午夜福利在线观看视频| 黑人欧美特级aaaaaa片| 在线十欧美十亚洲十日本专区| 人妻夜夜爽99麻豆av| 久久这里只有精品中国| 国产三级黄色录像| 久久久色成人| 精品人妻一区二区三区麻豆 | 国产精品亚洲一级av第二区| 国产伦人伦偷精品视频| 午夜免费男女啪啪视频观看 | 国产伦精品一区二区三区四那| 亚洲片人在线观看| 午夜激情福利司机影院| 欧美日韩黄片免| 国产精品久久久久久人妻精品电影| 午夜视频国产福利| 亚洲av免费在线观看| 国产v大片淫在线免费观看| 亚洲专区中文字幕在线| 久久午夜亚洲精品久久| 99视频精品全部免费 在线| 18禁美女被吸乳视频| 欧美最黄视频在线播放免费| 精品国产美女av久久久久小说| 99久久精品国产亚洲精品| 三级国产精品欧美在线观看| 国产成人影院久久av| 欧美绝顶高潮抽搐喷水| 国产精品自产拍在线观看55亚洲| 一级毛片高清免费大全| 丰满的人妻完整版| 国产亚洲欧美98| 久久久久久人人人人人| 欧美乱妇无乱码| 亚洲色图av天堂| 日韩欧美免费精品| 人人妻人人看人人澡| 99精品欧美一区二区三区四区| 国产成人aa在线观看| 国产亚洲精品av在线| 午夜精品久久久久久毛片777| 免费观看精品视频网站| 在线观看av片永久免费下载| 天天添夜夜摸| 国产精品久久久久久久久免 | 99久久精品国产亚洲精品| 丁香六月欧美| 男人舔奶头视频| 欧美日韩乱码在线| 国产精品久久电影中文字幕| 国产午夜福利久久久久久| 亚洲熟妇中文字幕五十中出| 久久久国产成人免费| 99热精品在线国产| 亚洲成人精品中文字幕电影| 嫩草影院入口| 制服人妻中文乱码| 一进一出抽搐gif免费好疼| 18禁在线播放成人免费| 黄色片一级片一级黄色片| 午夜视频国产福利| 99国产极品粉嫩在线观看| 国产一区二区三区在线臀色熟女| 18禁黄网站禁片午夜丰满| 美女被艹到高潮喷水动态| 麻豆久久精品国产亚洲av| www.999成人在线观看| 亚洲成av人片免费观看| 两个人看的免费小视频| 一区二区三区激情视频| 91麻豆精品激情在线观看国产| www.www免费av| 欧美另类亚洲清纯唯美| 在线观看66精品国产| 亚洲18禁久久av| 99热6这里只有精品| 麻豆一二三区av精品| 婷婷精品国产亚洲av在线| 日本免费a在线| 色综合欧美亚洲国产小说| 日本成人三级电影网站| 国产国拍精品亚洲av在线观看 | 国产高清视频在线播放一区| 亚洲最大成人手机在线| 久久精品91蜜桃| 欧美黑人巨大hd| 韩国av一区二区三区四区| 免费高清视频大片| 亚洲av成人精品一区久久| 日韩欧美一区二区三区在线观看| 蜜桃久久精品国产亚洲av| 啦啦啦免费观看视频1| 成年免费大片在线观看| 国产三级在线视频| 国产亚洲欧美98| 欧美+亚洲+日韩+国产| 午夜精品在线福利| 日韩欧美 国产精品| 俺也久久电影网| 国产精品1区2区在线观看.| 少妇裸体淫交视频免费看高清| 国产伦精品一区二区三区四那| 五月玫瑰六月丁香| 国产色爽女视频免费观看| 九九久久精品国产亚洲av麻豆| 首页视频小说图片口味搜索| 亚洲中文字幕一区二区三区有码在线看| 国内毛片毛片毛片毛片毛片| 最新在线观看一区二区三区| 高潮久久久久久久久久久不卡| 欧美日韩瑟瑟在线播放| 色吧在线观看| 国产亚洲欧美98| 欧美区成人在线视频| 天堂√8在线中文| 日韩有码中文字幕| 熟妇人妻久久中文字幕3abv| 91麻豆精品激情在线观看国产| 亚洲人成电影免费在线| 99国产精品一区二区三区| 他把我摸到了高潮在线观看| 少妇的丰满在线观看| 久久久久亚洲av毛片大全| 成人av在线播放网站| 麻豆国产av国片精品| 欧美日韩综合久久久久久 | 亚洲精品在线美女| 欧美乱妇无乱码| 欧美日韩综合久久久久久 | 最新中文字幕久久久久| 校园春色视频在线观看| eeuss影院久久| 美女高潮的动态| 国产高清视频在线播放一区| 亚洲av一区综合| 国产视频内射| 男插女下体视频免费在线播放| 欧美大码av| 亚洲国产高清在线一区二区三| 五月玫瑰六月丁香| tocl精华| 国产av麻豆久久久久久久| 欧美最新免费一区二区三区 | www.熟女人妻精品国产| 国内精品久久久久精免费| 嫩草影视91久久| 噜噜噜噜噜久久久久久91| 亚洲欧美日韩高清在线视频| 欧美+亚洲+日韩+国产| 69av精品久久久久久| 久久久久久久亚洲中文字幕 | 国产精品香港三级国产av潘金莲| 日韩欧美精品免费久久 | 亚洲国产日韩欧美精品在线观看 | 久久久久精品国产欧美久久久| 国内少妇人妻偷人精品xxx网站| 中文字幕熟女人妻在线| 淫妇啪啪啪对白视频| 男人舔奶头视频| 日韩高清综合在线| 国产伦在线观看视频一区| 国产精品久久久久久精品电影| 午夜激情欧美在线| 久久久久国产精品人妻aⅴ院| 久久中文看片网| 热99re8久久精品国产| 欧美精品啪啪一区二区三区| 天堂动漫精品| 午夜精品久久久久久毛片777| 精品不卡国产一区二区三区| 99在线人妻在线中文字幕| 国产成人欧美在线观看| 免费看光身美女| 久久精品综合一区二区三区| 久久精品国产99精品国产亚洲性色| 亚洲中文字幕日韩| 亚洲激情在线av| 国产成人影院久久av| 欧美激情久久久久久爽电影| 亚洲国产欧美人成| 亚洲国产精品久久男人天堂| 1000部很黄的大片| 欧美性感艳星| www.熟女人妻精品国产| 亚洲国产精品sss在线观看| 午夜老司机福利剧场| 高潮久久久久久久久久久不卡| 好看av亚洲va欧美ⅴa在| 两人在一起打扑克的视频| 小说图片视频综合网站| 久久这里只有精品中国| 国产单亲对白刺激| 国产野战对白在线观看| 成人鲁丝片一二三区免费| 亚洲精品一区av在线观看| 日韩有码中文字幕| 成人国产一区最新在线观看| xxxwww97欧美| 国产av在哪里看| 亚洲一区高清亚洲精品| 午夜a级毛片| 成人18禁在线播放| 一二三四社区在线视频社区8| 美女被艹到高潮喷水动态| 90打野战视频偷拍视频| 亚洲va日本ⅴa欧美va伊人久久| 俄罗斯特黄特色一大片| 欧美日韩精品网址| 18禁裸乳无遮挡免费网站照片| 精品国产亚洲在线| 美女 人体艺术 gogo| 亚洲欧美日韩无卡精品| 亚洲人成网站在线播| www日本在线高清视频| 亚洲aⅴ乱码一区二区在线播放| 波野结衣二区三区在线 | 亚洲国产欧美网| 久久人人精品亚洲av| 真人一进一出gif抽搐免费| 欧美日韩瑟瑟在线播放| 成人特级av手机在线观看| 国产又黄又爽又无遮挡在线| 精华霜和精华液先用哪个| 中文字幕精品亚洲无线码一区| 精品国产亚洲在线| 午夜老司机福利剧场| 亚洲av五月六月丁香网| 亚洲欧美一区二区三区黑人| 国产亚洲精品av在线| 国产黄a三级三级三级人| 国产高清三级在线| 国产精品久久久久久精品电影| 欧美中文日本在线观看视频| 亚洲专区中文字幕在线| 一边摸一边抽搐一进一小说| 久久精品国产亚洲av涩爱 | 国产伦在线观看视频一区| 91av网一区二区| 午夜精品久久久久久毛片777| 三级男女做爰猛烈吃奶摸视频| 欧美性感艳星| 午夜免费男女啪啪视频观看 | 欧美日韩中文字幕国产精品一区二区三区| 国产美女午夜福利| 欧美日韩精品网址| 国产三级黄色录像| 91麻豆av在线| 12—13女人毛片做爰片一| 日日干狠狠操夜夜爽| 最新美女视频免费是黄的| 女人高潮潮喷娇喘18禁视频| 十八禁人妻一区二区| 国产伦一二天堂av在线观看| 五月玫瑰六月丁香| 老司机福利观看| 国产精品综合久久久久久久免费| 最近最新中文字幕大全免费视频| 国产欧美日韩精品一区二区| 日韩欧美一区二区三区在线观看| 国产69精品久久久久777片| 一区二区三区高清视频在线| 国产精品久久视频播放| 午夜日韩欧美国产| 88av欧美| 成人18禁在线播放| 日韩 欧美 亚洲 中文字幕| 成年女人毛片免费观看观看9| 午夜福利欧美成人| 国产aⅴ精品一区二区三区波| 有码 亚洲区| 久久精品国产综合久久久| 亚洲av第一区精品v没综合| 日本成人三级电影网站| 麻豆成人午夜福利视频| 日韩精品青青久久久久久| 婷婷丁香在线五月| 亚洲av美国av| netflix在线观看网站| 日日干狠狠操夜夜爽| 一区二区三区激情视频| x7x7x7水蜜桃| 日本 av在线| 男女那种视频在线观看| 欧美日韩中文字幕国产精品一区二区三区| 免费看光身美女| 成人无遮挡网站| 欧美一区二区精品小视频在线| 99久久综合精品五月天人人| 他把我摸到了高潮在线观看| 看黄色毛片网站| 琪琪午夜伦伦电影理论片6080| 午夜久久久久精精品| 亚洲中文字幕日韩| 日韩欧美国产一区二区入口| 女人十人毛片免费观看3o分钟| 蜜桃久久精品国产亚洲av| 婷婷精品国产亚洲av| 国产精品爽爽va在线观看网站| 欧美中文日本在线观看视频| 小蜜桃在线观看免费完整版高清| 久久精品国产自在天天线| 久久性视频一级片| 欧美日韩瑟瑟在线播放| 国产三级黄色录像| 淫妇啪啪啪对白视频| 精品国产美女av久久久久小说| 成年女人毛片免费观看观看9| 欧美日韩黄片免| 俺也久久电影网| 成人国产综合亚洲| 欧美一区二区亚洲| 午夜免费男女啪啪视频观看 | 久久中文看片网| 国产成人啪精品午夜网站| 男女午夜视频在线观看| 狂野欧美白嫩少妇大欣赏| 少妇人妻一区二区三区视频| 国产高清三级在线| 天天添夜夜摸| 欧美区成人在线视频| 国产亚洲欧美98| 婷婷六月久久综合丁香| 免费一级毛片在线播放高清视频| 岛国在线免费视频观看| 一区二区三区激情视频| 国产成人欧美在线观看| 欧美黄色片欧美黄色片| 搞女人的毛片| 欧美乱妇无乱码| 亚洲乱码一区二区免费版| 国内久久婷婷六月综合欲色啪| 亚洲av成人av| 午夜免费成人在线视频| 久久伊人香网站| a级毛片a级免费在线| 欧美激情久久久久久爽电影| 亚洲av免费高清在线观看| 欧美日本亚洲视频在线播放| 亚洲天堂国产精品一区在线| 叶爱在线成人免费视频播放| 日本黄色视频三级网站网址| 两人在一起打扑克的视频| 黄色女人牲交| netflix在线观看网站| 午夜免费激情av| 日韩欧美精品v在线| 精品一区二区三区av网在线观看| 免费观看人在逋| 999久久久精品免费观看国产| 麻豆成人午夜福利视频| 中文字幕人成人乱码亚洲影| av专区在线播放| 色精品久久人妻99蜜桃| 亚洲av成人不卡在线观看播放网| 欧美国产日韩亚洲一区| 成人特级av手机在线观看| 在线观看免费视频日本深夜| 亚洲第一欧美日韩一区二区三区| 亚洲熟妇中文字幕五十中出| 特级一级黄色大片| 午夜福利视频1000在线观看| 无遮挡黄片免费观看| 亚洲欧美日韩高清在线视频| 一个人观看的视频www高清免费观看| 亚洲 国产 在线| 九色国产91popny在线| 制服丝袜大香蕉在线| 国产高清视频在线播放一区| 99热这里只有精品一区| 九九热线精品视视频播放| av天堂中文字幕网| 欧美3d第一页|