• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-uniformity Memristor Arrays Based on Two-dimensional MoTe2 for Neuromorphic Computing

    2022-08-28 06:50:16HEHuikaiYANGRuiXIAJianWANGTingzeDONGDequanMIAOXiangshui
    無機(jī)材料學(xué)報(bào) 2022年7期
    關(guān)鍵詞:成品率阻器華中科技大學(xué)

    HE Huikai, YANG Rui, XIA Jian, WANG Tingze, DONG Dequan, MIAO Xiangshui

    High-uniformity Memristor Arrays Based on Two-dimensional MoTe2for Neuromorphic Computing

    HE Huikai1, YANG Rui2,3, XIA Jian3,4, WANG Tingze3,4, DONG Dequan3,4, MIAO Xiangshui2,3

    (1. Nanhu Academy of Electronics and Information Technology, Jiaxing 314002, China; 2. Hubei Yangtze Memory Laboratories, Wuhan 430205, China; 3. Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China; 4. State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

    Two-dimensional transition metal dichalcogenides are appealing materials for the preparation of nanoelectronic devices, and the development of memristors for information storage and neuromorphic computing using such materials is of particular interest. However, memristor arrays based on two-dimensional transition metal dichalcogenides are rarely reported due to low yield and high device-to-device variability. Herein, the 2D MoTe2film was prepared by the chemical vapor deposition method. Then the memristive devices based on 2D MoTe2film were fabricated through the polymethyl methacrylate transfer method and the lift-off process. The as-prepared MoTe2devices perform stable bipolar resistive switching, including superior retention characteristics (>500 s), fast switching (~60 ns for SET and ~280 ns for RESET), and excellent endurance (>2000 cycles). More importantly, the MoTe2devices exhibit high yield (96%), low cycle-to-cycle variability (6.6% for SET and 5.2% for RESET), and low device-to-device variability (19.9% for SET and 15.6% for RESET). In addition, a 3×3 memristor array with 1R scheme is successfully demonstrated based on 2D MoTe2film. And, high recognition accuracy (91.3%) is realized by simulation in the artificial neural network with the MoTe2devices working as synapses. It is found that the formation/rupture of metallic filaments is the dominating switching mechanism based on the investigations of the electron transport characteristics of high and low resistance states in the present MoTe2devices. This work demonstrates that large-scale two-dimensional transition metal dichalcogenides film is of great potential forfuture applications in neuromorphic computing.

    two-dimensional material; MoTe2; memristor array; neuromorphic computing

    The last few years have witnessed rapid progress tow-ards the realization of artificial intelligence (AI), espe-cially software AI thanks to the advances in the deve-lopment of the algorithm. Note that software AI is typi-cally demonstrated based on the digital computer with conventional Von Neumann architectures at the cost of huge power consumption and massive data through-put[1]. In contrast, hardware AI systems based on in-memory com-puting architecture can handle probabilistic and unstru-ctured problems with low power dissipation rese-m-bling biological neural networks. Recently, memristor has att-racted increasing attention as a promising candi-date for the construction of hardware neuromorphic computing systems due to its prominent advantages, including simple structure and rich switching dynamics resembling biological synapses and neurons[2-8].

    Emerging two-dimensional (2D) materials, especially 2D layered transition metal dichalcogenides (TMDs), are actively studied for fabricating high-performance nanoe-le-ctronic devices[9-11]. The 2D TMDs have shown pro-spective potential for memristor applications, and these devices could be of use in both information storage and neuromorphic computing[12]. Such devices exhibit pro-perties that traditional thin film-based memristors do not have, including high thermal stability[13], high contro-llability of potentiation, depression and relaxation[14], excellent flexibility and transparency[15]. However, mem-ristors based on 2D TMDs are typically fabricated by mechanical exfoliation, which is not feasible for large-scale array preparation. Thus, the yield and device-to-device variability of 2D TMD-based devices are rarely reported.

    Herein, the memristive devices were prepared based on 2D MoTe2film fabricated by chemical vapor depo-sition (CVD). This MoTe2device shows stable bipolar resistive switching with superior retention characteristics, good endurance, high yield, and excellent uniformity.Furthermore, without selector devices, a 3×3 memristor array was demonstrated based on the MoTe2film. And, a handwritten digits recognition neural network simulation was implemented using the prepared MoTe2devices as synapses. This work indicates that large-scale 2D TMDs films are promising materials for future neu-romorphic computing.

    1 Experimental

    1.1 Device fabrication

    2D MoTe2film was prepared through the CVD method. Firstly, a 1 nm Mo film was deposited onto a heavily doped Si substrate with 300 nm SiO2by electron beam evaporation. Then the Mo film was fully oxidized to MoO3in air. The resulting MoO3film was placed in a ceramic crucible containing Te powder. A mixture of argon and hydrogen was used as carrier gas and formed a reducing atmosphere during the CVD growth. The MoO3film was tellurized into a MoTe2film after annealing in Te vapor at 700 ℃. The bottom conductive layer (30 nm Au/10 nm Ti) and the top conductive layer (100 nm Au/10 nm Ti) were deposited through DC sput-tering and lift-off process. And the MoTe2film was transferred onto the bottom conductive layer through the polymethyl meth-a-crylate (PMMA) transfer method. The transfer process is shown schematically in Fig. S1.

    1.2 Characterization and electrical measure-ment

    The component of the MoTe-2film was measured by Raman spectra with an inVia Reflex spectrometer operated under a 532 nm laser and the XRD mea-surement (Bruker D8 Advance). An optical microscope (DSX 510) was employed to check the structure of the Au/Ti/MoTe2/Au/Ti device. The thickness and the stru-cture of the memristor array were measured through an atomic force microscope (AFM, SPM9700). All elec-trical measurements were conducted in air at room temperature with a Keithley 4200 semiconductor chara-cterization system connected with a tabletop cryogenic probe station (PS-100, Lakeshore).

    2 Results and discussion

    2.1 Composition and structure characteri-zation of the MoTe2 device

    Fig. 1(a) shows a typical photo of the MoTe2film after being transferred on the silicon substrate with bottom electrodes. The film is uniform and continuous across the whole area (~1 cm), as seen from the homo-geneous color contrast in the image.And, this thin film is pure MoTe2without other phases, which is verified by the XRD measurement (Fig. S2). Raman spectroscopy was further employed to investigate the structure of the prepared MoTe2film, as shown in Fig. 1(b). The MoTe2film shows several Raman peaks between 100 and 300 cm–1: the out-of-plane A1gmode at ~171 cm–1and the prominent peak of the in-plane E2gmode at ~233 cm–1. These Raman features coincide with those observed in few-layer MoTe2with the hexagonal (2H) phase, thus unequivocally identifying the as-grown film as 2H MoTe2[16-17].

    After characterization of the MoTe2film, the Au/Ti/MoTe2/Au/Ti device was fabricated through the PMMA transfer method and lift-off process, and the detailed fabrication process is shown in Fig. S3. The optical image of 50 Au/Ti/MoTe2/Au/Ti devices is presented in Fig. 1(c).

    In addition to the independent MoTe2device, a 3×3 memristor array was prepared based on the continuous MoTe2film. The optical image of the 3×3 memristor array is shown in Fig. 1(d). And the atomic force mic-roscope (AFM) image and height profiles of the prepared array (Fig. S4) demonstrate that the MoTe2film can adapt to the contour morphology of the bottom electrodes, resulting in a conformal coating.

    Fig. 1 Characterization of MoTe2 film and electrical mea-surement of Au/Ti/MoTe2/Au/Ti device

    (a) Photo of the centimeter-scale MoTe2film; (b) Raman spectrum of the MoTe2film; (c) Optical image of the prepared memristive devices with the structure of Au/Ti/MoTe2/Au/Ti; (d) Optical image of a 3×3 memristor array

    2.2 Memristive behavior of the Au/Ti/MoTe2/ Au/Ti device

    After the electroforming process (Fig. S5), stable bipolar resistive switching was obtained when the vo-ltage was swept between –0.8 and 1.0 V, as shown in Fig. 2(a). During a continuous bias sweeping from 0 V→1 V→–0.8 V→0 V, a pinched hysteresis loop was obtained, in which SET (switching from high resistance state (HRS) to low resistance state (LRS)) occurred at about 0.7 V and RESET (switching from LRS to HRS) happened at about –0.5 V. A compliance current of 3 mA was applied in the SET process to prevent hard break-down. This hysteresis behavior is reproducible in the successive 20 voltage sweeps, indicating the stability of the switching behavior in the present device. The reten-tion characteristics of the MoTe2device were mea-sured at room temperature, as shown in Fig. 2(b). The ON/OFF ratio is higher than 10 and the current levels of the HRS and LRS show no degradation for 500 s, indicating good retention of the device.

    In addition to stable bipolar switching behavior and good retention characteristic, the MoTe2device exhibits fast switching and good endurance. Current responses of the MoTe2device under the SET and RESET pulses are presented in Fig. 3(a–b). It was found that the device could be switched to LRS in about 60 ns and switched back to HRS in about 280 ns. Furthermore, over 2000 switching cycles can be obtained under SET pulse of 1.7 V/700 ns and RESET pulse of –1.2 V/7 μs (Fig. 3(c)), indicating good endurance of the present MoTe2device.

    Fig. 2 Stable bipolar resistive switching behavior and retention characteristics of the MoTe2 device

    (a) 20 cycles ofcurves with a compliance current of 3?mA; (b) Re-tention characteristics of the HRS and the LRS read at 0.1 V

    2.3 High yield and excellent uniformity of the MoTe2 device

    The yield and uniformity of the prepared device are systematically studied, since they are crucial for the construction of large-scale memristor arrays. Among 25 prepared devices, 24 devices show stable bipolar resistive switching behavior similar to that shown in Fig. 2(a), indicating a yield of 96%. We statistically analyzed 480curves collected in 24 devices (detailed results are shown in Fig. S6), and quantified the cycle-to-cycle and the device-to-device variability of the SET voltage (SET), RESET voltage (RESET), HRS and LRS by calculating the coefficient of variation (V) as the standard deviation () divided by the mean value (), in absolute value[18]. The cycle-to-cyclevariabilityin a single device results from the stochastic nature of the switching process, and the device-to-device variability is attributed to inhomogeneity in the samples derived from the fabrication process[19], such as device area and thickness fluctuations, and so on.

    The minimum cycle-to-cycle variabilities ofSETandRESETare 6.6% and 5.2% for a given device, respe-ctively, and the device-to-device variabilities ofSETandRESETrise to 19.9% and 15.6%, respectively, when considering all 24 devices (Fig. 4). In addition, the device-to-device variabilities of HRS and LRS are 16.8% and 12.7%, respectively (Fig. S7). Note that the device-to-device variabilities ofSETandRESETare 6.06% and 29.07%, respectively, for the CVD h-BN device reported recently[20], indicating the uniformity of the present device is comparable to that of the h-BN device. Such excellent uniformity makes the MoTe2film promising for the construction of large-scale memristor arrays.

    2.4 Realization of a 3×3 memristor array based on the MoTe2 film

    According to the estimation using the one-bit pull-up scheme (detailed results are shown in Fig. S8 and Fig. S9), the maximum array sizes with the 1R scheme and the 1S1R scheme are 4×4 and 870×870 (740 kb), respe-c-tively. Therefore, a 3×3 array was fabricated to verify the feasibility of the memristor array based on the MoTe-2film. After an electroforming process, stable resi-stive switching was achieved in the MoTe2array device, as shown in Fig. 5(a–b).Notably, due to the inevitable issue of leakage current, the resistance values of the MoTe2array devices are lower than those of the inde-pendent MoTe2devices, especially for the HRS, leading to a smaller switching ratio (detailed results are pre-sented in Fig. S10). These results demonstrate that the MoTe2film is promising for the construction of me-mristor array, and the array size can be further enlarged through combing with proper selectors.

    Fig. 3 Fast switching and good endurance of the MoTe2 device

    (a) SET speed under the pulse with the amplitude 1.3 V; (b) RESET speed of the MoTe2device under the pulse with the amplitude of –1.0 V; (c) Over 2000 switching cycles obtained by applying SET pulse of 1.7 V/700 ns and RESET pulse of –1.2 V/7 μs

    Colorful figures are available on website

    Fig. 4 Cumulative distribution of (a)VSET and (b) VRESET of 24 devices

    2.5 Consecutive conductance modulation and neural network simulation of the MoTe2 device

    Continuous pulse stimulations are applied on the device to mimic the long-term potentiation (LTP) and depression (LTD) of synapses, which are essential synaptic functions for neuromorphic computing. The conductance triggered by alternating 50 positive (1 V, 500 ns) and 50 negative (–1 V, 5 μs) input pulses exhibits repeatable and stable response of LTP and LTD of biological synapses (Fig. S11).

    Fig. 6 presents one cycle of LTP and LTD realized in the present device. The LTP and LTD processes can be fitted by the equation below[21-22]:

    where G is conductance, N is the number of pulses, a, c and β are constants. Here, the exponential factor β can reflect the linearity of conductance modulation. The smaller the β, the better the linearities. As shown in Fig. 6, the β for LTP is 0.143 and the β for LTD is 0.203,which is comparable to the previously reported work[21].

    (a) Electroforming process of the MoTe2array device; (b) 20 cyclescurves of the MoTe2array device with a compliance current of 5?mA

    Fig. 6 Potentiation and depression processes of the present device

    With the present device working as synapses, a fully connected network with one hidden layer has been simulated using the CrossSim platform[23]. The neural network is with 784 input neurons, 300 hidden neurons, and 10 output neurons for 28×28 input pixels and 10 output classifications for recognition handwritten digits from Modified National Institute of Standards and Technology (MNIST) dataset. The MoTe2devices were used as storage of the weight in the network and the change of the conductance of the artificial synapses was adopted as the weight update in the process of the backpropagation algorithm. In addition, another network with the size of 64×36×10 was trained using another dataset of small digits with 8×8 pixels from the “Optical Recognition of Handwritten Digits” dataset. The test recognition accuracies of the simulation with two datasetsusing the present device are benchmarked with ideal floating-point numeric precision that represents the neuromorphic algorithm limit, as shown in Fig. 7. The recognition accuracies of the small and large digits can reach ~91.3% and 88.2% after 40 epochs, lower than the ideal numeric accuracies of ~96.7% and 98.1%. This accuracy difference between the experiment derived and the ideal numeric results from the nonlinear and asymmetrical conductance change in LTP and LTD pro-cesses, which can be further improved through inter-face engineering of the device.

    Fig. 7 Recognition accuracy for small and large hand-written digit images with experimental devices and ideal numeric

    Colorful figures are available on website

    2.6 Mechanism analysis

    The electron transport processes at LRS and HRS were analyzed to explain the underlying mechanism of resistive switching behavior. As shown in Fig. 8(a), non-linearcharacteristics are observed at the HRS, with the current increasing as the temperature increases. And it was found that the HRS was best-fitted by the Schottky emission model[24]as shown in the inset of Fig. 8(a);

    where A* is the effective Richardson constant, m0 is the free electron mass, T is the absolute temperature, q is the electron charge, φB is the Schottky barrier height, E is the electric field across the dielectric, k is Boltzmann’s constant, ε0 is the permittivity in vacuum, and εr is the optical dielectric constant.

    (a)characteristics at HRS under different temperatures, with current increasing as the temperature increasesFitted data using the Schottky emission model for HRS is shown in the inset; (b)characteristics at LRS at different temperatures,with current decreasing as the temperature increase, indicating a metallic characteristic

    In contrast, the LRS performs Ohmic conduction due to the linear characteristic of thecurve (Fig. 8(b)), indicating the formation/rupture of conductive filaments might be the dominating mechanism of the resistive switching. Furthermore, the current of the LRS decreases as the temperature increases, implying the metallic filaments are formed in the LRS. These metallic fila-ments might be composed of the monoclinic (1T′) phase (1T′-MoTe2) resulting from phase transition of MoTe2[25]or metallic Ti filaments induced by Ti ions drifting into native defects in MoTe2[26]. The detailed atomic structure of these filaments need further investigations.

    3 Conclusions

    Through CVD growth of the MoTe2film, the PMMA transfer method and lift-off process, the memristive devices based on 2D MoTe2film were successfully pre-pared. The devices exhibit stable bipolar resistive swit-ching with superior retention characteristics and good endurance. More importantly, the devices perform high yield, low cycle-to-cycle variability, and low device-to-device variability. Furthermore, a 3×3 memristor array based on the MoTe2device with 1R scheme was successfully demonstrated. And, the simulation of neural network with the prepared MoTe2devices as synapses was implemented for handwritten digits recognition, and the recognition accuracy of around 90% was realized. Our demonstration of memristor array based on centimeter-scale 2D MoTe2film provides an avenue for future neuromorphic circuits using large-scale 2D TMDs film.

    Supporting materials related to this article can be found at https://doi.org/10.15541/jim20210658.

    [1] SILVER D, SCHRITTWIESER J, SIMONYAN K,. Mastering the game of Go without human knowledge., 2017, 550(7676): 354–359.

    [2] CHUA L O. Memristor-the missing circuit element., 1971, 18(5): 507–519.

    [3] STRUKOV D B, SNIDER G S, STEWART D R,. The missing memristor found., 2009, 459(7250): 1154.

    [4] YANG R, HUANG H M, GUO X. Memristive synapses and neurons for bio-inspired computing., 2019, 5(9): 1900287.

    [5] HE H K, YANG R, ZHOU W,Photonic potentiation and electric habituation in ultrathin memristive synapses based on monolayer MoS2., 2018, 14(15): 1800079.

    [6] YANG R, HUANG H M, HONG Q H,. Synaptic suppression triplet-STDP learning rule realized in second-order memristors., 2018, 28(5): 1704455.

    [7] HE H K, YANG R, HUANG H M,. Multi-gate memristive synapses realized with the lateral heterostructure of 2D WSe2and WO3., 2019, 12(1): 380–387.

    [8] HUANG H M, YANG R, TAN Z H,. Quasi-hodgkin-huxley neurons with leaky integrate-and-fire functions physically realized with memristive devices., 2019, 31(3): 1803849.

    [9] XU M, LIANG T, SHI M,Graphene-like two-dimensional materials., 2013, 113(5): 3766–3798.

    [10] FIORI G, BONACCORSO F, IANNACCONE G,. Electronics based on two-dimensional materials., 2014, 9(10): 768–779.

    [11] CHANG C, CHEN W, CHEN Y,. Recent progress on two-dimensional materials., 2021, 37(12): 2108017.

    [12] WANG C Y, WANG C, MENG F,. 2D layered materials for memristive and neuromorphic applications., 2020, 6(2): 1901107.

    [13] WANG M, CAI S, PAN C,. Robust memristors based on layered two-dimensional materials., 2018, 1(3): 203.

    [14] SHI Y, LIANG X, YUAN B,. Electronic synapses made of layered two-dimensional materials., 2018, 1(8): 458–465.

    [15] HE H K, YANG F F, YANG R. Flexible full two-dimensional memristive synapses of graphene/WSe2xO/graphene., 2020, 22(36): 20658.

    [16] YAMAMOTO M, WANG S T, NI M,. Strong enhancement of raman scattering from a bulk-inactive vibrational mode in few-layer MoTe2., 2014, 8(4): 3895–3903.

    [17] GUO H, TENG Y, YAMAMOTO M,Double resonance Raman modes in mono- and few-layer MoTe2., 2015, 91(20): 205415-205415.

    [18] ADAM G C, HOSKINS B D, PREZIOSO M,3-D memristor crossbars for analog and neuromorphic computing applications., 2016, 64(99): 312–318.

    [19] SANGWAN V K, LEE H S, BERGERON H,. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide., 2018, 554(7693): 500–504.

    [20] CHEN S, MAHMOODI M R, SHI Y,. Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks., 2020, 3(10): 638–645.

    [21] WANG Z, YIN M, TENG Z,. Engineering incremental resistive switching in TaObased memristors for brain-inspired computing., 2016, 8(29): 14015–14022.

    [22] BURGT Y, LUBBERMAN E, FULLER E J,A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing., 2017, 16(4): 414–418.

    [23] CrossSim platform. https://cross-sim.sandia.gov/ (accessed: July 2019).

    [24] ALAMGIR Z, BECKMANN K, HOLT J,. Pulse width and height modulation for multi-level resistance in bi-layer TaObased RRAM., 2017, 111(6): 063111.

    [25] WANG Y, XIAO J, ZHU H,. Structural phase transition in monolayer MoTe2driven by electrostatic doping.,2017, 550(7677): 487.

    [26] SHI Y, LIANG X, YUAN B,. Electronic synapses made of layered two-dimensional materials.,2018, 1(8): 458–465.

    Supporting materials:

    High-uniformity Memristor Arrays Based on Two-dimensional MoTe2for Neuromorphic Computing

    HE Huikai1, YANG Rui2,3, XIA Jian3,4, WANG Tingze3,4, DONG Dequan3,4, MIAO Xiangshui2,3

    (1. Nanhu Academy of Electronics and Information Technology, Jiaxing 314002, China; 2. Hubei Yangtze Memory Labora-tories, Wuhan 430205, China; 3. Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China; 4. State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

    1 PMMA transfer method

    2 XRD analysis of the MoTe2film

    3 Fabrication process of the Au/Ti/MoTe2/Au/ Ti device

    4 AFM image of the 3×3 memristor array

    5 Electroforming process of the device

    Before achieving a stable resistive switching, an elec-troforming process was required, as shown in Fig. S5. At the beginning, the current of the CVD-MoTe2device was low due to its high resistance. After the application of a relatively large positive voltage (about 1.15 V), the device switched to the LRS.

    6curves of 24 Au/Ti/MoTe2/Au/Ti devices

    7 Cumulative distribution of device HRS and LRS of 24 devices

    8 Estimation of the array size

    In case of memristor crossbar array, the cross talk between the adjacent memory cells restricts the maxi-mum possible size of the array. Especially when all memory cells in the array are in low resistance state, the sneak path leakage problem will be highly predominant in the array. Therefore, to obtain the maximum possible crossbar array size, the worst case read scheme is utilized to measure the number of possible word lines with read margin of more than 10%, which is called the one-bit pull-up scheme[1-3].

    In this model, the bit line of the selected cell is biased to the read voltage, the word line of the selected cell is grounded and all the other word and bit lines are left floated. Regarding an×square crossbar array with the most challenging data pattern (, all unselected cells in LRS) and negligible line resistance, the crossbar array can be simplified into three regions as shown in the left panel of Fig. S8(a). And the corresponding equi-valent circuit is present in the right panel of Fig. S8(a). The resistance value of the selected cell will be found by measuring the output voltage across the pull up resistor,pu. To obtain the best result during the measurement, the pull up resistor value will be set to the resistance during the low resistance state (pu=LRS). The read margin normalized to the pull up voltage is calculated by solving the Krichhoff equation:

    Fig. S8(b) shows the calculated read margin for both 1R and 1S1R schemes for different number of word lines. From this figure, it is clearly seen that the read margin reduced drastically for 1R scheme and the number of word lines with at least 10% read margin is found to be only4. In case of 1S1R scheme, the non-linearity of the device resulted in increased number of word lines to 870 for 10% read margin, making a 740 kb possible crossbar array fabrication with good working possibility. Enhan-cing the selectivity of the selector can result in further increase of the crossbar array size to get a high density and large size crossbar array.

    Table 1 Key resistance values and the corresponding maximum number of word lines/bit lines (N) with read margin >10%

    9 Memristive behavior of the array devices

    10 Consecutive conductance modulation of the device

    Fig. S1 PMMA transfer method

    Fig. S2 XRD pattern of the MoTe2film

    Fig. S3 Fabrication process of the Au/Ti/MoTe2/Au/Ti device

    Fig. S4 AFM image (a) of 3×3 memristor array, and the height profile (b) along the horizontal line and the vertical line

    Fig. S5 Electroforming process of the device

    Fig. S6curves of 24 Au/Ti/MoTe2/Au/Ti devices

    All devices show stable resistive switching with low cycle-to-cycle and device-to-device variability

    Fig. S7 Cumulative distribution of device (a) HRS and (b) LRS of 24 devices

    Fig. S8 Estimation of the array size for the prepared CVD-MoTe2device

    (a) Sneak current path at read in a square crossbar array where all bits except the selected one are at LRS, and the equivalent circuit can be repre-sented by three resistors (region 1, region 2 and region 3); (b) Dependence of the read margin on the crossbar line number for both 1R and 1T1R schemes

    Fig. S9characteristics of the Pt/TaO/TiO2/TaO/Pt selector[4]

    Fig. S10curves of 9 devices in 3×3 array

    Fig. S11 Long-term potentiation and depression of the device using 50 potentiation (1 V, 500 ns) and depression (–1 V, 5 μs) presynaptic pulses

    [1] HUANG J J, TSENG Y M, HSU C W,. Bipolar nonlinear Ni/TiO2/Ni selector for 1S1R crossbar array applications., 2011, 32(10): 1427-1429.

    [2] FLOCKE A, NOLL T G. Proceedings of the 33rd European Solid-StateCircuits Conference (ESSCIRC, 2007), 2007: 328.

    [3] LIU Z J. ZnO-based one diode-one resistor device structure for crossbar memory applications., 2012, 100(15): 041301.

    [4] LEE W, PARK J, KIM S,. High current density and nonlinearity combination of selection device based on TaO/TiO2/TaO, structure for one selector-one resistor arrays., 2012, 6(9): 8166-8172.

    高均一性二維碲化鉬憶阻器陣列及其神經(jīng)形態(tài)計(jì)算應(yīng)用

    何慧凱1, 楊蕊2,3, 夏劍3,4, 王廷澤3,4, 董德泉3,4, 繆向水2,3

    (1. 中國電子科技南湖研究院, 嘉興 314002; 2. 湖北江城實(shí)驗(yàn)室, 武漢 430205; 3. 華中科技大學(xué) 光學(xué)與電子信息學(xué)院, 武漢光電國家實(shí)驗(yàn)室, 武漢 430074; 4. 華中科技大學(xué) 材料科學(xué)與工程學(xué)院, 材料加工與模具技術(shù)國家重點(diǎn)實(shí)驗(yàn)室, 武漢 430074)

    二維過渡金屬硫化合物是構(gòu)建納米電子器件的理想材料, 基于該材料體系開發(fā)用于信息存儲和神經(jīng)形態(tài)計(jì)算的憶阻器, 受到了學(xué)術(shù)界的廣泛關(guān)注。受制于低成品率和低均一性問題, 二維過渡金屬硫化合物憶阻器陣列鮮見報(bào)道。本研究采用化學(xué)氣相沉積得到厘米級二維碲化鉬薄膜, 并通過濕法轉(zhuǎn)移和剝離工藝制備得到碲化鉬憶阻器件。該碲化鉬器件表現(xiàn)出優(yōu)異的保持性(保持時(shí)間>500 s)、快速的阻變(SET時(shí)間~60 ns, RESET時(shí)間~280 ns)和較好的循環(huán)壽命(阻變2000圈后仍可正常工作)。該器件具有高成品率(96%)、低阻變循環(huán)間差異性(SET過程為6.6%, RESET過程為5.2%)和低器件間差異性(SET過程為19.9%, RESET過程為15.6%)。本工作成功制備出基于MoTe2的3×3憶阻器陣列。在此基礎(chǔ)上, 將研制的MoTe2器件用于手寫體識別, 實(shí)現(xiàn)了91.3%的識別率。最后, 通過對MoTe2器件高低阻態(tài)的電子輸運(yùn)機(jī)制進(jìn)行擬合分析, 揭示了該器件阻變源于類金屬導(dǎo)電細(xì)絲的通斷過程。本項(xiàng)工作表明大尺寸二維過渡金屬硫化合物在未來神經(jīng)形態(tài)計(jì)算中具有巨大的應(yīng)用潛力。

    二維材料; 碲化鉬; 憶阻器陣列; 神經(jīng)形態(tài)計(jì)算

    TQ125

    A

    1000-324X(2022)07-0795-07

    10.15541/jim20210658

    2021-10-25;

    2021-12-14;

    2022-01-06

    National Natural Science Foundation of China (U1832116, 51772112)

    HE Huikai (1992–), PhD. E-mail: hehk@hust.edu.cn

    何慧凱(1992–), 博士. E-mail: hehk@hust.edu.cn

    YANG Rui, professor. E-mail: yangrui@hust.edu.cn

    楊蕊, 教授. E-mail: yangrui@hust.edu.cn

    猜你喜歡
    成品率阻器華中科技大學(xué)
    華中科技大學(xué)機(jī)械科學(xué)與工程學(xué)院(二)
    華中科技大學(xué)機(jī)械科學(xué)與工程學(xué)院(一)
    精益六西格瑪在改善藥品生產(chǎn)流程中的應(yīng)用
    彰顯中國化馬克思主義的魅力
    ——記華中科技大學(xué)哲學(xué)系教授歐陽康
    薏苡仁多糖咀嚼片直接壓片法輔料配比的工藝研究
    真實(shí)憶阻器數(shù)學(xué)建模以及電學(xué)仿真
    電子制作(2017年24期)2017-02-02 07:14:25
    《營銷禮儀》課程構(gòu)建實(shí)訓(xùn)主導(dǎo)型教學(xué)模式的探討——以華中科技大學(xué)武昌分校為例
    PCM參數(shù)在圓片制造中的影響
    具有脈沖的憶阻器神經(jīng)網(wǎng)絡(luò)周期解的穩(wěn)定性
    憶阻器網(wǎng)絡(luò)等效分析電路及其特性研究
    xxxhd国产人妻xxx| 日本wwww免费看| 一级a做视频免费观看| 欧美日韩国产mv在线观看视频| 午夜福利影视在线免费观看| 久久这里有精品视频免费| 国产白丝娇喘喷水9色精品| 成人毛片a级毛片在线播放| 一区二区av电影网| 久久精品国产综合久久久 | 人人妻人人澡人人爽人人夜夜| 精品福利永久在线观看| 午夜激情久久久久久久| 欧美 亚洲 国产 日韩一| 久久精品国产a三级三级三级| 欧美变态另类bdsm刘玥| 交换朋友夫妻互换小说| 一级毛片电影观看| 麻豆乱淫一区二区| 赤兔流量卡办理| 男女下面插进去视频免费观看 | 美女中出高潮动态图| 精品国产露脸久久av麻豆| 日韩制服骚丝袜av| 最后的刺客免费高清国语| 男人舔女人的私密视频| 不卡视频在线观看欧美| 免费在线观看黄色视频的| 黄片播放在线免费| 黄色 视频免费看| 免费人成在线观看视频色| 久久人妻熟女aⅴ| av片东京热男人的天堂| 丰满少妇做爰视频| 国产成人精品一,二区| 香蕉丝袜av| av免费在线看不卡| 色婷婷久久久亚洲欧美| 成人午夜精彩视频在线观看| 只有这里有精品99| 亚洲,一卡二卡三卡| 国产一级毛片在线| 成年人免费黄色播放视频| 欧美日韩综合久久久久久| 国产欧美日韩综合在线一区二区| 午夜免费鲁丝| 成年av动漫网址| 久久鲁丝午夜福利片| 天天操日日干夜夜撸| 最新中文字幕久久久久| 国国产精品蜜臀av免费| 久热久热在线精品观看| 久久精品国产亚洲av天美| 精品亚洲成a人片在线观看| 国产av一区二区精品久久| 亚洲,欧美精品.| 成人免费观看视频高清| 亚洲成色77777| 国产精品久久久久久久电影| 交换朋友夫妻互换小说| 成人黄色视频免费在线看| 一本—道久久a久久精品蜜桃钙片| 亚洲综合色惰| 欧美精品国产亚洲| av天堂久久9| 国产1区2区3区精品| 成年人午夜在线观看视频| 国产 精品1| 欧美亚洲日本最大视频资源| 在线观看人妻少妇| 伊人亚洲综合成人网| 高清av免费在线| a 毛片基地| 亚洲人成网站在线观看播放| av免费观看日本| av国产精品久久久久影院| 18禁动态无遮挡网站| 亚洲中文av在线| 26uuu在线亚洲综合色| 亚洲,一卡二卡三卡| 国产爽快片一区二区三区| 久久女婷五月综合色啪小说| 高清av免费在线| 欧美精品亚洲一区二区| 亚洲在久久综合| 精品国产乱码久久久久久小说| 啦啦啦中文免费视频观看日本| 在线观看www视频免费| 亚洲,欧美,日韩| 日本av免费视频播放| 欧美日韩视频高清一区二区三区二| 亚洲 欧美一区二区三区| 一边摸一边做爽爽视频免费| 80岁老熟妇乱子伦牲交| 成年美女黄网站色视频大全免费| 久久人人爽人人爽人人片va| 亚洲国产精品成人久久小说| 欧美激情 高清一区二区三区| 亚洲一区二区三区欧美精品| 人人妻人人添人人爽欧美一区卜| 99热这里只有是精品在线观看| 少妇的逼水好多| 免费人妻精品一区二区三区视频| 黑人猛操日本美女一级片| 免费黄色在线免费观看| 久久精品国产亚洲av涩爱| 国产一区二区在线观看日韩| 国产在视频线精品| 夜夜爽夜夜爽视频| 只有这里有精品99| 日韩欧美精品免费久久| 精品视频人人做人人爽| 亚洲精品久久久久久婷婷小说| 男女国产视频网站| 男人舔女人的私密视频| 中文天堂在线官网| 亚洲av电影在线观看一区二区三区| 91成人精品电影| 亚洲人成网站在线观看播放| 99热国产这里只有精品6| 99九九在线精品视频| 丝袜喷水一区| av在线观看视频网站免费| 黄色怎么调成土黄色| 熟妇人妻不卡中文字幕| 人成视频在线观看免费观看| 亚洲欧洲日产国产| 纯流量卡能插随身wifi吗| 亚洲av电影在线进入| 少妇的丰满在线观看| 97人妻天天添夜夜摸| 欧美激情 高清一区二区三区| 两性夫妻黄色片 | 丁香六月天网| 婷婷色麻豆天堂久久| 欧美日韩视频高清一区二区三区二| 欧美亚洲日本最大视频资源| 制服丝袜香蕉在线| 国产综合精华液| 欧美亚洲日本最大视频资源| 男女免费视频国产| 色视频在线一区二区三区| 内地一区二区视频在线| 男的添女的下面高潮视频| 中国国产av一级| 纯流量卡能插随身wifi吗| 九九在线视频观看精品| 两个人看的免费小视频| 午夜福利视频在线观看免费| av在线观看视频网站免费| 日日爽夜夜爽网站| h视频一区二区三区| 亚洲美女黄色视频免费看| 男男h啪啪无遮挡| 一级爰片在线观看| 亚洲色图 男人天堂 中文字幕 | 蜜桃在线观看..| 美女主播在线视频| 久久青草综合色| 黄色 视频免费看| 亚洲,欧美精品.| 美女大奶头黄色视频| 国产亚洲欧美精品永久| 免费日韩欧美在线观看| 国产日韩欧美亚洲二区| 色网站视频免费| 免费在线观看黄色视频的| 欧美性感艳星| 9热在线视频观看99| av黄色大香蕉| 成人午夜精彩视频在线观看| 永久网站在线| 99久久中文字幕三级久久日本| 校园人妻丝袜中文字幕| 51国产日韩欧美| 国产日韩欧美在线精品| 夫妻性生交免费视频一级片| 波多野结衣一区麻豆| 国产片内射在线| 99久久精品国产国产毛片| 亚洲av在线观看美女高潮| 女性生殖器流出的白浆| 制服诱惑二区| 看免费av毛片| 蜜桃国产av成人99| 国产精品.久久久| 啦啦啦在线观看免费高清www| 最近的中文字幕免费完整| 国产在线视频一区二区| 高清av免费在线| 丝袜在线中文字幕| 日韩一本色道免费dvd| 啦啦啦视频在线资源免费观看| 十八禁高潮呻吟视频| 日韩一本色道免费dvd| 国精品久久久久久国模美| 国产日韩欧美在线精品| 精品国产乱码久久久久久小说| 一本大道久久a久久精品| kizo精华| 亚洲国产欧美在线一区| 国产爽快片一区二区三区| 人成视频在线观看免费观看| 日日爽夜夜爽网站| 热99久久久久精品小说推荐| 日韩中文字幕视频在线看片| 久久精品国产亚洲av天美| 日韩人妻精品一区2区三区| 国产成人免费无遮挡视频| 国产淫语在线视频| 日日撸夜夜添| 久久久久久久大尺度免费视频| av.在线天堂| 丰满迷人的少妇在线观看| av在线app专区| 只有这里有精品99| 97人妻天天添夜夜摸| 日韩熟女老妇一区二区性免费视频| 国产精品人妻久久久影院| 在线观看www视频免费| 免费观看在线日韩| 少妇猛男粗大的猛烈进出视频| 久久国产精品男人的天堂亚洲 | 三上悠亚av全集在线观看| 伊人亚洲综合成人网| 亚洲成人手机| 国产探花极品一区二区| av又黄又爽大尺度在线免费看| 黄网站色视频无遮挡免费观看| 国产免费现黄频在线看| 激情五月婷婷亚洲| 日本91视频免费播放| 大香蕉久久成人网| 久久久久国产精品人妻一区二区| 免费av不卡在线播放| 中国国产av一级| 国产色爽女视频免费观看| 香蕉国产在线看| 热99国产精品久久久久久7| 在线天堂中文资源库| 国产亚洲午夜精品一区二区久久| 亚洲图色成人| 亚洲熟女精品中文字幕| 少妇熟女欧美另类| 中文字幕人妻丝袜制服| 亚洲成人手机| www.av在线官网国产| 亚洲欧洲日产国产| 日日啪夜夜爽| 亚洲欧美成人综合另类久久久| 久久久久网色| 日本免费在线观看一区| 精品国产国语对白av| 尾随美女入室| 激情五月婷婷亚洲| 欧美精品高潮呻吟av久久| 婷婷色综合大香蕉| 青春草国产在线视频| 久久人妻熟女aⅴ| 久久 成人 亚洲| 少妇的逼水好多| 国产精品国产三级国产av玫瑰| 99热全是精品| 亚洲av欧美aⅴ国产| 丝袜美足系列| 女性生殖器流出的白浆| 亚洲 欧美一区二区三区| 另类亚洲欧美激情| 精品久久国产蜜桃| 夜夜爽夜夜爽视频| av又黄又爽大尺度在线免费看| 亚洲精品456在线播放app| 中文天堂在线官网| a级毛片黄视频| 成人亚洲欧美一区二区av| 久久久久久久精品精品| 欧美老熟妇乱子伦牲交| 国产亚洲午夜精品一区二区久久| 国产深夜福利视频在线观看| 69精品国产乱码久久久| 在线免费观看不下载黄p国产| 夫妻性生交免费视频一级片| 91精品国产国语对白视频| 中国美白少妇内射xxxbb| 午夜激情久久久久久久| 极品少妇高潮喷水抽搐| 亚洲国产av影院在线观看| 性色av一级| 纵有疾风起免费观看全集完整版| 精品少妇内射三级| 深夜精品福利| 丰满迷人的少妇在线观看| 久久婷婷青草| 国产精品国产三级国产av玫瑰| 婷婷成人精品国产| 中文欧美无线码| 51国产日韩欧美| 日本-黄色视频高清免费观看| 久久ye,这里只有精品| 中文字幕免费在线视频6| 波野结衣二区三区在线| 一级毛片 在线播放| 成人无遮挡网站| 久久久久久久亚洲中文字幕| 国产福利在线免费观看视频| 欧美少妇被猛烈插入视频| 另类精品久久| av有码第一页| 色吧在线观看| 国产成人aa在线观看| 高清视频免费观看一区二区| 最黄视频免费看| 国产1区2区3区精品| 免费黄频网站在线观看国产| av.在线天堂| 久久ye,这里只有精品| 晚上一个人看的免费电影| 最近中文字幕2019免费版| 国产精品人妻久久久影院| 国产无遮挡羞羞视频在线观看| 精品人妻熟女毛片av久久网站| 18禁裸乳无遮挡动漫免费视频| 蜜桃国产av成人99| 久久99蜜桃精品久久| 一级黄片播放器| 美女脱内裤让男人舔精品视频| 久久精品久久精品一区二区三区| 18禁国产床啪视频网站| www.熟女人妻精品国产 | 免费av中文字幕在线| 韩国高清视频一区二区三区| 国产极品天堂在线| 少妇熟女欧美另类| 欧美日韩成人在线一区二区| 国产精品一二三区在线看| 91午夜精品亚洲一区二区三区| 婷婷色综合www| 久久久久久久久久人人人人人人| xxxhd国产人妻xxx| 国产欧美亚洲国产| 黄色毛片三级朝国网站| 国产免费现黄频在线看| 日韩欧美精品免费久久| videosex国产| 国产免费视频播放在线视频| videosex国产| 最后的刺客免费高清国语| 免费av不卡在线播放| 国产成人a∨麻豆精品| av有码第一页| 精品卡一卡二卡四卡免费| 国产精品.久久久| 高清不卡的av网站| 色94色欧美一区二区| 91精品伊人久久大香线蕉| 国产一区二区激情短视频 | 一级黄片播放器| 成人毛片60女人毛片免费| av不卡在线播放| 狠狠婷婷综合久久久久久88av| 国产成人a∨麻豆精品| 精品酒店卫生间| 91在线精品国自产拍蜜月| 成年人免费黄色播放视频| 看免费av毛片| 国产免费现黄频在线看| 国语对白做爰xxxⅹ性视频网站| 性高湖久久久久久久久免费观看| 看免费av毛片| 90打野战视频偷拍视频| 人妻人人澡人人爽人人| av.在线天堂| 我要看黄色一级片免费的| 九九在线视频观看精品| 欧美国产精品va在线观看不卡| 亚洲成人av在线免费| 亚洲成人手机| 狠狠婷婷综合久久久久久88av| av国产久精品久网站免费入址| 日本黄色日本黄色录像| 精品少妇内射三级| 欧美日韩一区二区视频在线观看视频在线| 成人无遮挡网站| 99视频精品全部免费 在线| 午夜老司机福利剧场| 一级毛片黄色毛片免费观看视频| 午夜老司机福利剧场| 插逼视频在线观看| 亚洲精品日本国产第一区| 成人毛片60女人毛片免费| 丝袜脚勾引网站| 人成视频在线观看免费观看| 欧美成人午夜精品| 五月伊人婷婷丁香| 自线自在国产av| 菩萨蛮人人尽说江南好唐韦庄| 久久人人97超碰香蕉20202| 亚洲美女视频黄频| 亚洲av在线观看美女高潮| 七月丁香在线播放| 日韩电影二区| 成人漫画全彩无遮挡| 日韩成人伦理影院| 啦啦啦中文免费视频观看日本| 99国产精品免费福利视频| 人人妻人人添人人爽欧美一区卜| 日本黄色日本黄色录像| 精品国产国语对白av| 香蕉丝袜av| 在线 av 中文字幕| 亚洲av中文av极速乱| 97人妻天天添夜夜摸| 日本-黄色视频高清免费观看| 日日摸夜夜添夜夜爱| 亚洲欧美成人精品一区二区| 爱豆传媒免费全集在线观看| 婷婷成人精品国产| 一级,二级,三级黄色视频| 热re99久久国产66热| 久热这里只有精品99| 国产精品成人在线| 女性被躁到高潮视频| 看十八女毛片水多多多| 制服人妻中文乱码| 国产精品久久久av美女十八| 日本午夜av视频| 亚洲国产色片| 久久久久久久久久久免费av| 欧美少妇被猛烈插入视频| 丁香六月天网| 欧美人与性动交α欧美精品济南到 | 亚洲精品美女久久久久99蜜臀 | 国产黄色视频一区二区在线观看| 国产高清不卡午夜福利| 欧美精品国产亚洲| 亚洲国产精品一区三区| 日本爱情动作片www.在线观看| 国产精品蜜桃在线观看| 蜜臀久久99精品久久宅男| 丝袜脚勾引网站| 一级片免费观看大全| 老司机影院成人| 亚洲成人av在线免费| 国产免费一区二区三区四区乱码| 亚洲精品美女久久久久99蜜臀 | 91精品伊人久久大香线蕉| 亚洲精品美女久久久久99蜜臀 | 精品国产国语对白av| 80岁老熟妇乱子伦牲交| 在线观看三级黄色| 国产亚洲av片在线观看秒播厂| 99香蕉大伊视频| 国产无遮挡羞羞视频在线观看| 男女下面插进去视频免费观看 | 十八禁网站网址无遮挡| 男女高潮啪啪啪动态图| 亚洲国产毛片av蜜桃av| 一区二区av电影网| 韩国高清视频一区二区三区| 久久免费观看电影| 亚洲国产最新在线播放| 亚洲国产日韩一区二区| 久久久久人妻精品一区果冻| 一级爰片在线观看| 精品久久久久久电影网| 中文字幕制服av| 男女边摸边吃奶| 亚洲精品日本国产第一区| 欧美日韩综合久久久久久| 国国产精品蜜臀av免费| 伊人亚洲综合成人网| 国产亚洲午夜精品一区二区久久| 妹子高潮喷水视频| 交换朋友夫妻互换小说| av电影中文网址| 亚洲经典国产精华液单| 亚洲精品久久午夜乱码| 97超碰精品成人国产| 国产精品三级大全| 男人添女人高潮全过程视频| 99久久中文字幕三级久久日本| 晚上一个人看的免费电影| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久久久精品电影小说| 免费高清在线观看日韩| av在线播放精品| 高清视频免费观看一区二区| 男女高潮啪啪啪动态图| 日韩欧美一区视频在线观看| 各种免费的搞黄视频| 老女人水多毛片| 亚洲国产精品专区欧美| 高清在线视频一区二区三区| 一区二区av电影网| 九九爱精品视频在线观看| 一区在线观看完整版| 蜜桃国产av成人99| 男人操女人黄网站| 激情视频va一区二区三区| 午夜av观看不卡| 香蕉精品网在线| 两性夫妻黄色片 | 亚洲伊人色综图| 亚洲美女视频黄频| 精品99又大又爽又粗少妇毛片| 丝袜人妻中文字幕| 久久精品夜色国产| 日韩av在线免费看完整版不卡| 国内精品宾馆在线| 精品熟女少妇av免费看| 亚洲综合精品二区| 大话2 男鬼变身卡| 国产精品嫩草影院av在线观看| 老司机影院毛片| 国产成人a∨麻豆精品| 久久女婷五月综合色啪小说| 黄色毛片三级朝国网站| 精品酒店卫生间| 久久青草综合色| 色5月婷婷丁香| 在线观看国产h片| 国产不卡av网站在线观看| 激情五月婷婷亚洲| 另类亚洲欧美激情| 久久ye,这里只有精品| 亚洲精华国产精华液的使用体验| 国产激情久久老熟女| 欧美97在线视频| 一级a做视频免费观看| 午夜免费观看性视频| 九色成人免费人妻av| av在线老鸭窝| xxx大片免费视频| 免费人成在线观看视频色| 午夜久久久在线观看| 秋霞伦理黄片| 狂野欧美激情性xxxx在线观看| 欧美变态另类bdsm刘玥| 中国国产av一级| 免费在线观看完整版高清| 人人澡人人妻人| 免费大片黄手机在线观看| 91精品伊人久久大香线蕉| 亚洲经典国产精华液单| 丝袜美足系列| 欧美日韩综合久久久久久| 卡戴珊不雅视频在线播放| 亚洲经典国产精华液单| 午夜91福利影院| 国产av码专区亚洲av| 亚洲欧美清纯卡通| 高清黄色对白视频在线免费看| av不卡在线播放| 亚洲av欧美aⅴ国产| 秋霞在线观看毛片| 91国产中文字幕| 啦啦啦啦在线视频资源| 日本av免费视频播放| 三上悠亚av全集在线观看| 各种免费的搞黄视频| 国产探花极品一区二区| 亚洲欧美中文字幕日韩二区| 少妇被粗大猛烈的视频| 国产av一区二区精品久久| 国产免费一区二区三区四区乱码| 男女啪啪激烈高潮av片| 乱人伦中国视频| 久久影院123| 日本-黄色视频高清免费观看| 激情视频va一区二区三区| 中国三级夫妇交换| 人妻 亚洲 视频| 9色porny在线观看| 大陆偷拍与自拍| 天堂俺去俺来也www色官网| 国产成人91sexporn| 国产日韩欧美在线精品| 狂野欧美激情性xxxx在线观看| 国产在线免费精品| 亚洲五月色婷婷综合| 99久久中文字幕三级久久日本| kizo精华| 国产亚洲精品久久久com| 免费观看a级毛片全部| 久久这里有精品视频免费| videossex国产| 精品人妻偷拍中文字幕| 国产无遮挡羞羞视频在线观看| 欧美日韩精品成人综合77777| 国产欧美日韩一区二区三区在线| 日韩制服骚丝袜av| 国产xxxxx性猛交| 免费av中文字幕在线| 亚洲国产精品999| 久久韩国三级中文字幕| 免费观看在线日韩| 在线免费观看不下载黄p国产| 国产精品成人在线| 黑人巨大精品欧美一区二区蜜桃 | 午夜精品国产一区二区电影| 99热网站在线观看| 亚洲精品久久成人aⅴ小说| 国产综合精华液| 亚洲成人av在线免费| 人妻少妇偷人精品九色| 制服诱惑二区| 精品亚洲成a人片在线观看| 少妇的逼好多水| 久久久久久久久久成人| 亚洲国产最新在线播放| 日韩av不卡免费在线播放| 欧美成人精品欧美一级黄| 国产欧美另类精品又又久久亚洲欧美| 成年女人在线观看亚洲视频| 9色porny在线观看|