• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Crushing behaviors of buckling-induced metallic meta-lattice structures

    2022-08-30 14:32:44JinhuDongYongjunWngFengninJinHulinFn
    Defence Technology 2022年8期

    Jin-hu Dong ,Yong-jun Wng ,Feng-nin Jin ,Hu-lin Fn b,,*

    a State Key Laboratory for Disaster Prevention & Mitigation of Explosion & Impact,Army Engineering University of PLA,Nanjing,210007,China

    b Department of Civil Engineering,Nanyang Institute of Technology,Nanyang,473004,China

    c State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,China

    Keywords:Buckling induced meta-lattice structure(BIMS)Crushing force efficiency

    ABSTRACT Thin-walled lattice materials can be applied as energy absorbers in protective structures of civil defense.In this paper,quasi-static in-plane crushing tests were carried out to investigate the crushing behavior and energy absorption of buckling induced meta-lattice structures(BIMSs) with different central angles made of plastic iron material DT3 and formed by wire cutting technique.Three crushing patterns were revealed and analyzed.The test results clearly show that the initial peak force (IPF),the crushing force efficiency (CFE),the specific energy absorption (SEA) and the mean crushing force (MCF) can be substantially improved by introducing buckling pattern into the straight-walled lattice structure.The MCF of the BIMS was consistently predicted based on the simplified super folding element (SSFE) and the flattening element.

    1.Introduction

    Recently hierarchical tubes [1-3],honeycomb structures [4,5]and lattice structures[6-8] have been widely used in engineering for their excellent mechanical properties,such as high specific strength and high specific energy absorption (SEA).

    Lattice structure is a kind of cellular structure composed of ordered periodic cells [9,10].Many studies were devoted to investigate their deformation modes and energy absorption (EA)capacities.Ozdemir et al.[11,12]studied the compressive behaviors of cubic,diamond,and re-entrant cubic lattice structures under quasi-static and dynamic conditions.They found the initial peak force(IPF)of cubic,diamond and re-entrant lattice structures were very large,and the force displacement curve decreases rapidly after exceeding the initial peak force.Habib et al.[13]investigated quasistatic EA of six polymeric lattice structures of different cellular topologies.They found that bending-dominated structures have low stiffness and strength but provide good EA capability.Stretching dominated structures are stiffer and stronger but have low EA performance.Davami et al.[14] investigated the behaviors of shape-recovering lattice structures and revealed the loading rate of the plastic deformation.They concluded that additive manufacturing would be a versatile tool to create structures with complex geometries for EA.Bian et al.[15]investigated the effect of the detailed lattice orientation on the EA performance and developed theoretical models to evaluate the EA of these lattice structures.Li et al.[16]investigated the in-plane crushing resistance and EA of different polycrystalline-like (PL) lattice structures.They thought the improvements in the mean crushing force (MCF) and the SEA would originate from the grain boundaries of the PL lattice structures which could restrain the evolution of the shear bands and change the shear failure mode into a layer-by-layer progressive crushing mode.Through the above literature review,it can be seen that with the development of the manufacturing technology,many different types of lattice structures have been manufactured and studied,but there are few studies on buckling induced meta-lattice structures.

    Similarly,a large number of studies have focused on the square grids [17-19].Qiu et al.[20,21] looked the square grids as membrane-dominated structures.The force-displacement curve of the membrane-dominated structure has an IPF followed by a rapid drop to much lower values.In order to reduce the IPF of the square grid,Wang et al.[22] introduced curved cell walls into the square grids.They have numerically and experimentally studied the buckling behaviors of these grids.However,few efforts were paid to study the crushing pattern and the EA of these curved-walled grids under large deformation.

    In this research,a new type of buckling-induced meta-lattice structure(BIMS)made of plastic iron material DT3 by wire cutting technique was designed,tested and analyzed.The EA,the MCF and the CFE of the BIMS with different central angle were discussed.Based on four simplified super folding elements (SSFEs) and a flattening element,the MCF of the BIMS was predicted.

    2.Structural design and manufacture

    The cell diagram of the BIMS is displayed in Fig.1.The topology is named as bending-dominated periodic lattice by Wang et al.[22].The thickness of the meta-lattice plate,T,is 16 mm.The height of the BIMS,H,is 82 mm.The length of each strut,L,is 16 mm and the thickness of the rod,t,is 2 mm.The central angle is represented by α,which controls the amplitude of the waviness.The central angle changes from 0,30,45,60,90to 120in this research.All specimens were made by wire cutting technology.The material used in this paper is pure electrical iron called DT3.This kind of metal has a super ductility,and there would no fracture in the inplane compression test.The engineering stress-strain curve of iron DT3 is shown in Fig.2.The yield strength of the DT3 is 150.43 MPa,the ultimate strength is 263.59 MPa.The density of DT3 is 7.8 g/cmand the fracture strain is 0.425.

    3.Quasi-static in-plane compression experiments

    Six groups of BIMSs were made and three testing samples were prepared for each group.A 20-ton universal testing machine was used to carry out the quasi-static in-plane compression tests.The top platen and the testing machine were connected by ball hinge.The bottom platen was fixed on the test platform with bolts.The specimens were compressed at a loading rate of 2 mm/min.

    3.1.Crushing performances

    Three load-displacement curves and three crushing patterns were revealed,changing from layer-by-layer crushing pattern,hybrid crushing pattern to simultaneous crushing pattern accompanying with central angle improving from 0to 120,as shown in Figs.3 and 4.Compared with the structure printed by the brittle material PLA,the structure made by the plastic material is roughly the same in the total failure mode,which are the same three failure modes.However,the angle critical value of failure mode transition is different.The angle critical value of plastic material is higher than that of brittle material.

    Fig.1.Designing BIMS through introducing buckling mode into straight-walled lattice[22].

    Fig.2.Tensile stress-strain curve of iron DT3.

    When the strut curvature is small,(that is,when the central angle is small),the lattices will be crushed layer-by-layer.The forcedisplacement curves have dramatic zigzag jumps,as shown in Fig.3(a)-(c).The crushing process of the BIMS can be divided into four stages,as shown in Fig.4(a)-(c).In the first stage,one layer of the upper two layers and one layer of the lower two layers appear buckling at the same time,and each strut forms plastic hinges at the upper and lower ends.Then these two layers of struts bend and fold around the plastic hinges,and the folding distance is about the height of two layers of struts.In the second stage,the upper two layers and the lower two layers begin to bend at the same time.And the two layers of struts fold as the folding in the first stage.In the third stage,the middle layer of struts buckle.Different from the first two stages,each strut in the middle layer mostly produces three plastic hinges at the upper and lower ends and the middle of the strut.In the fourth stage,all layers are compressed and deform together,gradually being compacted with a rising forcedisplacement curve.

    When the central angle is increased to 60and 90,the waviness of the strut changes the crushing pattern.The crushing curve is more stable accompanying with zig-zags,as shown in Fig.3(d)and(e).The crushing process of the BIMS can be divided into four stages,as shown in Fig.4(d) and (e).In the first stage,the middle three layers bend at the same time,and a total of two plastic hinges are generated at the upper or lower end and the middle part of each layer.With the increase of the displacement,the middle three layers of struts bend and fold around their respective plastic hinges.In the second stage,the upper and lower layers bend.Unlike in the first stage,the upper and lower layers of struts in this stage produce two or three plastic hinge and then fold.In the third stage,all the layers compress and deform together,gradually being compacted with an upward curve on the force-displacement curve.The IPF is further reduced.It is a hybrid crushing mode.

    Further increasing the central angle,the curved struts completely change the crushing pattern into simultaneous crushing pattern.The force-displacement curves have three typical stages: elastic deformation,ascending stage and densification,as shown in Fig.3(f).The IPF is further reduced.The curves are smooth with soft zigzags.All the five layers were almost crushed simultaneously.Plastic hinges formed in the crushing,as shown in Fig.4(f).After contact,the horizontal struts will be flattened and more energy will be absorbed.

    Fig.3.Force-displacement curves of BIMSs with different curvature (central angle): (a) 0°,(b) 30°,(c) 45°,(d) 60°,(e) 90° and (f) 120°.

    3.2.Negative Poisson's ratio

    As shown in Fig.5(a),the BIMS has negative Poisson's ratio in the compression.It is easily found that when the BIMS is compressed in the Y direction,the odd layers of the structure are also compressed.Fig.5(a)clearly show the selected reference point position.The strain in the y direction only considers the strain in the y direction of the overall structure,that is,the strain between the upper and lower horizontal planes.And the midpoint of the outermost wall of each layer is selected as the reference point to calculate the five sets of strains in the x direction.Fig.5(b)-(f)reveal the development of the equivalent strains of the BIMS.

    As shown in Fig.6,initially,the Poisson's ratio of the central layer exceeds -1.5.With the decrease of the strain in Y direction,the strain in X direction increases gradually.The Poisson's ratio of the even layers even transforms from negative to positive.

    Transverse contraction and longitudinal compression change the configuration of the meta-cellular structure,as shown in Fig.7.Before compression,the meta-cellular structure is a square cell with four curved walls.In compression,accompanying with the transverse contraction and the longitudinal compression,neighboring struts gradually contact with each other.After strut contact,the representative curved-walled square cell turns to two curvedwalled triangular cells.As the triangular cell is a statically determinate structure,the Poisson's ratio changes to positive and the crushing force will be enhanced.

    Fig.4.Crushing processes of BIMSs with different curvature (central angle): (a) 0°,(b) 30°,(c) 45°,(d) 60°,(e) 90° and (f) 120°.

    Fig.5.(a) Schematic diagram of selection of strain points and strain development in crushing for BIMSs with central angle of (b) 30°,(c) 45°,(d) 60°,(e) 90° and (f) 120°.

    Fig.6.Poisson's ratio development in crushing for BIMSs with central angle of (a) 30°,(b) 45°,(c) 60°,(d) 90° and (e) 120°.

    Fig.7.Structural evolution and Poisson's ratio transformation.

    4.Structural crashworthiness evaluation

    The displacement corresponding to the force equal to the average IPF of the straight-walled lattice structures in densification is selected as the effective crushing distance(ECD)to calculate the EA.The EA indexes are listed in Table 1 in details to evaluate the EA performance.

    Table 1.EA indexes of BIMSs with different central angles.

    Table 2.Basic folding elements of BIMSs.

    With the increase of the central angle,the ECD of the BIMS is continuously reduced from 0.70 to 0.53,a decrease of 24.29 %.As shown in Fig.8(a),the IPF of the BIMS is greatly reduced from 42.66 kN to 8.52 kN,a decrease of 80.03 %.

    Fig.8.(a) Initial peak force,(b) Mean crushing force,(c) Specific energy absorption and (d) Crushing force efficiency of BIMSs.

    With the increase of the center angle,the MCF first decreases and then increases,as compared in Fig.8(b).Similarly,the SEA of the BIMS is slightly decreased from 4.08 J/g of straight-walled lattice to 3.12 J/g of BIMS with central angle of 120,as compared in Fig.8(c).However,when the angle increases to more than 60,the SEA tends to a stable value.

    Introducing buckling mode into the lattice structure,the CFE of the lattice structure is remarkably improved,as shown in Fig.8(d).It is nearly proportional to the central angle,increasing from 0.37 at 0to 2.18 at 120.The CFE is tightly relating to the crushing pattern.Lattice with layer-by-layer crushing mode has CFE smaller than 0.74.Lattice with hybrid crushing mode has CFE from 0.89 to 1.51.The CFE of BIMSs with simultaneous crushing mode is close to or even much larger than 2.0.

    5.Theoretical analysis

    5.1.Basic folding element

    Fig.9.(a)Corner element L,(b)T-shaped element T-A,(c)T-shaped element T-B,(d)Tshaped element T-C,(e) X-shaped element X-A,(f) X-shaped element X-B and (g) Ishaped element I-A,(h) I-shaped element I-B and (i) flatten element F.

    When the angle exceeds 60,as shown in Fig.9(i),the flattening energy Emust be considered and calculated by

    5.2.MCF of BIMSs

    In the crushing process,the work done by the MCF is equal to the energy absorbed by the basic folding element.And the distribution of the basic folding elements are listed in Table 2.

    Table 3.MCF comparisons between theoretical predictions and experimental values.

    For the meta-lattice structure with small central angle,(i.e.0,30and 45),the crushing mode is layer-by-layer.The MCF of these BIMSs,Pis given by

    where H is the length of the lattice structure and n is the number of cells on each side.For the meta-lattice structure with larger central angle,(i.e.60and 90),the crushing mode is hybrid.The MCFs of these BIMSs,Pand Pare given by

    For the meta-lattice structure with central angle of 120,its crushing mode is simultaneous crushing pattern.The MCF of the BIMS,Pis given by

    It can be seen from Table 3 that the maximum error between the theoretical MCF and the experimental value is 12.11 %.And the theoretical value is generally larger than the experimental value.During the theoretical derivation,in order to simplify the calculation,we assume that the structure is completely folded.But this is very difficult to do in the process of experiment.For example,the plastic hinge is supposed to turn 90in theory,but it does not reach 90in the actual test.This assumption leads to the fact that the calculated bending energy of the plastic hinge is smaller than the experimental value.Similarly,the energy dissipated by the flattening mechanism calculated theoretically is smaller than the experimental value.Therefore,for example,formula (10),the calculated values of energy dissipated by the two mechanisms on the right side of the equation are larger than the experimental values.Although the crushing distance on the left side of the equation will be smaller than the experimental value,it can be ignored.Therefore,the MCF calculated based on the theory of simplified super folding element and flattening element is acceptable.

    6.Conclusions

    According to the research,introducing buckling pattern into straight-walled lattice structures can construct meta-lattice structures with negative Poisson's ratio and substantially modify the crushing pattern and the EA performance.

    Compared with BIMSs printed by PLA,strut fracture is avoided and the metallic BIMS exhibits more excellent ductility.

    The crushing pattern is changed by the buckling topology.The auxetic BIMS made of iron DT3 with excellent plasticity has three typical crushing patterns,including layer-by-layer crushing pattern of BIMSs with central angle of 0,30and 45,hybrid crushing pattern of BIMSs with central angle of 60and 90,and simultaneous crushing pattern of BIMSs with central angle of 120.

    The EA performance is changed by the buckling topology.With the increase of the central angle,the IPF and the ECD of the BIMS continues to decrease.The IPF of the BIMS is greatly reduced from 42.66 kN to 8.52 kN,a decrease of 80.03 %.In terms of the MCF,it decreases firstly and then increases.The SEA has a little decrease.Most of all,the CFE of the lattice structure is remarkably improved.The CFE is nearly proportional to the central angle,increasing from 0.37 at 0to 2.18 at 120.The CFE is tightly relating to the crushing pattern.Lattice with layer-by-layer crushing mode has CFE smaller than 0.74.Lattice with hybrid crushing mode has CFE from 0.89 to 1.51.The CFE of BIMSs with simultaneous crushing mode is close to or even much larger than 2.0.Greatly reduced IPF,remarkably improved CFE and little changed SEA make the BIMS a perfect energy absorber in some protective structures.

    The curved-walled topology endows the BIMS negative Poisson's ratio.In crushing,when the struts contact with each other,the square cells convert to triangular cells,and the Poisson's ratio changes to positive,which is mechanism of the gradual rising loaddisplacement curve and the improved CFE.

    Based on the four simplified super folding element (SSFE) and flattening element,a theoretical model to predict the MCF of the BIMS is proposed.The maximum error between the theoretical MCF and the experimental value is 12.11 %.Therefore,the MCF calculated based on the theory of simplified super folding element and flattening element is acceptable.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Supports from National Natural Science Foundation of China(11972184 and U20A20286),China National Key Laboratory Foundation of Science and Technology on Materials under Shock and Impact (6142902200203),Natural Science Foundation of Jiangsu Province of China (BK20201286),and Science and Technology Project of Jiangsu Province of China (BE2020716) are gratefully acknowledged.

    黑人操中国人逼视频| 在线观看免费午夜福利视频| 午夜福利,免费看| 成人特级黄色片久久久久久久| 中文字幕最新亚洲高清| 两性夫妻黄色片| 女性生殖器流出的白浆| 精品人妻1区二区| 9热在线视频观看99| 久久午夜综合久久蜜桃| 免费女性裸体啪啪无遮挡网站| 午夜a级毛片| 亚洲成人久久性| 午夜福利影视在线免费观看| 9色porny在线观看| 欧美色欧美亚洲另类二区 | 女人精品久久久久毛片| 老司机福利观看| 淫妇啪啪啪对白视频| 欧美成人免费av一区二区三区| 91大片在线观看| 国产成人免费无遮挡视频| 亚洲国产精品合色在线| 麻豆久久精品国产亚洲av| 最好的美女福利视频网| 免费av毛片视频| 国产亚洲欧美在线一区二区| 亚洲黑人精品在线| 日韩中文字幕欧美一区二区| 国产99白浆流出| 日本五十路高清| 国产私拍福利视频在线观看| 欧美激情极品国产一区二区三区| 日本免费a在线| 亚洲五月婷婷丁香| 国产亚洲欧美98| 正在播放国产对白刺激| 国产亚洲精品av在线| 精品不卡国产一区二区三区| 亚洲 国产 在线| 国产主播在线观看一区二区| 琪琪午夜伦伦电影理论片6080| 人成视频在线观看免费观看| 免费在线观看黄色视频的| 免费不卡黄色视频| 亚洲在线自拍视频| 欧美国产精品va在线观看不卡| 夜夜看夜夜爽夜夜摸| 亚洲自拍偷在线| 黄色视频不卡| 国产av精品麻豆| 久久精品成人免费网站| 首页视频小说图片口味搜索| 欧美国产日韩亚洲一区| 国产熟女xx| 国产一级毛片七仙女欲春2 | 免费在线观看影片大全网站| 丁香欧美五月| av有码第一页| 如日韩欧美国产精品一区二区三区| 欧美另类亚洲清纯唯美| 黑人操中国人逼视频| 老汉色∧v一级毛片| 亚洲自拍偷在线| 国产精品一区二区三区四区久久 | 国产又色又爽无遮挡免费看| 深夜精品福利| 久久中文字幕人妻熟女| 丝袜人妻中文字幕| 久久久久久亚洲精品国产蜜桃av| 熟女少妇亚洲综合色aaa.| 亚洲在线自拍视频| 97人妻天天添夜夜摸| 自线自在国产av| 婷婷六月久久综合丁香| 中文字幕人妻丝袜一区二区| 少妇裸体淫交视频免费看高清 | 淫秽高清视频在线观看| 夜夜爽天天搞| 国产精品美女特级片免费视频播放器 | 亚洲aⅴ乱码一区二区在线播放 | 国产私拍福利视频在线观看| 男女床上黄色一级片免费看| www.999成人在线观看| 久久久久久国产a免费观看| 叶爱在线成人免费视频播放| 99国产精品一区二区蜜桃av| 嫁个100分男人电影在线观看| 精品熟女少妇八av免费久了| 精品欧美国产一区二区三| 桃红色精品国产亚洲av| 色播亚洲综合网| 亚洲av第一区精品v没综合| 制服丝袜大香蕉在线| 叶爱在线成人免费视频播放| 精品久久久久久久毛片微露脸| 国产一区二区三区综合在线观看| 亚洲国产精品成人综合色| 免费看十八禁软件| 国产成人av教育| 精品午夜福利视频在线观看一区| 亚洲国产精品久久男人天堂| 可以在线观看毛片的网站| 久久国产精品人妻蜜桃| 国产在线精品亚洲第一网站| 日韩大尺度精品在线看网址 | 真人做人爱边吃奶动态| bbb黄色大片| 国产成人av教育| 97超级碰碰碰精品色视频在线观看| 热99re8久久精品国产| 国产精品秋霞免费鲁丝片| 久久这里只有精品19| 亚洲人成伊人成综合网2020| 老司机午夜十八禁免费视频| 精品久久蜜臀av无| 日日爽夜夜爽网站| 99久久99久久久精品蜜桃| 一级毛片精品| 久久人妻av系列| 正在播放国产对白刺激| 99久久综合精品五月天人人| 国产97色在线日韩免费| 极品人妻少妇av视频| 免费在线观看黄色视频的| 一区在线观看完整版| a在线观看视频网站| 亚洲国产欧美一区二区综合| 久久人妻熟女aⅴ| 丝袜美腿诱惑在线| 嫩草影院精品99| 91成年电影在线观看| 亚洲熟妇熟女久久| 国产精品二区激情视频| 他把我摸到了高潮在线观看| avwww免费| 搡老岳熟女国产| 涩涩av久久男人的天堂| 国产精品影院久久| 亚洲伊人色综图| 久久欧美精品欧美久久欧美| 99久久久亚洲精品蜜臀av| 国产午夜福利久久久久久| 亚洲电影在线观看av| 亚洲 欧美 日韩 在线 免费| 亚洲五月色婷婷综合| 一级黄色大片毛片| 午夜激情av网站| 亚洲成人久久性| 波多野结衣高清无吗| 欧美激情 高清一区二区三区| 亚洲无线在线观看| 麻豆国产av国片精品| 91老司机精品| 又黄又爽又免费观看的视频| 亚洲成人精品中文字幕电影| 久久中文字幕人妻熟女| 午夜老司机福利片| 多毛熟女@视频| 九色国产91popny在线| 国产亚洲精品av在线| 乱人伦中国视频| 视频区欧美日本亚洲| 一级作爱视频免费观看| 午夜免费鲁丝| 在线观看www视频免费| 久久中文看片网| 亚洲精品久久国产高清桃花| 国产成人啪精品午夜网站| 欧美精品啪啪一区二区三区| 搡老岳熟女国产| 狠狠狠狠99中文字幕| 可以免费在线观看a视频的电影网站| 久久精品亚洲精品国产色婷小说| 免费看a级黄色片| 午夜福利免费观看在线| 人人妻人人澡人人看| 热re99久久国产66热| 黑人巨大精品欧美一区二区蜜桃| 色综合站精品国产| 欧美乱妇无乱码| 久久久久精品国产欧美久久久| 欧美激情久久久久久爽电影 | 亚洲一卡2卡3卡4卡5卡精品中文| www.精华液| 欧美精品啪啪一区二区三区| 国产精品影院久久| 丝袜美腿诱惑在线| 色综合欧美亚洲国产小说| 激情在线观看视频在线高清| 男女做爰动态图高潮gif福利片 | 在线播放国产精品三级| 欧美绝顶高潮抽搐喷水| 国产野战对白在线观看| 色综合站精品国产| 欧美人与性动交α欧美精品济南到| 91大片在线观看| 国产精品免费视频内射| avwww免费| 少妇裸体淫交视频免费看高清 | 女同久久另类99精品国产91| 日韩欧美三级三区| 日日干狠狠操夜夜爽| 日韩一卡2卡3卡4卡2021年| 丁香六月欧美| 精品国产超薄肉色丝袜足j| 在线永久观看黄色视频| 午夜福利在线观看吧| 色av中文字幕| 搞女人的毛片| 亚洲欧美日韩无卡精品| 日日干狠狠操夜夜爽| 亚洲精品国产一区二区精华液| 日本黄色视频三级网站网址| 最近最新中文字幕大全免费视频| 脱女人内裤的视频| 国产av一区二区精品久久| 18禁黄网站禁片午夜丰满| 欧美黄色淫秽网站| 精品国产亚洲在线| 啪啪无遮挡十八禁网站| 国产伦一二天堂av在线观看| 中文字幕人妻丝袜一区二区| 午夜成年电影在线免费观看| 色在线成人网| 国产国语露脸激情在线看| 欧美日韩精品网址| 叶爱在线成人免费视频播放| 成人欧美大片| 日韩欧美三级三区| 极品人妻少妇av视频| 亚洲人成网站在线播放欧美日韩| 日日干狠狠操夜夜爽| 日日夜夜操网爽| 日本 av在线| 国产成人一区二区三区免费视频网站| 久久久久久免费高清国产稀缺| 欧美日韩乱码在线| 一区二区三区国产精品乱码| 十八禁网站免费在线| 精品日产1卡2卡| ponron亚洲| 亚洲五月天丁香| 丝袜美足系列| 天堂√8在线中文| 午夜久久久在线观看| 久久欧美精品欧美久久欧美| 午夜精品久久久久久毛片777| 成年版毛片免费区| or卡值多少钱| 丁香六月欧美| 一二三四社区在线视频社区8| 色综合欧美亚洲国产小说| 动漫黄色视频在线观看| 美女高潮到喷水免费观看| 国产精品久久视频播放| 亚洲男人的天堂狠狠| 九色亚洲精品在线播放| 日韩欧美一区二区三区在线观看| 国产一区二区激情短视频| 给我免费播放毛片高清在线观看| 日本三级黄在线观看| 女人爽到高潮嗷嗷叫在线视频| 男女午夜视频在线观看| 国产精品久久视频播放| 精品久久久久久久人妻蜜臀av | 日本免费一区二区三区高清不卡 | 91在线观看av| 在线观看www视频免费| 国产真人三级小视频在线观看| 18禁裸乳无遮挡免费网站照片 | 美女扒开内裤让男人捅视频| 亚洲成人免费电影在线观看| 亚洲久久久国产精品| 无人区码免费观看不卡| 女人爽到高潮嗷嗷叫在线视频| 成人国产一区最新在线观看| 久久精品影院6| 操美女的视频在线观看| 免费一级毛片在线播放高清视频 | 这个男人来自地球电影免费观看| 久久久精品国产亚洲av高清涩受| 免费观看精品视频网站| 久久久久久人人人人人| 91av网站免费观看| 亚洲天堂国产精品一区在线| 黄色 视频免费看| 亚洲九九香蕉| 最近最新中文字幕大全电影3 | 成年版毛片免费区| 在线永久观看黄色视频| 如日韩欧美国产精品一区二区三区| 成人欧美大片| 午夜免费成人在线视频| 久久久精品欧美日韩精品| 久9热在线精品视频| 国产亚洲精品综合一区在线观看 | 欧美成狂野欧美在线观看| 久久人妻av系列| 午夜福利高清视频| 叶爱在线成人免费视频播放| 午夜久久久在线观看| 999久久久精品免费观看国产| videosex国产| 91麻豆av在线| 亚洲成人免费电影在线观看| 琪琪午夜伦伦电影理论片6080| 女人被狂操c到高潮| 精品少妇一区二区三区视频日本电影| 亚洲精品美女久久av网站| 99久久精品国产亚洲精品| 精品福利观看| 亚洲久久久国产精品| 日本vs欧美在线观看视频| 黑人巨大精品欧美一区二区mp4| 国产精品爽爽va在线观看网站 | 丰满人妻熟妇乱又伦精品不卡| 巨乳人妻的诱惑在线观看| 老司机午夜十八禁免费视频| 久久欧美精品欧美久久欧美| 极品人妻少妇av视频| 91字幕亚洲| 国产精华一区二区三区| 日韩中文字幕欧美一区二区| 国产成人影院久久av| 97人妻天天添夜夜摸| 日日干狠狠操夜夜爽| av电影中文网址| 精品久久久久久久毛片微露脸| 丁香六月欧美| 淫秽高清视频在线观看| 99久久99久久久精品蜜桃| 琪琪午夜伦伦电影理论片6080| 怎么达到女性高潮| 亚洲久久久国产精品| 久久国产精品人妻蜜桃| 国产精品二区激情视频| 看免费av毛片| 亚洲精品美女久久久久99蜜臀| 久久人妻av系列| 午夜免费观看网址| 国产精品一区二区免费欧美| 日本精品一区二区三区蜜桃| 怎么达到女性高潮| 女生性感内裤真人,穿戴方法视频| 精品第一国产精品| 91精品三级在线观看| 亚洲情色 制服丝袜| 宅男免费午夜| 精品久久久久久久久久免费视频| 在线免费观看的www视频| 国内久久婷婷六月综合欲色啪| 99re在线观看精品视频| 校园春色视频在线观看| 97人妻精品一区二区三区麻豆 | 国产片内射在线| 国产av一区二区精品久久| 多毛熟女@视频| 一区福利在线观看| 成人三级做爰电影| 久久亚洲精品不卡| 国产人伦9x9x在线观看| 国产免费av片在线观看野外av| 欧美日韩亚洲国产一区二区在线观看| 免费看a级黄色片| 国产亚洲欧美98| 国产亚洲精品第一综合不卡| 中文字幕色久视频| 日本欧美视频一区| 精品卡一卡二卡四卡免费| 国产免费av片在线观看野外av| 亚洲国产精品久久男人天堂| 91麻豆精品激情在线观看国产| 国内久久婷婷六月综合欲色啪| 黄色女人牲交| 久久人妻av系列| 美女高潮喷水抽搐中文字幕| 一级毛片女人18水好多| 久久香蕉国产精品| 91老司机精品| 国产一区二区激情短视频| 国产成人免费无遮挡视频| 美女高潮到喷水免费观看| 波多野结衣巨乳人妻| 国产三级黄色录像| 韩国av一区二区三区四区| 成在线人永久免费视频| 欧美 亚洲 国产 日韩一| 两个人视频免费观看高清| 天天一区二区日本电影三级 | 亚洲人成网站在线播放欧美日韩| 国产精华一区二区三区| ponron亚洲| 热99re8久久精品国产| 久久久久亚洲av毛片大全| 久久这里只有精品19| 婷婷精品国产亚洲av在线| 女人精品久久久久毛片| 亚洲国产看品久久| 高清在线国产一区| 国产欧美日韩精品亚洲av| 丁香六月欧美| 精品国产乱码久久久久久男人| 亚洲专区字幕在线| 国产精品 国内视频| 少妇 在线观看| 在线观看免费日韩欧美大片| 精品电影一区二区在线| 国产亚洲欧美98| 美女大奶头视频| 色综合欧美亚洲国产小说| 亚洲片人在线观看| 久久热在线av| 国产三级黄色录像| 熟妇人妻久久中文字幕3abv| 日本 欧美在线| 日韩中文字幕欧美一区二区| 欧美日韩福利视频一区二区| 色在线成人网| 久久伊人香网站| 91麻豆精品激情在线观看国产| 人人澡人人妻人| 久久精品影院6| 热re99久久国产66热| 日韩欧美免费精品| 欧美日韩精品网址| 午夜精品在线福利| 99国产极品粉嫩在线观看| 少妇的丰满在线观看| 一a级毛片在线观看| 正在播放国产对白刺激| 国产黄a三级三级三级人| 一区二区三区国产精品乱码| 亚洲精品中文字幕一二三四区| 成人国产综合亚洲| 久久性视频一级片| 男人舔女人的私密视频| 久久久久国产一级毛片高清牌| 日本 av在线| 最新美女视频免费是黄的| 欧美日本中文国产一区发布| 好看av亚洲va欧美ⅴa在| 性色av乱码一区二区三区2| 成年版毛片免费区| 精品欧美国产一区二区三| 伊人久久大香线蕉亚洲五| 性欧美人与动物交配| 男人舔女人下体高潮全视频| 9色porny在线观看| 国产成人精品在线电影| 又黄又爽又免费观看的视频| 国产亚洲av嫩草精品影院| 日本免费一区二区三区高清不卡 | 免费av毛片视频| 久久人人爽av亚洲精品天堂| 亚洲无线在线观看| 亚洲一区中文字幕在线| 欧美乱妇无乱码| 嫩草影视91久久| 久久久国产成人精品二区| avwww免费| 黄片播放在线免费| 极品教师在线免费播放| 九色亚洲精品在线播放| 他把我摸到了高潮在线观看| 久久午夜综合久久蜜桃| 久久久久久久午夜电影| 欧美一级a爱片免费观看看 | 亚洲精品国产一区二区精华液| 日韩欧美国产一区二区入口| 99riav亚洲国产免费| 99国产精品一区二区三区| 天天添夜夜摸| 午夜福利高清视频| 高清毛片免费观看视频网站| 国产乱人伦免费视频| 亚洲国产精品久久男人天堂| 激情视频va一区二区三区| 国产aⅴ精品一区二区三区波| 不卡av一区二区三区| 又黄又粗又硬又大视频| 国产亚洲精品av在线| 一进一出抽搐gif免费好疼| 久久香蕉国产精品| 美女 人体艺术 gogo| 精品国产国语对白av| 天天躁狠狠躁夜夜躁狠狠躁| www.www免费av| 中文字幕最新亚洲高清| 最好的美女福利视频网| 午夜福利在线观看吧| 一本大道久久a久久精品| 88av欧美| 国内精品久久久久久久电影| 亚洲精品在线观看二区| 欧美成人性av电影在线观看| 99国产精品99久久久久| 久久国产乱子伦精品免费另类| 国产av精品麻豆| 久久午夜综合久久蜜桃| 少妇粗大呻吟视频| 亚洲精品粉嫩美女一区| 大码成人一级视频| 国产一级毛片七仙女欲春2 | 久久久久久久久中文| 国产亚洲精品久久久久5区| 欧美激情久久久久久爽电影 | 韩国精品一区二区三区| 亚洲avbb在线观看| 亚洲熟妇中文字幕五十中出| 国产成+人综合+亚洲专区| 1024视频免费在线观看| 黑人巨大精品欧美一区二区蜜桃| 美女扒开内裤让男人捅视频| 天堂动漫精品| 一本大道久久a久久精品| 十八禁人妻一区二区| 日本免费一区二区三区高清不卡 | 亚洲,欧美精品.| 成人18禁高潮啪啪吃奶动态图| 女性生殖器流出的白浆| www日本在线高清视频| 男人的好看免费观看在线视频 | 悠悠久久av| www国产在线视频色| 亚洲成人国产一区在线观看| 精品国产国语对白av| 亚洲国产欧美一区二区综合| 亚洲专区中文字幕在线| 亚洲av电影不卡..在线观看| 国产一区二区三区综合在线观看| 欧美性长视频在线观看| tocl精华| 久久国产精品男人的天堂亚洲| 黑人欧美特级aaaaaa片| 欧美激情高清一区二区三区| 亚洲人成网站在线播放欧美日韩| 免费在线观看亚洲国产| 国产高清激情床上av| 国产精品野战在线观看| 电影成人av| 欧美+亚洲+日韩+国产| 亚洲国产精品久久男人天堂| 90打野战视频偷拍视频| 国产精品免费视频内射| 久久这里只有精品19| 午夜福利一区二区在线看| 一级毛片高清免费大全| 亚洲精华国产精华精| 天天躁夜夜躁狠狠躁躁| 高清在线国产一区| 一个人免费在线观看的高清视频| 在线观看66精品国产| 精品一区二区三区四区五区乱码| 在线永久观看黄色视频| 久久精品国产综合久久久| 亚洲精品久久国产高清桃花| 乱人伦中国视频| 久久久久精品国产欧美久久久| 午夜福利免费观看在线| 麻豆成人av在线观看| 极品人妻少妇av视频| 亚洲激情在线av| 国产亚洲精品av在线| 国产精华一区二区三区| 美女大奶头视频| 夜夜躁狠狠躁天天躁| 亚洲七黄色美女视频| 麻豆久久精品国产亚洲av| 欧美中文日本在线观看视频| 久久天堂一区二区三区四区| 精品高清国产在线一区| 久久精品成人免费网站| 午夜影院日韩av| 夜夜躁狠狠躁天天躁| 久久久久久久精品吃奶| 男人舔女人的私密视频| 欧美国产日韩亚洲一区| or卡值多少钱| 黄网站色视频无遮挡免费观看| 男人的好看免费观看在线视频 | 亚洲中文日韩欧美视频| 国产高清激情床上av| 午夜老司机福利片| 欧美成人午夜精品| 久久天躁狠狠躁夜夜2o2o| 成人国产综合亚洲| 18禁美女被吸乳视频| 男男h啪啪无遮挡| 亚洲熟妇熟女久久| 国产精品亚洲av一区麻豆| 黄网站色视频无遮挡免费观看| 亚洲黑人精品在线| 色综合婷婷激情| 国产欧美日韩精品亚洲av| 啦啦啦观看免费观看视频高清 | 精品日产1卡2卡| 一区福利在线观看| 色播在线永久视频| 亚洲人成电影观看| 免费少妇av软件| 可以在线观看毛片的网站| 色精品久久人妻99蜜桃| 国产av在哪里看| 淫妇啪啪啪对白视频| 亚洲av熟女| 日韩欧美国产一区二区入口| 91大片在线观看| 亚洲欧美一区二区三区黑人| 国产精品综合久久久久久久免费 | 美女免费视频网站| 国产精品电影一区二区三区| 色精品久久人妻99蜜桃| 波多野结衣av一区二区av| 日日夜夜操网爽|