• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Self-similarity of spanwise rotational motions’ population trends in decelerating open-channel flow

    2022-08-26 07:42:44PngZhngYnhongDunQingZhongDnxunLiShngfYngJingHuWnjiLi

    Png Zhng , Ynhong Dun , Qing Zhong , ,, Dnxun Li , Shngf Yng , Jing Hu ,Wnji Li

    a National Engineering Research Center for Inland Waterway Regulation, Chongqing Jiaotong University, Chongqing 40 0 074, China

    b State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 10 0 084, China

    c College of Water Resources & Civil Engineering, China Agricultural University, Beijing 10 0 083, China

    d Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System in China Agricultural University,Beijing 10 0 083, China

    e Key Laboratory of Ministry of Education for Hydraulic and Water Transport Engineering, Chongqing Jiaotong University, Chongqing 40 0 074, China

    Keywords:Self-similarity Population trends Spanwise rotational motions Decelerating open-channel flow Equilibrium flow

    ABSTRACT Decelerating open-channel flow is a type of flow that gradually moves forward with decreasing velocity and increasing water depth. Although all flow parameters change along the streamwise direction,previous studies have revealed that these parameters’ vertical distributions at different sections can be universally described with a single profile when being nondimensionalised by appropriate scales. This study focuses on the population trends of spanwise rotational motions at various sections along the main flow direction by particle imaging velocimetry (PIV) measurement. The wall-normal population distributions of density, radius, swirling strength, and convection velocity of the prograde and retrograde motions show similar trends in uniform open-channel flows. The dimensionless representation is invariant along the main flow direction. This study’s results indicate the self-similar characteristic of population trends of spanwise rotational motions prevails in decelerating open-channel flow.

    Decelerating open-channel flows are commonly encountered in natural streams and engineering canals [1–4] . For example, a reservoir provides a typical decelerating open-channel flow in the backwater region ( Fig. 1 ). Due to the dam’s blocking, the flow gradually moves forward with decreasing velocity and increasing water depth along the main flow direction. Compared with uniform flows, decelerating flows exhibit more complicated flow structure and sediment transport characteristics due to rising water depth and reducing surface slope, averaged section velocity, and averaged bed shear stress along the streamwise direction [5–7] .

    Despite their complexity, most decelerating open-channel flows can be considered in equilibrium flow conditions, i.e., there exists a unique profile invariant along the main flow direction [ 5 , 8 ].Previous studies have revealed that decelerating equilibrium flows maintain self-similar mean flow characteristics at different sections along the main flow direction irrespective of flow parameters, e.g.,flow velocity and water depth [8–11] . As shown by Kironoto and Graf [10] and Song and Chiew [8] , the vertical distributions of mean velocity, turbulence intensity, and Reynolds stress in various sections along the main flow direction can be universally described by a single profile when being non dimensionalised by appropriate scales (such as cross-sectional mean velocity, maximum velocity in the profile or bed-shear stress). The self-similarity characteristics of Reynolds shear stress and turbulence intensities were also confirmed by Yang and Chow [12] in their experimental results. Recently, Pu et al. [13] proposed exponential equations for turbulence intensities and Reynolds stress with the equilibrium pressure gradient parameter.

    Fig. 1. Sketch of decelerating open-channel flow upstream of a reservoir ( J, H, U , and u * represent water surface slope, water depth, depth-averaged velocity, and friction velocity, respectively).

    While the self-similar distributions of mean velocity, turbulence intensity, and Reynolds stress have been confirmed, a natural question arises of whether the coherent structures in different sections along the main flow direction in the decelerating open-channel flow exhibit similar self-similarities. It is generally known that different types of coherent structures play essential roles in determining mean flow, stress, and other statistical properties in other uniform wall-bounded turbulence [14–17] . The spanwise rotational motions, which rotate around the spanwise direction, are typical coherent structures that attract great concern [18–20] . The inherent momentum transportation role of these spanwise rotational motions can give rise to ejection (the fluctuating streamwise velocityu′<0 and wall-normal velocityv′>0, called Q2 event) and sweep events (u′>0 andv′<0, called Q4 event), which have been demonstrated to carry a large amount of turbulent kinetic energy and Reynolds stress [ 17 , 21 ], and therefore indicate the vital contributions of these spanwise rotational motions to the turbulence statistics [22] .

    The population characteristics of spanwise rotational motions(e.g., core size, orientation, density, and convection velocity) have been extensively studied in boundary layer [ 23 , 24 ], closed channel[ 25 , 26 ], and (uniform) open-channel flows [27] . However, they are still to be quantified in decelerating open-channel flows. Furthermore, it remains unclear whether these spanwise rotational motions’ population trends in decelerating open-channel flows exhibit similar self-similar characteristics along the main flow direction as the documented self-similarities for the mean flow quantities.The present research provides experimental evidence for the selfsimilar population trends of spanwise rotational motions in decelerating open-channel flow by particle imaging velocimetry (PIV)experiments.

    The experiments were performed in a recirculating openchannel flume with dimensions of 28 m long, 0.56 m wide, and 0.7 m deep. The flume has glass beds and sidewalls, allowing flexible arrangements for PIV measurement. Three 5 × 5 cm grids at the flume entrance removed possible large-scale flow structures and facilitated quick flow development. An electromagnetic flowmeter and seven ultrasonic level sensors monitor the flow and water depth along the flume. The streamwise and wall-normal directions are denoted byxandy, respectively. Details of the flume and its characteristics can be found in Zhang et al. [28] .

    Instantaneous velocity fields were measured using a homemade PIV system in thex–yplanes. The flow was seeded with hollow glass particles, with a mean diameter of 10 μm and a density of 1.03 g/cm3. A continuous-wave laser (10 W) with a Powell lens produced a 1 mm-thick light sheet for illumination. The experiment used a 2560 × 1920 pixels CMOS camera configured with a Nikon 50 mm f/1.8 D lens for image acquisition. Particle images were analysed using the iterative multigrid image deformation method [29] . Test results of the PIV algorithm can be found in a report of the 4th International PIV Challenge (under the symbol TsU, K?hler et al. [30] ).

    Figure 2 shows the experimental steady decelerating openchannel flow with a bed slope of 2.5 mm per meter, which maintains uniform flow conditions in the near-entrance region with a water depth of 30 mm and transits to gradually varied flow at about 12 m from the entrance. Measurements were carried out at four test sections, i.e., S1, S2, S3, and S4, along the streamwise direction, with 9 m, 17 m, 20 m, and 25 m from the entrance, respectively. The flow remains steady during the whole experiment.The details of the test flow condition are listed in Table 1 .

    The sampling frequency was set to 1 Hz to ensure statistical independence between successive flow fields to analyse the population trends of the prograde/retrograde motions. Frame exposure time was fixed at 400 μs to compromise between minimising image streaking and maximising image brightness. The time interval between the two frames in an image pair was adequately determined to be 1.25 ms. The parameters of PIV interrogation are listed in Table 2 . The PIV final interrogation window size of the four sections is different. Due to the friction velocity of decelerating open-channel flow changes along the main flow direction, the consistency of inner-scaled vector spacing in the streamwise (or wall-normal) direction at four sections can be ensured by using different sizes of the final interrogation window. The background subtraction, windows deformation, and vector validation algorithm of the PIV system can be found in Zhang et al. [28] .

    Analysing spanwise rotational motions’ characteristics necessitates identifying and extracting rotational motions from instantaneous velocity fields. A popular rotational motion identification method involves swirling strength,λci, the imaginary part of the local velocity-gradient tensor’s complex eigenvalue, as a valid rotational motion indicator [31] . The instantaneous fluctuating spanwise vorticity (ωz) is commonly used to indicate the rotation sense of a spanwise rotational motion [ 19 , 25 , 32 , 33 ]:

    whereΛci<0 represents a prograde motion with clockwise rotation, andΛci>0 illustrates a retrograde one with counterclockwise rotation.

    To simplify the determination of a universal threshold, Wu and Christensen [25] recommended normalisingΛciwith its root-mean-square to eliminate its wall-normal non-uniformity. As shown by Chen et al. [27] , an improvement could be further made by separate accounting for prograde and retrograde motions as follows:

    Fig. 2. Sketch of flow direction profile ( X denotes the distance from flume entrance).

    Table 1 Flow Conditions. a

    Table 2 PIV interrogation parameters. a

    Fig. 4. Velocity profiles are normalised by the local depth-averaged velocity ( a ), normalised turbulence intensities, and Reynolds stress profiles ( b ).

    Figure 3 shows a realisation of the identified rotational motions in an instantaneous velocity field with the procedures proposed by Chen et al. [27] . The red and blue colour-filled contours represent retrograde and prograde motions, respectively. Localised Galilean decomposition (taking the streamwise velocity at the centre of the rotational motion as convection velocity) was used to visualise these rotational motions (see black (prograde motions) and orange (retrograde motions) vectors in Fig. 3 b–e). This local decomposition confirms that all regions of non-zeroΛciare indeed associated with closed streamline patterns, as mentioned in Wu and Christensen [25] .

    Verifying the equilibrium condition in the current decelerating open-channel flow was done by plotting the velocity profiles,u/U(Uis the depth-averaged velocity), againsty/H, as shown in Fig. 4 (a). Moreover, Fig. 4 b shows the wall-normal distributions of Reynolds normal stress (τxxorτyy) and Reynolds shear stress (τxy)normalised by each depth-averaged value (<>represent depthaveraged of the wall-normal distribution profiles). The present research provides experimental evidence for the self-similar population trends of density, radii, swirling strength, and convection velocity of spanwise rotational motions in decelerating open-channel flow. The depth-averaged value has perfect statistical stability and convergence for the dimensionless parameters of different characteristics.

    It can be seen that the self-similarity characteristic is evident in equilibrium along the entire measured sections despite some insignificant deviations in the near-surface region of velocity profiles( Fig. 4 a) and Reynolds stress profiles ( Fig. 4 b). The value ofu*/Umaxat each section remains constant at 0.04, in agreement with the results by Kironoto and Graf [10] , which further supports that the experimental flow is in equilibrium condition.

    Following Wu and Christensen [25] , the population density of prograde (retrograde) rotational motions,Πp(r)(y), is defined as the ensemble-averaged number of prograde (retrograde) spanwise rotational motions,Np(r)(y), whose centres reside inΔy×Lx(streamwise field of view) rectangle centred aty:

    To investigate the self-similar trends, the population density,Πp(r)(y), is further normalised by the local depth-averaged value,<Np(r) (y)>.

    Figure 5 shows the normalised population densities of prograde and retrograde rotational motions in decelerating open-channel flow. The profiles at different sections overlap, which is a strong manifestation of similar tends to vary sections along the main flow direction. Moreover, the results of uniform open-channel flow,closed channel flow, and turbulent boundary layer are also included for comparison (see closed symbols in Fig. 5 ). Figure 5 a shows that the vertical population trends of prograde rotations under different flow conditions are similar, gradually decreasing with increasingy/H. The vertical distribution characteristics of prograde and retrograde rotations in the decelerating open-channel flow are some similarities to those in the uniform open-channel flow but different from that in closed channel flow and turbulent boundary layer (as shown in Fig. 5 b), which can be plausibly attributed to the potential free surface effect in open-channel flows.

    As shown in Fig. 3 , a spanwise rotational motion can be circular, elliptical, or irregular. Its core area,A, is determined using the region-growing algorithm proposed by Gao et al. [26] . According to the method, a single vortex structure with only one peak point can be obtained. Therefore, the area of the vortex structure is a product of several points in the vortex region and a quarter of the area of the PIV final interrogation window. Based on averaging over prograde and retrograde motions, respectively, the equivalent radius is calculated as follows,

    For illustrating the self-similarity,Rp(r)(y) is also normalised with the local depth-averaged value,<Rp(r)(y)>. Figure 6 shows the normalised radii of prograde and retrograde rotational motions in decelerating open-channel flow, respectively.

    Again, similar characteristic prevails in different sections as the profiles overlap. There exists a very slight decreasing trend in Fig. 6 a (prograde motions) and 6 b (retrograde motions). These wall-normal trends indicate that the population radii of prograde and retrograde rotational motions are insensitive toy/H. Moreover,the results of uniform open-channel flow from Chen et al. [27] are also included for comparison. The normalised radii of prograde and retrograde rotational motions in decelerating open-channel flow are more homogenised along the depth direction than those in the uniform open-channel flow.

    Rotational motion strength,Λp(r)(y), is calculated based on conditional averaging over instantaneous swirling strength in each rotational motion core. Similarly, standardization is performed against local depth-averaged strength in each section.

    From Fig. 7 , one can see relatively similar vertical distributions among different sections. For both prograde ( Fig. 7 a) and retrograde ( Fig. 7 b) spanwise rotational motions,Λp(r) (y)/<Λp(r) (y)>shows a monotonically decreasing trend withy/Hin all sections.Similar to the difference observed in the radii characteristics between decelerating and uniform open-channel flows (see Fig. 6 ),the wall-normal trends of the normalized swirling strength in decelerating open-channel flow are also more homogenized than those in uniform open-channel flow. The homogenised characteristic of decelerating open-channel flow may be due to decreasing streamwise velocity and increasing water depth and the positive wall-normal velocity, which increases the mixing effect of spanwise rotational motions in the wall-normal direction.

    Fig. 5. Normalized population densities of prograde ( a ) and retrograde rotational motions ( b ). Open symbols are the results of current decelerating open-channel flows.Closed symbols are results of other flow types from the literature: uniform open-channel (OCF530 and OCF1060 from Chen et al. [27] , OCF1300 from Zhong et al. [32] );closed channel (CCF1185), and turbulent boundary layer (TBL1400) from Wu and Christensen [25] . The following numbers in these legends denote the friction Reynolds number.

    Fig. 6. Normalized radii of prograde ( a ) and retrograde ( b ) rotational motions. Uniform open-channel results denoted with closed symbols (OCF530 and OCF1060 with the subsequent number indicating the friction Reynolds number) are from Chen et al. [27] .

    Fig. 7. Normalized swirling strength of prograde ( a ) and retrograde rotational motions ( b ). Uniform open-channel results denoted with closed symbols (OCF530 and OCF1060 with the subsequent number indicating the friction Reynolds number) are from Chen et al. [27] .

    By taking the instantaneous streamwise/wall-normal velocity at the core position as the instantaneous streamwise /wall-normal convection velocity for a given spanwise rotational motion, a conditional average can be further used to obtain the vertical distributions of the mean streamwise convection velocity,Ucp(r)(y), upward wall-normal convection velocity,Vcpu(ru)(y), and downward wall-normal convection velocity,Vcpd(rd)(y). Standardisation is performed against the depth-averaged value in each section. The results are shown in Figs. 8 –10 .

    Fig. 8. Normalised streamwise convection velocities of prograde ( a ) and retrograde motions ( b ). Uniform open-channel results (OCF880 with the subsequent number indicating the friction Reynolds number) are from Zhong et al. [32] .

    Fig. 9. Normalised wall-normal convection velocities of prograde motions: ( a ) Upward; ( b ) Downward.

    Fig. 10. Normalised wall-normal convection velocities of retrograde motions: ( a ) Upward; ( b ) Downward.

    One can see that all convection velocity components show apparent similarity among different sections. The streamwise convection velocities of both prograde ( Fig. 8 a) and retrograde ( Fig. 8 b)motions increase monotonically withy/Hin all sections along with the water depth. Moreover, the results of streamwise convection velocity of rotational motions in uniform open-channel flow from Zhong et al. [32] are also cited, represented by a solid line in the figures. It can be seen that the vertical distributions of streamwise convection velocity of spanwise rotational motions in decelerating open-channel flow are very close to those in the uniform openchannel flow. In contrast, the wall-normal convection velocities for both prograde and retrograde motions, either upward ( Figs. 9 a and 10 a) or downward ( Figs. 9 b and 10 b), decrease monotonically withy/Hin all sections. No noticeable difference between prograde and retrograde motions can be seen. The downward motion seems to be slightly faster than the upward one.

    The above analysis indicates that, when normalised against local depth-averaged value, the wall-normal distributions of density,size, strength, and velocity for spanwise rotational motions show no noticeable difference among the four sections. Self-similar characteristics seem to prevail independently of the distances from the flume entrance. That is plausibly due to the self-similar formation mechanism of coherent structures, which has been widely used in turbulence models [34] . For instance, Adrian et al. [35] proposed that the growing hairpins are consistent with the attached eddy hypothesis. The linear growth rate of the hairpins in a packet supports their self-similarity features. While the self-similarity of coherent structures has long been verified in different flow types,more work needs to be done for the decelerating open-channel flow considered here.

    In decelerating open-channel flows, spanwise rotational motions prevail in different sections along the main flow direction.Major parameters of the spanwise rotational motions, e.g., density,size, strength, and convection velocity, change as the flow proceeds. However, when normalized with the local depth-averaged value, the difference diminishes among different test sections. Several self-similar trends remain unchanged when the flow advances.These trends include the following findings.

    (1) The population densities decrease gradually for prograde motions but increase for retrograde motions along with the water depth except in the near-surface region.

    (2) The radii are insensitive toy/Hwhile the swirling strength decreases withy/H.

    (3) The population streamwise convection velocities, increase withy/H, and wall-normal convection velocity shows the opposite trend.

    Declaration of Competing Interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The study is financially supported by the National Natural Science Foundation of China (Grant No. 51679020 ) and the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202100731).

    国内精品美女久久久久久| 欧美一区二区精品小视频在线| 麻豆成人午夜福利视频| 午夜免费激情av| 午夜精品在线福利| 别揉我奶头~嗯~啊~动态视频| 美女cb高潮喷水在线观看| 赤兔流量卡办理| 久久久精品大字幕| 国内久久婷婷六月综合欲色啪| 欧美色欧美亚洲另类二区| 美女cb高潮喷水在线观看| 男女视频在线观看网站免费| 最近中文字幕高清免费大全6 | av.在线天堂| 久久久久免费精品人妻一区二区| 美女被艹到高潮喷水动态| 日韩欧美国产在线观看| 国产精品一区二区免费欧美| 午夜福利成人在线免费观看| 九九爱精品视频在线观看| 在线播放国产精品三级| 最近最新中文字幕大全电影3| 给我免费播放毛片高清在线观看| 欧美激情在线99| 日韩欧美免费精品| 色哟哟·www| 嫩草影院精品99| 成人特级av手机在线观看| 国产亚洲91精品色在线| 少妇人妻一区二区三区视频| 国产高潮美女av| 久久精品人妻少妇| 悠悠久久av| 亚洲中文字幕一区二区三区有码在线看| 中文字幕av成人在线电影| 亚洲国产精品sss在线观看| 成人国产麻豆网| 久久久久久伊人网av| 美女黄网站色视频| 色吧在线观看| 久久久成人免费电影| 日本精品一区二区三区蜜桃| 亚洲av免费在线观看| 国产一区二区在线av高清观看| 亚洲性夜色夜夜综合| 俄罗斯特黄特色一大片| 日本免费a在线| 天天躁日日操中文字幕| 日本 欧美在线| 国产精华一区二区三区| 亚洲人与动物交配视频| 国产单亲对白刺激| 蜜桃亚洲精品一区二区三区| 黄色丝袜av网址大全| 国产精品久久电影中文字幕| 久久久久精品国产欧美久久久| 成人一区二区视频在线观看| 国产亚洲精品综合一区在线观看| 色综合色国产| 老熟妇仑乱视频hdxx| 波多野结衣高清无吗| 久久久久久九九精品二区国产| 午夜影院日韩av| 在线观看一区二区三区| 欧美日本亚洲视频在线播放| 国产精品,欧美在线| 色综合站精品国产| 少妇裸体淫交视频免费看高清| 色精品久久人妻99蜜桃| 亚洲人与动物交配视频| 日本在线视频免费播放| 99热这里只有是精品50| 91麻豆av在线| 99热这里只有是精品在线观看| 乱系列少妇在线播放| a在线观看视频网站| 搡老妇女老女人老熟妇| www.www免费av| 在现免费观看毛片| 亚洲成a人片在线一区二区| 亚洲不卡免费看| 又黄又爽又刺激的免费视频.| 91在线观看av| 黄色配什么色好看| 中文亚洲av片在线观看爽| 日韩中文字幕欧美一区二区| 日日啪夜夜撸| 国产蜜桃级精品一区二区三区| 久久久久久国产a免费观看| 一级毛片久久久久久久久女| 国产成人影院久久av| 嫩草影院入口| 熟女人妻精品中文字幕| 成人鲁丝片一二三区免费| 亚洲美女搞黄在线观看 | 国产亚洲欧美98| 亚洲图色成人| 国产亚洲精品av在线| 女同久久另类99精品国产91| 欧美又色又爽又黄视频| www日本黄色视频网| 亚洲精品国产成人久久av| 亚洲精华国产精华精| 给我免费播放毛片高清在线观看| 在线免费观看不下载黄p国产 | ponron亚洲| 久久精品夜夜夜夜夜久久蜜豆| 最近最新中文字幕大全电影3| 亚洲精品456在线播放app | 国产精品福利在线免费观看| 国产伦精品一区二区三区视频9| a级毛片a级免费在线| 俄罗斯特黄特色一大片| 噜噜噜噜噜久久久久久91| 国产高清视频在线观看网站| 免费不卡的大黄色大毛片视频在线观看 | 美女黄网站色视频| a级毛片免费高清观看在线播放| 一个人免费在线观看电影| 99riav亚洲国产免费| 日本撒尿小便嘘嘘汇集6| 国内久久婷婷六月综合欲色啪| 午夜免费男女啪啪视频观看 | 中文字幕av在线有码专区| 色综合婷婷激情| 国产伦在线观看视频一区| 日韩大尺度精品在线看网址| 黄色丝袜av网址大全| 国产大屁股一区二区在线视频| 成年女人毛片免费观看观看9| 91精品国产九色| 欧美极品一区二区三区四区| 日韩欧美在线二视频| 天堂网av新在线| 欧美绝顶高潮抽搐喷水| av在线蜜桃| 久久这里只有精品中国| 美女xxoo啪啪120秒动态图| 国产精华一区二区三区| 美女高潮的动态| 赤兔流量卡办理| av天堂中文字幕网| 亚洲欧美日韩无卡精品| 五月玫瑰六月丁香| 亚洲黑人精品在线| 午夜激情福利司机影院| av专区在线播放| 免费观看的影片在线观看| 在现免费观看毛片| 午夜久久久久精精品| 成人高潮视频无遮挡免费网站| 日本黄大片高清| 国产三级在线视频| 高清日韩中文字幕在线| 精品乱码久久久久久99久播| 国产精品日韩av在线免费观看| 国产高清有码在线观看视频| 国产麻豆成人av免费视频| 如何舔出高潮| 久久久久久久久中文| 全区人妻精品视频| 久久精品91蜜桃| 国产精品综合久久久久久久免费| 黄色女人牲交| 国产伦人伦偷精品视频| 国产亚洲精品久久久com| 亚洲男人的天堂狠狠| 午夜视频国产福利| 亚洲国产高清在线一区二区三| 日本色播在线视频| 国产成年人精品一区二区| 男女之事视频高清在线观看| 美女 人体艺术 gogo| 国产又黄又爽又无遮挡在线| 欧美激情久久久久久爽电影| 人妻夜夜爽99麻豆av| 婷婷六月久久综合丁香| 在线观看一区二区三区| 在线观看一区二区三区| 国产私拍福利视频在线观看| 久久精品影院6| 91久久精品国产一区二区三区| 欧美在线一区亚洲| 午夜精品在线福利| 中文字幕免费在线视频6| 国产亚洲精品综合一区在线观看| 国产熟女欧美一区二区| 免费不卡的大黄色大毛片视频在线观看 | 亚洲性久久影院| 一进一出抽搐gif免费好疼| 草草在线视频免费看| а√天堂www在线а√下载| 国产精品美女特级片免费视频播放器| 久久人妻av系列| 免费av不卡在线播放| 国产女主播在线喷水免费视频网站 | 18禁黄网站禁片午夜丰满| 国产单亲对白刺激| 天堂网av新在线| 免费av不卡在线播放| 国产精品福利在线免费观看| 亚洲国产欧美人成| www.www免费av| 色av中文字幕| 久久久久免费精品人妻一区二区| 1000部很黄的大片| 无人区码免费观看不卡| 日本在线视频免费播放| 国产亚洲精品av在线| 亚洲欧美日韩无卡精品| 女人十人毛片免费观看3o分钟| 精品99又大又爽又粗少妇毛片 | 男女视频在线观看网站免费| 乱码一卡2卡4卡精品| 99久久久亚洲精品蜜臀av| 中文字幕熟女人妻在线| 午夜福利成人在线免费观看| 国产精品亚洲一级av第二区| 国产国拍精品亚洲av在线观看| 中文字幕精品亚洲无线码一区| 日韩国内少妇激情av| 男女做爰动态图高潮gif福利片| 一本久久中文字幕| 赤兔流量卡办理| 五月伊人婷婷丁香| 午夜免费激情av| 国产在线男女| 日韩中字成人| 日韩高清综合在线| 欧美潮喷喷水| 日韩人妻高清精品专区| 女生性感内裤真人,穿戴方法视频| 国产欧美日韩一区二区精品| 久久久国产成人精品二区| 欧美绝顶高潮抽搐喷水| 国产男靠女视频免费网站| 久久久久久久午夜电影| 亚洲最大成人手机在线| 日日摸夜夜添夜夜添小说| 色在线成人网| 夜夜爽天天搞| 欧美一级a爱片免费观看看| 看免费成人av毛片| 精品一区二区免费观看| 久久久色成人| 国产精品不卡视频一区二区| 国产精品av视频在线免费观看| 精品欧美国产一区二区三| 啦啦啦韩国在线观看视频| 我的老师免费观看完整版| 日韩欧美三级三区| 给我免费播放毛片高清在线观看| 欧美高清成人免费视频www| 黄片wwwwww| 久久久色成人| 欧美+日韩+精品| 我的女老师完整版在线观看| 国产美女午夜福利| 国产精品一区二区三区四区免费观看 | 91午夜精品亚洲一区二区三区 | 国产高清不卡午夜福利| 香蕉av资源在线| 男女视频在线观看网站免费| 一卡2卡三卡四卡精品乱码亚洲| 日本成人三级电影网站| 精品久久国产蜜桃| 亚洲欧美精品综合久久99| 日本黄色视频三级网站网址| 露出奶头的视频| 欧洲精品卡2卡3卡4卡5卡区| 成人av一区二区三区在线看| 精品免费久久久久久久清纯| 亚洲av成人精品一区久久| 婷婷精品国产亚洲av在线| 天天躁日日操中文字幕| 国产激情偷乱视频一区二区| 美女免费视频网站| 毛片女人毛片| 亚洲欧美日韩高清在线视频| 又紧又爽又黄一区二区| 成年女人永久免费观看视频| 91麻豆av在线| 两个人的视频大全免费| 男女之事视频高清在线观看| 99热这里只有是精品50| av天堂在线播放| 国产亚洲精品久久久com| 亚洲性久久影院| 五月玫瑰六月丁香| 别揉我奶头~嗯~啊~动态视频| 国产色爽女视频免费观看| 亚洲精品亚洲一区二区| 午夜亚洲福利在线播放| 国内精品宾馆在线| 九九爱精品视频在线观看| 中文字幕高清在线视频| 久久精品91蜜桃| 久久这里只有精品中国| а√天堂www在线а√下载| 国产美女午夜福利| 国产精品一区二区免费欧美| 99久久久亚洲精品蜜臀av| 女生性感内裤真人,穿戴方法视频| 99热这里只有是精品在线观看| 亚洲av五月六月丁香网| 男女做爰动态图高潮gif福利片| 中亚洲国语对白在线视频| 亚洲国产精品久久男人天堂| 亚洲中文字幕日韩| 亚洲av免费在线观看| 久久午夜亚洲精品久久| 最近最新中文字幕大全电影3| 欧美最新免费一区二区三区| 国产精品一及| 可以在线观看的亚洲视频| 日本一本二区三区精品| 午夜福利在线在线| videossex国产| 联通29元200g的流量卡| 精品久久久久久,| 亚洲av一区综合| 特大巨黑吊av在线直播| 国产午夜精品论理片| 国产伦精品一区二区三区视频9| 18禁裸乳无遮挡免费网站照片| 精品国内亚洲2022精品成人| 色哟哟哟哟哟哟| 中文字幕熟女人妻在线| 成年免费大片在线观看| 色5月婷婷丁香| 黄色女人牲交| 99精品久久久久人妻精品| 久久久久久久亚洲中文字幕| 身体一侧抽搐| 黄色视频,在线免费观看| 男人狂女人下面高潮的视频| 99视频精品全部免费 在线| 久久久久久国产a免费观看| 亚洲一区高清亚洲精品| 日韩,欧美,国产一区二区三区 | 日本与韩国留学比较| 丝袜美腿在线中文| 欧美高清成人免费视频www| 99国产极品粉嫩在线观看| 久久亚洲真实| 99精品在免费线老司机午夜| 人人妻人人澡欧美一区二区| 最近视频中文字幕2019在线8| 国产精品一区www在线观看 | 亚洲美女视频黄频| 日韩亚洲欧美综合| 久久久久免费精品人妻一区二区| 男人舔女人下体高潮全视频| 嫁个100分男人电影在线观看| 国产伦精品一区二区三区四那| 97碰自拍视频| 久久久久久久精品吃奶| 国产精品一区二区免费欧美| 久久欧美精品欧美久久欧美| 亚洲av熟女| 又爽又黄a免费视频| 男女啪啪激烈高潮av片| 国产精品久久久久久av不卡| 精品久久久久久久久久免费视频| 神马国产精品三级电影在线观看| 嫩草影院新地址| 成人美女网站在线观看视频| 久久久午夜欧美精品| 91久久精品国产一区二区成人| 成人精品一区二区免费| 免费在线观看影片大全网站| 亚洲aⅴ乱码一区二区在线播放| 九九爱精品视频在线观看| 久久精品91蜜桃| 亚洲av熟女| 免费av观看视频| 天堂动漫精品| 欧洲精品卡2卡3卡4卡5卡区| 亚洲 国产 在线| www.www免费av| a级一级毛片免费在线观看| avwww免费| 日韩 亚洲 欧美在线| 国语自产精品视频在线第100页| 国产一区二区激情短视频| 日韩欧美在线二视频| 亚洲专区中文字幕在线| 亚洲精华国产精华精| 国产亚洲精品av在线| 国产私拍福利视频在线观看| 亚洲欧美激情综合另类| 精品福利观看| 国产精品女同一区二区软件 | 国产不卡一卡二| 国产精品嫩草影院av在线观看 | 亚洲精品粉嫩美女一区| 九色国产91popny在线| 丰满的人妻完整版| 亚洲国产精品久久男人天堂| 美女大奶头视频| 亚洲欧美激情综合另类| 欧美+亚洲+日韩+国产| 精品人妻熟女av久视频| 不卡一级毛片| 久久久久久久精品吃奶| 18+在线观看网站| 一进一出好大好爽视频| 美女高潮的动态| 亚洲国产高清在线一区二区三| 嫩草影院精品99| 最近最新中文字幕大全电影3| 国产精品福利在线免费观看| a在线观看视频网站| 国产欧美日韩精品一区二区| 久久精品久久久久久噜噜老黄 | 熟女人妻精品中文字幕| 伊人久久精品亚洲午夜| 亚洲一级一片aⅴ在线观看| 简卡轻食公司| 日本熟妇午夜| 国国产精品蜜臀av免费| 精品日产1卡2卡| 国产一区二区三区视频了| 91在线精品国自产拍蜜月| 中文在线观看免费www的网站| av天堂在线播放| 日本 欧美在线| 小蜜桃在线观看免费完整版高清| 国产私拍福利视频在线观看| 在线看三级毛片| 免费观看在线日韩| 精品免费久久久久久久清纯| 免费在线观看日本一区| 亚洲美女视频黄频| 无人区码免费观看不卡| 日韩中文字幕欧美一区二区| 少妇裸体淫交视频免费看高清| 成人综合一区亚洲| 午夜福利欧美成人| 国产成人av教育| 夜夜看夜夜爽夜夜摸| 午夜亚洲福利在线播放| 最新在线观看一区二区三区| 久久精品国产亚洲av涩爱 | 99精品在免费线老司机午夜| 精品国产三级普通话版| 久久99热6这里只有精品| 99久久九九国产精品国产免费| 变态另类丝袜制服| 成年免费大片在线观看| 我的老师免费观看完整版| 欧美激情在线99| 日日摸夜夜添夜夜添av毛片 | 日本三级黄在线观看| 人人妻,人人澡人人爽秒播| 国产精华一区二区三区| 黄色配什么色好看| 精品久久国产蜜桃| 尤物成人国产欧美一区二区三区| 久久精品人妻少妇| 国产精华一区二区三区| 亚洲欧美日韩东京热| 久久精品影院6| 亚洲av电影不卡..在线观看| 人人妻,人人澡人人爽秒播| 国产精品一区www在线观看 | 日本一二三区视频观看| 亚洲最大成人中文| 欧美性感艳星| 欧美潮喷喷水| 我的女老师完整版在线观看| 成人特级av手机在线观看| 真实男女啪啪啪动态图| 日韩中字成人| 欧美色欧美亚洲另类二区| 91久久精品电影网| 毛片女人毛片| 一级黄色大片毛片| 69人妻影院| 亚洲精华国产精华液的使用体验 | 欧美潮喷喷水| 日日撸夜夜添| 一卡2卡三卡四卡精品乱码亚洲| 此物有八面人人有两片| av女优亚洲男人天堂| 日本-黄色视频高清免费观看| 女人十人毛片免费观看3o分钟| 国产亚洲精品av在线| 国产黄a三级三级三级人| 观看免费一级毛片| 少妇丰满av| 老司机午夜福利在线观看视频| 国产男靠女视频免费网站| 成年人黄色毛片网站| 成人精品一区二区免费| 免费电影在线观看免费观看| 亚洲avbb在线观看| 91av网一区二区| 欧美丝袜亚洲另类 | 国内揄拍国产精品人妻在线| 午夜福利成人在线免费观看| 日本黄大片高清| 一级毛片久久久久久久久女| 国产亚洲精品综合一区在线观看| 舔av片在线| 波多野结衣巨乳人妻| АⅤ资源中文在线天堂| 国内精品久久久久精免费| 国产成年人精品一区二区| 亚洲天堂国产精品一区在线| 精品国产三级普通话版| 女的被弄到高潮叫床怎么办 | 成人二区视频| 精华霜和精华液先用哪个| 亚洲欧美精品综合久久99| 精品久久久久久久久亚洲 | 2021天堂中文幕一二区在线观| 乱系列少妇在线播放| 久久精品人妻少妇| 乱系列少妇在线播放| 亚洲 国产 在线| 成人性生交大片免费视频hd| 欧美一区二区精品小视频在线| 久久久久性生活片| 国产av在哪里看| 亚洲成a人片在线一区二区| 日日啪夜夜撸| 欧美3d第一页| 美女免费视频网站| 一卡2卡三卡四卡精品乱码亚洲| 一级a爱片免费观看的视频| 欧美成人免费av一区二区三区| 亚洲国产精品sss在线观看| 性欧美人与动物交配| 精品久久久久久,| 欧美成人免费av一区二区三区| 欧美日韩精品成人综合77777| 亚洲精品456在线播放app | xxxwww97欧美| 亚洲精品一区av在线观看| 国产视频内射| 色噜噜av男人的天堂激情| 国产aⅴ精品一区二区三区波| 亚洲av成人av| 午夜日韩欧美国产| 亚洲av熟女| 欧美三级亚洲精品| 一进一出抽搐动态| 亚洲欧美日韩无卡精品| 久久久久精品国产欧美久久久| 久久精品影院6| 亚洲性久久影院| 欧美xxxx黑人xx丫x性爽| 亚洲成人久久性| 最新在线观看一区二区三区| 国产高清激情床上av| av黄色大香蕉| 深夜精品福利| 成人综合一区亚洲| 91久久精品国产一区二区三区| 久久久久久久久中文| 欧美性感艳星| 日韩国内少妇激情av| 最近最新免费中文字幕在线| 国内精品美女久久久久久| 日本撒尿小便嘘嘘汇集6| 国产午夜精品久久久久久一区二区三区 | 国产一区二区亚洲精品在线观看| 熟妇人妻久久中文字幕3abv| 亚洲精品久久国产高清桃花| ponron亚洲| 国产精品久久久久久久久免| 99久久中文字幕三级久久日本| 波多野结衣巨乳人妻| 女人十人毛片免费观看3o分钟| 亚洲第一区二区三区不卡| aaaaa片日本免费| 男女下面进入的视频免费午夜| 午夜精品一区二区三区免费看| 99九九线精品视频在线观看视频| h日本视频在线播放| 别揉我奶头~嗯~啊~动态视频| 精品人妻视频免费看| 乱码一卡2卡4卡精品| 露出奶头的视频| 国产黄片美女视频| 成人性生交大片免费视频hd| 精华霜和精华液先用哪个| 日本一本二区三区精品| 乱人视频在线观看| 变态另类成人亚洲欧美熟女| 一进一出抽搐动态| 少妇丰满av| 日日夜夜操网爽| 69人妻影院| 色哟哟哟哟哟哟| 成年女人毛片免费观看观看9| 久久久久久久久久黄片| 小蜜桃在线观看免费完整版高清| 超碰av人人做人人爽久久| 亚洲最大成人中文| videossex国产| 99久久久亚洲精品蜜臀av| 国内精品久久久久久久电影| 午夜福利欧美成人| 亚洲天堂国产精品一区在线| 免费高清视频大片| 午夜日韩欧美国产| 校园人妻丝袜中文字幕| 国产精品1区2区在线观看.| 国产精华一区二区三区| 国产乱人视频| 国产单亲对白刺激| 热99在线观看视频|