• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Clustering solver for displacement-based numerical homogenization

    2022-08-26 07:42:44ShoqingTngXiZhu

    Shoqing Tng , , Xi Zhu

    HEDPS, CAPT and LTCS, College of Engineering, Peking University, Beijing 100871, China

    Keywords:Clustering Finite element method Numerical homogenization

    ABSTRACT Based on strain-clustering via k -means, we decompose computational domain into clusters of possibly disjoint cells. Assuming cells in each cluster take the same strain, we reconstruct displacement field.We further propose a new way to condensate the governing equations of displacement-based finite element method to reduce the complexity while maintain the accuracy. Numerical examples are presented to illustrate the efficiency of the clustering solver. Numerical convergence studies are performed for the examples. Avoiding complexities which is common in existing clustering analysis methods, the proposed clustering solver is easy to implement, particularly for numerical homogenization using commercial softwares.

    Finite element method (FEM) represents a prevailing methodology for numerical explorations in many scientific and engineering disciplines [1] . While being superior in capturing details and complexities of geometrical structures and material properties, it often results in immense algebraic system, which greatly challenges computing and memory resources, and sometimes even becomes prohibitive. In a rather sharp contrast, only a much smaller amount/aspect of data are extracted and presented for a number of practical applications. One such example is numerical homogenization.

    The goal of homogenization is to predict responses under loading and unloading for material of given structure. Only accounting for the composition ratio, some analytical approaches, such as Voigt/Reuss/Hashin-Shtrikman bounds and Mori-Tanaka theory,provide quick and explicit answer in the linear elastic regime [2,3] .To get a more accurate prediction and for a larger regime of interest, numerical homogenization is performed usually by FEM at the expense of fine resolution for constituents. To alleviate the heavy computing cost thereby caused, model reduction strategies have been proposed, such as transformation field analysis (TFA),non-uniform transformation field analysis (NTFA), proper generalized decomposition (PGD), etc. One decomposes the state variables into modes, and predicts the average behaviours based on such decompositions[ 4–6 ]. More recently, Liu et al [ 7 ]. proposed a novel data-driven model reduction strategy called self-consistent clustering analysis (SCA). Afterwards, other clustering analysis methods have been developed, including virtual clustering analysis (VCA)[8] , FEM-based clustering analysis (FCA) [9] , and Hashin-Shtrikman type finite element method (HSFE) [10] . For more studies along this line, please refer to Refs. [11,12] .

    As pointed out in Ref. [8] , the key assumption “once respond similarly, always similarly” enables a domain decomposition and therefore the model reduction. Behind this is the observation that strain and stress, not the displacement, are intrinsic quantities for the material. In an off-line stage, detailed numerical simulations for one or several selected loadings form a database of strain, with which clustering is performed via k-means or self-organizing map(SOM). This domain decomposition, unlike traditional ones, yields a prescribed number of clusters, each consisting disjoint finite element cells. In another word, we take a Lebesgue point of view instead of a Riemannian one.

    The second key idea is a weak form of governing system, using a reference material of homogeneous linear elasticity. The true material response is substituted by a body force in terms of stress polarization. As the linear reference problem with body force is readily solved with Green’s functions, this leads to an integral Lippmann-Schwinger equation. Under the above assumption of constant strain in each cluster, numerical discretization gives a system of discrete Lippmann-Schwinger equation in much reduced degrees of freedom (only a multiple of cluster numbers). Substantially enhanced efficiency is then gained in the online prediction stage.

    The reference material property determines an interaction tensor (discrete Green’s operator), representing the influence across different clusters. Accurate evaluation of the interaction tensor is expensive, as it involves operations in the order of a power of the finite element cell number. In such a computation with already substantial reduction compared with the original FEM, we found that the evaluation dominates the CPU time in off-line stage, and is much longer than the online prediction. In view of this, fast evaluation was proposed to alleviate the heavy load through coarsening,which further improves considerably the efficiency [13] . Moreover,the choice of reference material property affects numerical homogenization results through boundary terms, though rather weakly in the elastic regime [14] . One either uses a self-consistent iteration or adaptively adjusts Young’s modulus, both with additional cost.

    In this letter, we use strain clustering strategy for domain decomposition, and condensate the displacement formulation of finite element analysis. In this way, we avoid the empirical or iterative choice of reference material, the derivation of Lippmann-Schwinger equation, and the expensive evaluation of interaction tensor. Last but not least, as displacement formulation is most commonly used in commercial softwares, this allows a fast and easy implementation for our clustering solver.

    The whole idea is to express the displacement through constant strain over each cluster. Then the stiffness matrix is transformed to that for clusterwise strain. In the following, we shall first describe such a construction in one and two space dimension(s). Then we form the governing algebraic system for the clusterwise strain. Finally, we describe several numerical examples and make some discussions.

    By definition, strain is the symmetrized gradient of displacement.

    Under this assumption, we reconstruct the displacement field. It is emphasized thatεI(I= 1,2,···,k)are taken as the main variables in the algebraic system formulated below.

    In one space dimension, strain is a scalar and we denote it asε. In thei-th interval, by integration we may readily get

    In a rectangular domain [0,Lx] ×[0,Ly] , displacement may be obtained through

    Here the boundary termsu(0,y),v(x,0)are chosen according to the loading/boundary conditions. If appropriately chosen,εxyevaluated from the displacement field automatically satisfies the consistency condition Eq. (6) , and should comply with the given strain field.

    Numerically, we construct piecewise linear displacement field in(i1,i2)-th cell, centered at(xi1-1/2,yi2-1/2)=((i1 -1 / 2)Δx,(i2 -1 / 2)Δy), as follows.

    First along the liney=yi2, we take the mean strain on its two sides, then integrate inxdirection to get forx∈ [xi1-1,xi] ,

    The partial derivativevx(xi1-1/2,yi2-1/2)may be computed accordingly, which together with Eq. (11) forms the shear strainεxy.We take the cluster average ofεxyto define the clusterwise shear strain, and reassign it to all cells of this cluster. This step does not make any difference to the effective modulus in the linear elastic regime. But when nonlinearity appears, this averaging and reassignment step is suggested.

    Notice thatu(0,yi2),v(xi1,0)may be adjusted to comply with the loading conditions. However, we choose them to be 0 in the following numerical examples for simplicity.

    The expressions are similar for three space dimensions.

    Fig. 1. Numerical example in one space dimension. a Strain and 8 clusters; b Displacement; c Stress; d Relative error with k = 4 , 8 , 16 , 32 , 64 .

    In displacement-based FEM, the governing algebraic system is composed of equations for boundary conditions, and those for energy minimization. The latter is the major part, which may lead to a large system in general, hence becomes the target for model reduction.

    For the sake of clarity, here we formulate explicitly the reduced governing system only in one space dimension. Extensions to multiple dimensions are straightforward. In this case, a typical displacement formulation with minimization reads

    As usual, we denote U =(u1,u2,···,uN)Tcollecting all nodal displacements (except the assigned 0 displacement atx0 = 0 ). The discrete form for minimization yields

    Here D corresponds to the gradient operator, leading to a rank deficiency in K . The linear system therefore is supplemented by boundary conditions to be uniquely solvable. For instance, it can be

    We formally denote such condition(s) as BU = ~ b, and add it to Eq. (14) as a penalty to get a full-ranked system

    whereαis a large number.

    The reconstruction relates displacement with the clusterwise strain X =(ε1,ε2,···,εk)T. The linear reconstruction may be expressed in terms of a matrix P such that U = PX . Substituting this into the minimization problem we get a reduced system

    This comes from the minimization of a discrete energy

    We illustrate the proposed method by two numerical examples,in one and two space dimension(s), respectively.

    Fig. 2. Material structure in two space dimensions: Each unitary square grid takes a dimension 15 ×15 , no-mark grids stand for matrix, marked ones stand for two types of inclusions.

    Example 1

    Applying a strain ˉε= 0.05 , i.e.,u(-1)= 0,u(3)= 0.2 , the analytical solution gives ˉσ= 0.015 . The numerically solved strain with 8 clusters is displayed in Fig. 1 a. We may reconstruct the displacement out of this clusterwise strain, which is piecewise linear and plotted in Fig. 1 b. With only 8 clusters (or 8 slopes), it very well reproduces the reference solution. The stress distribution corresponding to the piecewise constant strain is displayed in Fig. 1 c.We see fluctuations around the exact solutionσ= 0.015 . The average stress is 0.0151, amounting to a relative error of 0.64% . This is also the relative error for the effective elastic modulus. When we increase the number of clusters, prediction for the effective modulus becomes more accurate. In Fig. 1 d, we see a convergence at a rate 2.2955. Note that in VCA, the rate is 1.96.

    Example 2

    We consider a material in the domain [0,75] ×[0,75] . See Fig. 2 . The matrix takes Young’s modulusE1= 100 MPa and Poisson’s ratioν1= 0.3 . The two inclusions takeE2 = 500 MPa,ν2=0.19 andE3= 300 MPa,ν3= 0.25 in grids marked by 2 and 3, respectively.

    The boundary condition corresponding to a uniaxial extension is prescribed as

    TakingΔx=Δy= 1 , we perform FEM computation to get the reference solution. Then we cluster the 75 ×75 cells into three categories. We putk1= 40,k2= 16,k3= 4 clusters in the matrix and inclusion sub-domains, respectively. See Fig. 3 for the reference solution and clustering.

    Fig. 3. Example 2 computed by FEM: a Strain component ε 11 ; b Clustering with k 1 = 40 , k 2 = 16 , k 3 = 4 ; c Displacement u ; d Displacement v .

    Fig. 4. Example 2 computed by clustering solver ( k 1 = 40 , k 2 = 16 , k 3 = 4 ): a Strain component ε 11 ; b Stress component σ11 ; c Displacement u ; d Displacement v .

    The corresponding numerical results by the clustering solver is displayed in Fig. 4 . We observe a rather good agreement with the reference solution on the strain componentε11, which is the dominant one under such loading. Notice that the degrees of freedom is now less than 2% of the FEM algebraic system. The reconstructed displacementualso well reproduces the reference solution. The vertical one, which is in a much smaller magnitude,is not very well captured. This induces a certain amount of error in the stress field. Nevertheless, after averaging, it does not cause much problem in the numerical homogenization result. As a matter of fact, with the reference average stressσ11= 8.421546 MPa,σ22= 3.290498 MPa,σ12= 0.030550 MPa , the clustering solver givesσ11= 8.551933 MPa,σ22= 3.236085 MPa,σ12= 0.0 6 6151 MPa .Except for the shear stress, which is again rather small, the other two components take error below 1.7%.

    The numerical error may be further reduced if we increase the number of clusters. As a limiting case, if we assign a cluster for each cell, i.e., 75 ×75 clusters altogether,the numerical results amount toσ11= 8.375391 MPa,σ22=3.29030 6 MPa,σ12= 0.030 620 MPa , corresponding to relative error 0.55%,0.006%,0.23% , respectively. Such error stems from our numerical reconstruction and reformulation of the governing equations. It manifests the convergence of the proposed clustering solver.

    We remark that our preliminary numerical study suggests that enough of clusters should be assigned to the matrix to maintain the accuracy.

    In this letter, we propose an easy-to-implement approach for clustering analysis. Same as SCA and VCA, we use one set of well resolved strain data to cluster the FEM cells. By a simple reconstruction, the displacements may be expressed in terms of clusterwise strain. The governing system on such clusterwise strain reduces substantially the degrees of freedom, which is formulated through minimization. Preliminary numerical examples in one and two space dimension(s) illustrate the efficiency of the proposed clustering solver. In particular, convergence studies in both examples manifest the accuracy. The most distinct feature of this approach is its readiness to be implemented within commercial softwares. Without the complexities of forming interaction tensors and choosing suitable reference materials, the numerical cost is also much reduced.

    The potential application of this method are two-folded. First,it may be adopted for numerical homogenization, where the effective/average stress and strain are under consideration. Secondly, it may also serve as an upscaling strategy for solving the displacement (and therefore stress and strain) fields. The raw solution by reconstruction provides a good guess for iterative schemes to solve the original problem.

    This letter only illustrates the potential of the method. In fact,there are many aspects for further extensions and improvements.For one thing, the boundary condition for displacement reconstruction leaves a big room for better complying with true mechanical loading. That will enhance the stress field resolution as well.Meanwhile, with the provided numerical examples and previous experiences on clustering analysis, it is promising to predict effectively homogenization results for elasticity, hyper-elasticity, plasticity and large deformation problems[ 15 ]. These are our on-going research, and we shall report the results in future publications.

    Declaration of Competing Interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11832001, 11890681 and 11988102).

    av国产久精品久网站免费入址| 又爽又黄a免费视频| 国产乱来视频区| 久久久久网色| 午夜福利影视在线免费观看| 国产成人精品婷婷| 国产成人91sexporn| 极品人妻少妇av视频| 久久精品国产自在天天线| 国产精品福利在线免费观看| 成人毛片60女人毛片免费| 纵有疾风起免费观看全集完整版| 免费观看在线日韩| 99视频精品全部免费 在线| 大陆偷拍与自拍| 国产精品一区二区在线观看99| 国产在线免费精品| 亚洲国产日韩一区二区| 日本黄色日本黄色录像| 国产伦精品一区二区三区四那| 精品一品国产午夜福利视频| 亚洲av成人精品一区久久| 久久久a久久爽久久v久久| 少妇精品久久久久久久| 亚洲av成人精品一区久久| 久久久久久久亚洲中文字幕| 国产高清三级在线| 亚洲av成人精品一区久久| 老女人水多毛片| 啦啦啦啦在线视频资源| 老司机影院成人| 一区二区三区乱码不卡18| 18禁在线无遮挡免费观看视频| 亚洲婷婷狠狠爱综合网| 亚洲欧美日韩卡通动漫| 嫩草影院新地址| 久久ye,这里只有精品| 黑人高潮一二区| 亚洲国产av新网站| 免费观看a级毛片全部| 亚洲精品乱码久久久久久按摩| 午夜福利在线观看免费完整高清在| 国产黄片美女视频| 国产白丝娇喘喷水9色精品| 女性生殖器流出的白浆| 99re6热这里在线精品视频| 久久精品熟女亚洲av麻豆精品| 极品少妇高潮喷水抽搐| 午夜精品国产一区二区电影| a级毛色黄片| 老司机亚洲免费影院| 久久97久久精品| 久久青草综合色| 成人特级av手机在线观看| 国产亚洲91精品色在线| 亚洲美女视频黄频| 中文欧美无线码| 黄片无遮挡物在线观看| 2022亚洲国产成人精品| 久久精品国产亚洲av涩爱| 午夜影院在线不卡| 免费黄网站久久成人精品| 三级国产精品片| 亚洲欧美中文字幕日韩二区| 人人妻人人添人人爽欧美一区卜| 九色成人免费人妻av| 最新中文字幕久久久久| 99精国产麻豆久久婷婷| 人人妻人人爽人人添夜夜欢视频 | 新久久久久国产一级毛片| 新久久久久国产一级毛片| av黄色大香蕉| 极品少妇高潮喷水抽搐| 一级爰片在线观看| 观看免费一级毛片| 免费黄频网站在线观看国产| 大又大粗又爽又黄少妇毛片口| av不卡在线播放| 亚洲av免费高清在线观看| 99热全是精品| 狠狠精品人妻久久久久久综合| 欧美日韩亚洲高清精品| 久久久国产欧美日韩av| 亚洲成人手机| 少妇猛男粗大的猛烈进出视频| 亚洲精品日本国产第一区| 中文字幕制服av| 亚洲三级黄色毛片| 欧美人与善性xxx| 午夜福利在线观看免费完整高清在| 深夜a级毛片| 久久久久视频综合| 视频中文字幕在线观看| 日韩免费高清中文字幕av| 三级国产精品片| 国产免费又黄又爽又色| 大香蕉久久网| av在线观看视频网站免费| 啦啦啦在线观看免费高清www| 久久国产亚洲av麻豆专区| 在线观看www视频免费| 伊人久久精品亚洲午夜| 精品一区二区免费观看| 国产精品久久久久成人av| 国产免费又黄又爽又色| 国产黄色免费在线视频| 青青草视频在线视频观看| 嘟嘟电影网在线观看| h日本视频在线播放| 色婷婷av一区二区三区视频| 51国产日韩欧美| a级片在线免费高清观看视频| 国产精品无大码| 国产成人免费无遮挡视频| 久久精品国产亚洲av天美| 欧美区成人在线视频| 国产欧美另类精品又又久久亚洲欧美| 国产乱来视频区| 久久99热6这里只有精品| 国产在线男女| 国产极品粉嫩免费观看在线 | 在现免费观看毛片| 午夜免费男女啪啪视频观看| 日韩伦理黄色片| 国产在视频线精品| 99久久精品一区二区三区| 免费高清在线观看视频在线观看| 一区二区三区免费毛片| av视频免费观看在线观看| 日韩一本色道免费dvd| 久久影院123| 一级av片app| 亚洲成色77777| 黑人高潮一二区| 亚洲人与动物交配视频| 伊人久久精品亚洲午夜| 色吧在线观看| 国产亚洲一区二区精品| 99视频精品全部免费 在线| 少妇的逼好多水| 秋霞在线观看毛片| 大香蕉久久网| 久久久久视频综合| 国产精品久久久久久精品古装| 看十八女毛片水多多多| 国产成人精品婷婷| 狠狠精品人妻久久久久久综合| 国产有黄有色有爽视频| 亚洲国产精品一区三区| 91成人精品电影| 中文天堂在线官网| 校园人妻丝袜中文字幕| 国产色婷婷99| 国产一区二区在线观看日韩| 国产淫片久久久久久久久| 日韩在线高清观看一区二区三区| 七月丁香在线播放| 丝袜脚勾引网站| 国产精品不卡视频一区二区| 久久久久久伊人网av| 精品一区二区三区视频在线| 伦理电影大哥的女人| 精品午夜福利在线看| 亚洲精品成人av观看孕妇| 欧美激情极品国产一区二区三区 | 2018国产大陆天天弄谢| 欧美丝袜亚洲另类| 国产有黄有色有爽视频| 亚洲精品久久午夜乱码| 日韩一区二区视频免费看| 深夜a级毛片| 午夜福利影视在线免费观看| 国产探花极品一区二区| 啦啦啦在线观看免费高清www| 麻豆乱淫一区二区| 五月开心婷婷网| 国产男人的电影天堂91| 国产精品嫩草影院av在线观看| 人人妻人人看人人澡| 成人国产麻豆网| 女性被躁到高潮视频| a级片在线免费高清观看视频| 精品国产一区二区久久| 亚洲精品成人av观看孕妇| 久久久久久久久久久免费av| 一级片'在线观看视频| 欧美3d第一页| 久久99一区二区三区| 精品少妇久久久久久888优播| av黄色大香蕉| 男人舔奶头视频| 高清不卡的av网站| av专区在线播放| 最黄视频免费看| 中文字幕精品免费在线观看视频 | 精品视频人人做人人爽| 3wmmmm亚洲av在线观看| 男人爽女人下面视频在线观看| 人妻一区二区av| 七月丁香在线播放| 亚洲国产欧美日韩在线播放 | 建设人人有责人人尽责人人享有的| 女性生殖器流出的白浆| 亚洲情色 制服丝袜| 国产乱人偷精品视频| 男女边摸边吃奶| 黄色毛片三级朝国网站 | 久久精品久久精品一区二区三区| 观看免费一级毛片| 精华霜和精华液先用哪个| 五月天丁香电影| 精品少妇黑人巨大在线播放| 日本猛色少妇xxxxx猛交久久| 亚洲精品中文字幕在线视频 | 毛片一级片免费看久久久久| 人人妻人人看人人澡| 精品一区二区免费观看| 国产白丝娇喘喷水9色精品| 精品久久国产蜜桃| 亚洲精品乱码久久久v下载方式| 久久免费观看电影| 春色校园在线视频观看| 亚洲国产日韩一区二区| 成人18禁高潮啪啪吃奶动态图 | 赤兔流量卡办理| 少妇人妻 视频| av女优亚洲男人天堂| 欧美激情极品国产一区二区三区 | 97超视频在线观看视频| 国产91av在线免费观看| 国产黄频视频在线观看| 美女cb高潮喷水在线观看| 人人妻人人爽人人添夜夜欢视频 | 内地一区二区视频在线| 亚洲精品,欧美精品| av不卡在线播放| 亚洲欧美日韩东京热| 国产男女内射视频| 久久精品国产鲁丝片午夜精品| 日日啪夜夜撸| 老司机亚洲免费影院| av有码第一页| 又粗又硬又长又爽又黄的视频| 国产欧美日韩一区二区三区在线 | 亚洲精品国产色婷婷电影| av黄色大香蕉| 日韩不卡一区二区三区视频在线| 婷婷色av中文字幕| 这个男人来自地球电影免费观看 | 亚洲第一av免费看| 国产欧美日韩综合在线一区二区 | 男女免费视频国产| 性色avwww在线观看| 在线精品无人区一区二区三| 欧美少妇被猛烈插入视频| av线在线观看网站| av免费观看日本| 下体分泌物呈黄色| 欧美日韩一区二区视频在线观看视频在线| 久久韩国三级中文字幕| 日韩成人伦理影院| 狂野欧美激情性xxxx在线观看| 丁香六月天网| 精品国产一区二区久久| 如何舔出高潮| 日日啪夜夜撸| 狂野欧美激情性bbbbbb| 天天操日日干夜夜撸| 六月丁香七月| 性高湖久久久久久久久免费观看| 国产综合精华液| 精品一品国产午夜福利视频| 欧美精品国产亚洲| 丁香六月天网| 色婷婷av一区二区三区视频| 亚洲图色成人| 精品国产乱码久久久久久小说| 午夜激情福利司机影院| 日韩欧美 国产精品| 亚洲婷婷狠狠爱综合网| 国产精品.久久久| 日韩强制内射视频| 国产午夜精品一二区理论片| 高清av免费在线| av黄色大香蕉| 亚洲综合色惰| 欧美成人午夜免费资源| 免费播放大片免费观看视频在线观看| 亚洲国产欧美日韩在线播放 | 99久久人妻综合| 免费人妻精品一区二区三区视频| 午夜激情福利司机影院| 男女边摸边吃奶| 亚洲av免费高清在线观看| 人人妻人人澡人人爽人人夜夜| 国产综合精华液| av视频免费观看在线观看| 国产欧美另类精品又又久久亚洲欧美| 精品亚洲成国产av| 菩萨蛮人人尽说江南好唐韦庄| 超碰97精品在线观看| 天天躁夜夜躁狠狠久久av| 午夜老司机福利剧场| 国产成人freesex在线| 搡老乐熟女国产| 久久狼人影院| 亚洲内射少妇av| 少妇精品久久久久久久| 国产成人免费观看mmmm| 亚洲国产精品国产精品| 九九久久精品国产亚洲av麻豆| 晚上一个人看的免费电影| 婷婷色麻豆天堂久久| 五月天丁香电影| 全区人妻精品视频| 男男h啪啪无遮挡| 亚洲在久久综合| 在线观看国产h片| 日韩欧美一区视频在线观看 | 亚洲国产精品999| 亚洲欧洲日产国产| 欧美变态另类bdsm刘玥| 免费av中文字幕在线| 国产免费又黄又爽又色| 国产精品国产三级国产av玫瑰| 久久久久久人妻| 少妇人妻一区二区三区视频| 丝袜在线中文字幕| 观看av在线不卡| 在线观看www视频免费| 婷婷色麻豆天堂久久| 乱系列少妇在线播放| 三级国产精品欧美在线观看| 亚洲精品日本国产第一区| 你懂的网址亚洲精品在线观看| 少妇猛男粗大的猛烈进出视频| 日本黄色日本黄色录像| 免费观看无遮挡的男女| 久久久久久久久久久免费av| 久久午夜福利片| 国产成人精品福利久久| 中文字幕av电影在线播放| 免费看光身美女| 亚洲情色 制服丝袜| 91精品一卡2卡3卡4卡| 免费av中文字幕在线| 免费人成在线观看视频色| 爱豆传媒免费全集在线观看| 黄色欧美视频在线观看| 日韩av免费高清视频| 国产色婷婷99| 多毛熟女@视频| 久久精品熟女亚洲av麻豆精品| 大码成人一级视频| 男人添女人高潮全过程视频| 免费久久久久久久精品成人欧美视频 | 男的添女的下面高潮视频| 男人和女人高潮做爰伦理| 国产精品久久久久久久电影| 高清欧美精品videossex| 高清午夜精品一区二区三区| 最后的刺客免费高清国语| 免费av不卡在线播放| 毛片一级片免费看久久久久| 国产高清不卡午夜福利| 最后的刺客免费高清国语| 亚洲成人av在线免费| 在线观看免费高清a一片| 成人免费观看视频高清| 午夜老司机福利剧场| 精品国产露脸久久av麻豆| 一区二区三区乱码不卡18| 熟女电影av网| 热99国产精品久久久久久7| 国产免费福利视频在线观看| 精品人妻熟女av久视频| 欧美亚洲 丝袜 人妻 在线| 建设人人有责人人尽责人人享有的| 久久99精品国语久久久| 亚洲精品中文字幕在线视频 | 午夜激情福利司机影院| 91aial.com中文字幕在线观看| 性色av一级| 亚洲美女黄色视频免费看| 免费看av在线观看网站| 99热国产这里只有精品6| 热re99久久精品国产66热6| 国产成人精品久久久久久| 99久国产av精品国产电影| 国产欧美亚洲国产| 久久午夜综合久久蜜桃| 日韩成人伦理影院| 国产av国产精品国产| 国产成人精品福利久久| 最后的刺客免费高清国语| 全区人妻精品视频| 丝袜脚勾引网站| 男女啪啪激烈高潮av片| 麻豆精品久久久久久蜜桃| 91aial.com中文字幕在线观看| 国产精品久久久久久久久免| 草草在线视频免费看| 亚洲图色成人| 国产精品人妻久久久影院| 亚洲三级黄色毛片| 久久午夜综合久久蜜桃| 99热国产这里只有精品6| 国产深夜福利视频在线观看| 国产精品国产三级国产av玫瑰| 久久国产精品男人的天堂亚洲 | 成人黄色视频免费在线看| 亚洲av不卡在线观看| 国产极品粉嫩免费观看在线 | av视频免费观看在线观看| 久久久精品94久久精品| 亚洲在久久综合| 国产成人免费无遮挡视频| av天堂中文字幕网| 在现免费观看毛片| 2022亚洲国产成人精品| 久久久久久久大尺度免费视频| 一区二区av电影网| 国产免费又黄又爽又色| 噜噜噜噜噜久久久久久91| 国产伦在线观看视频一区| 国产av国产精品国产| 老司机影院毛片| 亚洲四区av| 22中文网久久字幕| 男人狂女人下面高潮的视频| 精品国产一区二区久久| 精品一区二区三卡| 欧美性感艳星| 成人免费观看视频高清| 日本欧美国产在线视频| 最新的欧美精品一区二区| 国产精品伦人一区二区| 极品人妻少妇av视频| 亚洲国产毛片av蜜桃av| 夫妻午夜视频| 日韩成人伦理影院| 国产精品久久久久久av不卡| 三级国产精品欧美在线观看| 建设人人有责人人尽责人人享有的| 婷婷色综合大香蕉| 久久久国产欧美日韩av| 男女国产视频网站| 欧美激情极品国产一区二区三区 | 在线观看美女被高潮喷水网站| 国产一区二区三区综合在线观看 | 黄色怎么调成土黄色| 亚洲成色77777| 高清欧美精品videossex| 国产成人精品久久久久久| 国产成人aa在线观看| 一区二区三区精品91| 中文字幕制服av| 色吧在线观看| 国产伦精品一区二区三区四那| 人人澡人人妻人| 少妇高潮的动态图| 在线 av 中文字幕| 啦啦啦在线观看免费高清www| 亚洲精品一区蜜桃| 少妇的逼好多水| 麻豆成人av视频| 99久久综合免费| 午夜福利在线观看免费完整高清在| 最近的中文字幕免费完整| 国产 一区精品| 乱人伦中国视频| 高清av免费在线| 国产成人一区二区在线| 国产免费一区二区三区四区乱码| 永久免费av网站大全| 国产精品一二三区在线看| 最黄视频免费看| tube8黄色片| 一级毛片电影观看| 国产精品.久久久| 日韩亚洲欧美综合| 91aial.com中文字幕在线观看| 乱人伦中国视频| 少妇的逼好多水| 欧美激情国产日韩精品一区| 国产在视频线精品| 久久99精品国语久久久| 日日啪夜夜爽| 久久久精品94久久精品| 看十八女毛片水多多多| 中文乱码字字幕精品一区二区三区| 一区二区三区精品91| 久久精品国产a三级三级三级| 亚洲内射少妇av| 国产探花极品一区二区| 大香蕉97超碰在线| 亚洲欧美精品专区久久| 十八禁高潮呻吟视频 | 免费大片黄手机在线观看| 国语对白做爰xxxⅹ性视频网站| 在线观看av片永久免费下载| 久久久久久久国产电影| 日韩av免费高清视频| 精品人妻熟女毛片av久久网站| 夜夜骑夜夜射夜夜干| 国产极品天堂在线| 亚洲av在线观看美女高潮| 精品久久国产蜜桃| 国产精品.久久久| 久久久久精品性色| 日韩伦理黄色片| 国产色婷婷99| av在线播放精品| 男女免费视频国产| 亚洲国产欧美日韩在线播放 | 国产成人一区二区在线| 午夜福利影视在线免费观看| 亚洲精品,欧美精品| 极品少妇高潮喷水抽搐| 久久午夜综合久久蜜桃| 人体艺术视频欧美日本| 人妻系列 视频| 亚洲国产av新网站| 免费看不卡的av| 美女福利国产在线| 精品人妻偷拍中文字幕| 性色av一级| 97超视频在线观看视频| 国产精品99久久久久久久久| 我要看黄色一级片免费的| 亚洲真实伦在线观看| videos熟女内射| 丰满迷人的少妇在线观看| 最近中文字幕2019免费版| 国产精品国产三级国产专区5o| 久久久久久伊人网av| 亚洲欧美成人精品一区二区| 能在线免费看毛片的网站| 免费高清在线观看视频在线观看| 丁香六月天网| 综合色丁香网| 国产成人精品无人区| 欧美 日韩 精品 国产| 国产成人精品婷婷| 五月开心婷婷网| 最近2019中文字幕mv第一页| 精品久久久久久电影网| 欧美老熟妇乱子伦牲交| 高清欧美精品videossex| 国产一区二区三区av在线| 亚洲国产毛片av蜜桃av| 最近中文字幕高清免费大全6| 亚洲av日韩在线播放| 亚洲av不卡在线观看| 精品久久国产蜜桃| 欧美最新免费一区二区三区| 少妇熟女欧美另类| 丰满人妻一区二区三区视频av| 日韩在线高清观看一区二区三区| 亚洲欧美清纯卡通| 亚洲美女黄色视频免费看| 精品久久久噜噜| 人人妻人人添人人爽欧美一区卜| 高清黄色对白视频在线免费看 | 国产成人精品婷婷| 成人免费观看视频高清| 久久人人爽人人片av| 18禁裸乳无遮挡动漫免费视频| 一个人看视频在线观看www免费| 美女cb高潮喷水在线观看| 国产熟女午夜一区二区三区 | 这个男人来自地球电影免费观看 | 国产成人精品无人区| 国产爽快片一区二区三区| av一本久久久久| 美女脱内裤让男人舔精品视频| 免费看av在线观看网站| 2018国产大陆天天弄谢| .国产精品久久| 日本黄色片子视频| 亚洲av福利一区| 国产精品.久久久| 免费在线观看成人毛片| 日韩中文字幕视频在线看片| 黄色配什么色好看| 亚洲欧美一区二区三区国产| 99热网站在线观看| 国产伦在线观看视频一区| 国产乱来视频区| 爱豆传媒免费全集在线观看| 岛国毛片在线播放| 秋霞在线观看毛片| av又黄又爽大尺度在线免费看| 久久久久国产网址| 99热6这里只有精品| 女人精品久久久久毛片| 99re6热这里在线精品视频| 国产精品一区www在线观看| 美女国产视频在线观看| 人人妻人人爽人人添夜夜欢视频 | 国产av码专区亚洲av| 国产无遮挡羞羞视频在线观看| 2018国产大陆天天弄谢| 久久久久久久久久人人人人人人| 天堂俺去俺来也www色官网| 又粗又硬又长又爽又黄的视频| 人人妻人人澡人人爽人人夜夜| 丰满饥渴人妻一区二区三| 精品午夜福利在线看| 人人妻人人澡人人爽人人夜夜| 妹子高潮喷水视频| 2018国产大陆天天弄谢| 国产av精品麻豆| 久久久久久久大尺度免费视频| 噜噜噜噜噜久久久久久91|