• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Policy-Based Group Signature Scheme from Lattice

    2022-08-24 07:03:22YongliTangYuanhongLiQingYeYingLiandXiaojunWang
    Computers Materials&Continua 2022年8期

    Yongli Tang,Yuanhong Li,Qing Ye,*,Ying Li and Xiaojun Wang

    1School of Computer Science and Technology,Henan Polytechnic University,Jiaozuo,454000,China

    2School of Electronic Engineering,Dublin City University,Dublin 9,Ireland

    Abstract: Although the existing group signature schemes from lattice have been optimized for efficiency,the signing abilities of each member in the group are relatively single.It may not be suitable for complex applications.Inspired by the pioneering work of Bellare and Fuchsbauer,we present a primitive called policy-based group signature.In policy-based group signatures,group members can on behalf of the group to sign documents that meet their own policies,and the generated signatures will not leak the identity and policies of the signer.Moreover,the group administrator is allowed to reveal the identity of signer when a controversy occurs.Through the analysis of application scenarios,we concluded that the policy-based group signature needs to meet two essential security properties:simulatability and traceability.And we construct a scheme of policy-based group signature from lattice through techniques such as commitment,zero-knowledge proof,rejection sampling.The security of our scheme is proved to be reduced to the module short integer solution(MSIS)and module learning with errors(MLWE)hard assumptions.Furthermore,we make a performance comparison between our scheme and three lattice-based group signature schemes.The result shows that our scheme has more advantages in storage overhead and the sizes of key and signature are decreased roughly by 83.13%,46.01%,respectively,compared with other schemes.

    Keywords: Group signature;policy-based signature;lattice-based cryptography;zero-knowledge proof

    1 Introduction

    1.1 Policy-Based Signature

    Policy-based signature(PBS)is a novel concept of digital signature,which was proposed by Bellare et al.[1]at PKC 2014.PBS requires that signer can only sign documents that satisfy certain policy conditions.The users that do not satisfy the policy conditions cannot possess the ability of legitimate signers,and the signatures will not leak the identity and policy of signers.In [1]introduced two strong security notions:simulatability and extractability.The simulatability means that a legitimate signature is indistinguishable from a simulated signature,which is generated by a signature simulator that does not need signing key or policy;the extractability means that there is an extractor,which is able to extract information of policy and identity from a legitimate signature,but cannot extract from forged signatures generated by an attacker.The simulatability and extractability are strong forms of indistinguishability,and unforgeability respectively according to [1].With the two security notions,PBS will be effectively applied in hierarchical environment.For instance,in an enterprise,the authority expects that the employees in different departments or positions to have different signing abilities.Specifically,the employees in research department can only sign documents related to the research,and employees in finance department can only sign documents related to the finance.In 2016,Cheng et al.[2]constructed a scheme of PBS from lattice assumptions based on a zero-knowledge argument system and Bonsai tree.

    1.2 Group Signature

    Group signatures (GS) was proposed by Chaum et al.[3],which is an important cryptographic primitive.In GS,legitimate group members can represent the group to sign documents anonymously(anonymity);and the group administrator is allowed to open a signature by the tracking key to obtain the identity of signer(traceability).Due to the two properties of anonymity and traceability,GS can be applied in a variety of scenarios,such as e-commerce systems,trusted computing platforms,electronic voting,and much more.

    In recent years,with the breakthroughs in quantum research,GS schemes based on hard assumptions of lattice have attracted the attention of scholars.In 2010,Gordon et al.[4]designed the first GS scheme from lattice in random oracle model(ROM)by the technology of GPV trapdoor,as well as the anonymity and traceability of the scheme can be reduced to the hard assumptions of learning with errors(LWE)and GapSVP respectively.But the storage overhead of keys and signature of their scheme is relatively large,which is linear with the number of group members.In 2013,Laguillaumie et al.[5]constructed a GS scheme with logarithmic size based on the non-interactive zero-knowledge proof of knowledge(NIZKPoK)under the hard assumptions of short integer solution(SIS)and LWE.Since then,a series of GS from lattice based on NIZKPoK have been proposed[6-10],and their storage cost has reached logarithmic size.Later,the constant-size GS are constructed by Ling et al.[11]and Zhang et al.[12].The former is based on the“confined guessing”technique of Ducas et al.signature scheme[13];and the latter uses a compact and scalable identity-encoding technique.Their schemes make the storage cost of keys and signatures independent of the number of group members.However,the NIZKPoK in the above GS schemes needs enough parallel repetition during execution due to its soundness error.This will cause a large cost of parameter and time so that the size of the keys and signature is still large,although it is independent of the number of group members.Therefore,Pino et al.[14]designed a new zero-knowledge proof protocol based on the signature scheme of[15]under the hard assumptions of MSIS and MLWE.Since this protocol limits the size of the message and challenge space,it has a smaller cost of parameter and time compared to other zero-knowledge proof protocols.The GS scheme based on this protocol also has more advantages in the storage overhead of the key and signature.Similarly,Boschini et al.[16]constructed a floppy-sized GS scheme by relaxed zero-knowledge proofs under the hard assumptions of ring short integer solution (RSIS) and ring learning with errors (RLWE).In 2019,a GS scheme without NIZK from lattice was designed by Katsumata et al.[17],but this construction requires a combination of attribute-based encryption and signatures.In 2020,Sun et al.[18]and Canard et al.[19]designed an improved scheme based on[17].In conclusion,with the deepening of research in the field of GS from lattice,the size of GS has been effectively reduced.However,the above GS schemes from lattice are just be applied in the scenarios where the signing capabilities of the group members are relatively consistent.However,the different signing capabilities of each group member are necessary for the GS scheme in actual scenarios,i.e.,enterprises involving multiple departments,electronic voting for multiple regions,and much more.Therefore,GS requires a new primitive to be suitable for more extensive scenarios.

    1.3 Our Contributions

    In this work,we will define a concept of policy-based group signature(PBGS)based on previous work.Consider the following simple situation:Alice,Bob and Carol are employees of a company.The former two are from the research department and the latter is from the finance department.The authority of the company wants to develop a policy,which Alice,Bob and Carol are only allowed to sign documents that only related to their own department.At the same time,the signatures they generate can represent the company,and the identity of the signer will not be leaked.But if one day a document related to the research department causes a dispute(assuming Bob is the actual signer),the administrator of the company should be allowed to recover the identity of the signer(Bob)by the tracking key.In the above case,Alice,Bob and Carol are required to have different signing capabilities.Thus,the previous GS are not suitable.However,for PBGS,the authority wishes that Alice,Bob and Carol will be distributed signing keys and policies related to the department so that their signing capabilities will differ depending on the policy.The group member will not be able to sign when his policy does not satisfy some relationship with the document to be signed(unforgeability);Alice,Bob,Caro,or other outsiders of the company are unable to know the identity of the signer from a signature(simulatability).Even if given a signature related to the finance department,of which Carol is the only one employee,Carol is still anonymous due to the distribution of policies is a secret.The identity of the signer will be recovered through the PBGS administrator by the tracking key (traceability).In conclusion,the PBGS scheme in the application scenario needs to meet the following security requirements:simulatability,unforgeability and traceability.However,according to the definition of[20],unforgeability is unnecessary for GS because traceability has implied unforgeability.The same is true for the extractability defined in PBS.Therefore,we have extracted two security properties for PBGS:simulatability and traceability.With the above two security properties,PBGS will be applied in a wide range of fields.In addition to the enterprises involving multiple departments,the application of PBGS also includes hierarchical electronic voting for multiple regions,digital copyright management,and much more[21-23].

    We show a construction of policy-based group signatures from lattice for the above primitive of PBGS,and it can resist the attacks of existing quantum algorithms.Our scheme satisfies the simulatability and full traceability in ROM under the security model of PBGS defined in Section 3.2.And the simulatability and full traceability are proved to be reduced to MLWE and MSIS assumptions,respectively.In terms of efficiency analysis,our scheme is compared with the three schemes of GS from lattice[11,16,17]in storage overhead.The analysis results show that the storage costs of our scheme are totally independent of the number of group members.The size of the key and signature are of order.Specifically,the size of the signature under a set of practical parameters is decreased roughly by 46.01%on average compared to the schemes of[11,16,17].And the size of keys also decreased roughly by 83.13%.

    1.4 Our Techniques

    At a high level,our PBGS scheme follows a template similar but not identical to the conventional GS defined by Bellare et al.[20].In conventional GS,the public key,master key and traceability key are generated during the setup phase.But for PBGS,the policy relation also needs to be established to limit the signing ability of group members in the initial phase.After that,the key generation center(KGC)will distribute the policy and the signing key to the group members.During the signature generation process,an efficient NIZKPoK about policy and signing keys is generated by group members.But if the policy of group members cannot satisfy the policy relation with the message to be signed,the signature algorithm will not be executed.Finally,in order to ensure full traceability,a verifiable encryption for identity will be generated by the group members.And then,the group administrator is allowed to decrypt the identity of the signer by the tracking key.

    Specifically,we first review the requirements of policy language defined by [2]:(1) the space of messageMshould be large enough,and the space of policypcould be relatively small;(2)a policypmay simultaneously satisfy a lot of messagesM;(3)a messageMcould possibly satisfy a lot of policiesp.An instantiation for the above requirements of policy relation is constructed by Cheng et al.[2].In particular,given a positive integer?,n,d,if a signer with the policyp∈{0,1}?is allowed to sign a messageM∈Zn2,there is a witnessw∈{0,1}dsatisfyingG1·p+G2·w=M(mod2),wheren-?<d,G1∈is a uniform random matrix,andG2∈is an approximate identity matrix.We define the relation as:PR({0,1}?×Zn2)×{0,1}d→{0,1}.That is,PR((p,M),w)=1 ?G1·p+G2·w=Mmod 2.

    It satisfies the above requirements of the policy language,and its hardness is based on the LWE hard assumption.

    In the signature generation phase,the signer needs to possess policyp,witnessw,and signing keysin order to sign a messageMthat satisfies the policyp,among which the signing keysis obtained by preimage sampling introduced in [24].Specifically,we first generate a trapdoorRin the setup phase.After that,sis obtained through preimage sampling algorithm,which is executed by KGC through inputting parameters such as the policyp,the identity of signer and the system public key.Then,sandpconstitute a secret pair(p,s).At the moment,the two facts about the secret pair(p,s)and the policy relation have been possessed for the signer.In order to convince the verifier,the signer needs to generate a NIZKPoK about the linear relation for the two facts.The technically challenging question is that policypsatisfies two relations at the same time.Hence it is the key to construct a suitable proof protocol.We will show a new proof protocol based on the linear relation proof from[14]to prove the above facts,and it will be applied to our PBGS scheme after Fiat-Shamir transformation.Furthermore,in order to ensure the full traceability,we will integrate an efficient commitment technology from[25]to generate commitmentCom(i,r)about the signer’s identityiand a randomrduring the signing process.Then the randomrwill be encrypted by the technology of verifiable encryption from [26].And the ciphertext and the transcript of the above NIZKPoK will be formed a signature,which will be verified in the verification algorithm.After that,the group administrator can obtainrthrough using the tracking key to decrypt the ciphertext,and then open the commitmentCom(i,r)to obtain the signer’s identityi.

    2 Preliminaries

    2.1 Symbol Definition

    The symbols that appear in this article are described in Tab.1.

    Table 1:Symbol definition

    2.2 MSIS and MLWE

    Definition 1(MSISl,m,β[27]) Given parametersl,m,βandA∈,the MSISl,m,βis defined as:Findingz∈Rmsuch thatAz=0 and 0<||z||∞≤β.

    Lemma 1[27]For anyβ=poly(d),m≥1,ε>0,γ≥MSISl,m,βis as difficult as the SIVPγproblem at least.

    Definition 2(MLWEm,n,χ[27])Given parametersm,nand error distributionχ={a∈R,||a||∞≤1}.For(s,e)←χn×χmandA←,the MLWEm,n,χis defined as:Distinguishing samples chosen from(A,As+e)and samples chosen from uniform distribution(A,b)

    Lemma 2[27]Form,n>0,α∈(0,1),ε>0,andq≥2,the MLWEm,n,χis as difficult as the SIVPγproblem at least.

    As discussed in [28],the practical hardness of the above assumptions is not affected by the parametermto resist known attacks.Therefore,the assumptions will be simply written MSISl,βand MLWEn,χby omitting them,where thelandnrepresent the module ranks for MSIS and MLWE,respectively.

    2.3 Discrete Gaussian Distribution and Rejection Sampling

    Given anyσ>0,vectorc∈ R and functionρσ,c(x)=Then the Gaussian distributionDσ,ccentered incis described as:

    Dσ,c(x)=

    We will simply writeDσwhenc=0.And if the polynomialx∈R,x←Dσis defined as every coefficient ofxobeying distributionDσ.

    Lemma 3[14]For anyσ>0,positive integernandk>0,the following formulas holds:

    At EUROCRYPT 2012,Lyubasevsky introduced an algorithm of rejection sampling,which can be executed with a certain probability.The description is as follows:

    Algorithm 1:Rej(z,b,σ)u ←[0,1)If u> 1 3 ·exp(-2〈z,b〉+||b||2 return 0 else return 1 end if 2σ2 )then

    Lemma 4 [14,29,30]ForV={v∈Rn:||v||<t},b∈Rnandσ≥11||b||,a procedure will be run by samplingy←Dnσand outputs Rej(z:=y+b,b,σ).Then the probability of returning 1 in Algorithm 1 is within 1/3+2-100.And the statistical distance between the distribution ofzandDnσis within 2-100when the Algorithm 1 outputs 1.

    2.4 Trapdoor from Lattice

    Lemma 5[16,24,31]Given positive integern,m,q,i,parameterσ=q1/m·polynomialA∈ 1R1×nandR←χn×m.Set the gadget matrixgT=[1q1/m...q(m-1)/m].LetB=AR∈R1×m,we will get a basisS∈Z(n+m)d×(n+m)forΛ⊥={x∈Rn+m|[A|AR+igT]·x=0(modq)},which fulfills |||| ≤(s1(R)+1)after Gram-Schmidt orthogonalization,whereands1(R)means maximal singular value ofR.And then for any polynomial vectoru∈R,there is an algorithm SampleD(A,B,R,u,σ),which is able to sample from distributionwith a certain probability.

    2.5 Commitments

    Definition 3(Commitment [25]) Given challenge spaceC={c:c∈R,||c||1=κ,||c||∞=1},public matricesFor the messagem∈Rlqto be committed and the randomr←χk,an effective commitment will be generated as follows:

    If the following equation holds:

    We call(m,r,c)is a valid opening of commitment.

    Lemma 6[25]The above commitments have the following properties:

    (1) (Binding) Letκ≥if an attackerAwho has advantageεin outputting a commitment through two valid(m,r,c)and(m′,r′,c′)such thatm≠m′,there is an algorithmA′who has advantageεin solving the MSISn,4κBComwithin the same time.

    (2) (Hiding)Form,m′∈Rl q,if an attackerAhas advantageεin distinguishing betweenCom(m,r)andCom(m′,r′),there is an algorithmA′that has advantageε/2 in solving the MLWEk-n-l,χin the same time.

    The detailed proof of the above lemma could be found in the work[14,25].

    3 Definition of Policy-Based Group Signature and Security Model

    3.1 Definition

    Definition 4(PBGS) A policy-based group signature composed of five polynomial-time algorithms:

    (1) GSetup(1λ):It takes the security parameterλas input,builds the policy relation PR((p,M),w)and outputs group public key gpk,group master private key gmk and administrator tracking key gtk.

    (2) KeyGen(gmk,p,i):It takes the group master private key gmk,policypand member identityi∈[N]as inputs,outputs a signing key skp,iof memberiabout the policyp.

    (3) Sign(skp,i,M,w):It takes the signing key skp,i,a messageMand a witnesswas inputs,outputs a signature ∑if the policy relation satisfies PR((p,M),w)=1,or ⊥otherwise.

    (4) Verify (gpk,∑,M):It takes the group public key gpk,a signature ∑and a messageMas inputs,outputs “Valid” if the signature ∑is a valid signature on messageM,or “Invalid”otherwise.

    (5) Open(gtk,∑):It takes the tracking key gtk and a signature ∑as inputs,outputs the identityiof signer if the signature ∑is“Valid”checked by algorithm Verify,or ⊥otherwise.

    3.2 Security Model

    A PBGS scheme should meet three security properties:correctness,simulatability and traceability.Correctness,is defined in Definition 5 detailedly,includes verification correctness and opening correctness.Simulatability implies that the attacker cannot confirm the identity of the signer through a signature because a valid signature is indistinguishable from a simulated signature.Please refer to Definition 6 for details.Traceability means that a valid signature should be opened through group administrator by the tracking key so that the identity of the signer is restored.Our scheme meets full traceability,which is defined in Definition 7 detailedly.Furthermore,anonymity and unforgeability could be unnecessary for PBGS.We will discuss this issue later in Section 3.3.

    Definition 5(Correctness) The correctness of the PBGS contains verification correctness and opening correctness.The verification correctness means that the probability of returning “Invalid”from the algorithm Verify is negligible for a signature generated honestly.That is:

    The opening correctness means that the probability of returning ⊥from the algorithm Open is negligible for a signature generated honestly.That is:

    Definition 6(Simulatability) The simulatability requires that there is a simulator SimSign(M),which generates signatures without the need for any signing key or policy.Then the simulated signatures generated by SimSign(M)are indistinguishable from the signatures generated honestly.The simulatability game(n)is defined by the following processes between an adversaryAand a challengerC:

    Setup:Cruns the algorithm GSetup (1λ) honestly by inputting the security parameterλ,and returns gpk and gmk toA.

    Queries:Ais allowed to query adaptively the signing key for policypand memberi∈[N],andCsends skp,igenerated by running algorithm KeyGen(gmk,p,i)toA.

    Challenge:Areturnsi∈ [N],M*andw*.If PR((p,M),w)=0,the game will be aborted.Otherwise,Ccomputes←SimSign(M*)and←Sign(skp,i,M*,w*).ThenCselects random bitb∈{0,1}and returnstoA.

    Finalization:Areturns a guessb′∈{0,1}.Ifb′=b,the game outputs 1.

    The advantage ofAin simulatability game is defined as:

    Definition 7(Full Traceability [20]) Full traceability is a strong form of traceability.It asks that a team of group members who concentrate their signing keys is unable to generate a valid signature,which could not be caught by the open algorithm.Even though the colluding group knows the tracking key of group manager,that is true.The full traceability game(n)is defined by the following processes between an adversaryAand a challengerC:

    Setup:Cruns honestly the algorithm GSetup(1λ)and initializes two listsΓand I.ThenCsends gpk and gtk toA.

    Queries:Ahave access to the following queries:

    ? Request for the signing key of memberi∈[N]and policyp.Creturns skp,i←KeyGen(gmk,p,i)toAand sets?!!葅(p,i)}.

    ? Request for the signature about any messageMon identityiand policyp.Creturns←SimSign(M)toAand sets I ←I ∪{(M,}.

    Finalization:Areturns(M*,∑*).If“Invalid‘‘←Verify(gpk,∑*,M*)or(M*,∑*)∈I,the game outputs 0.Otherwise,Cruns algorithm Open.The game outputs 1 if the algorithm Open returns ⊥or returnsi,where{(p,i)}/∈Γ.While in other cases,the game returns 0.

    The advantage ofAin full traceability game is written by:

    3.3 Discussion

    As described in Section 1.3,the anonymity and unforgeability are unnecessary.First,the normal anonymity does not always provide the privacy for the policy relevant to the key and witness[1].To see this,there is a policy relation such that for every messageM,only one policypsatisfies PR((p,M),w)=1.In this situation,a scheme which is composed of the above policy relation still meets anonymity.But the policy is not hiding in this scheme.Indeed,the simulatability introduced by[1]requires that there is a simulator which is able to produce the simulated signatures does not need any signing key or policy,and the simulated signatures are indistinguishable from the signature generated honestly.Next,Traceability is a basic property for GS.It has implied the unforgeability of ordinary digital signatures according to the definition of[20]because the forgery game is a special case for the full-traceability game.The same is true for the extractability game that PBS needs to have.Therefore,we say that the security attributes that PBGS needs to meet are simulation and traceability.

    4 The Scheme

    4.1 A ZKPoK Protocol

    In this section,we present a ZKPoK protocolbased on the linear relation proof from[14].It will be used in the PBGS scheme and allows a prover to convince a verifier that he is a legitimate group member for a certain policy.

    First,fix parametersλ,κ,q,Q,σand polynomial ringR(See our construction of PBGS in Section 4.2).For public informationA,v,G1,G2,u,t,t′,δ,B,y,M,d,hand secret information(p,si,1,si,2,w),the proverPwill convince the verifierVthatPpossesses the secret(p,si,1,si,2,w)satisfying policy relation PCG1,G2((p,M),w)=1.Therefore,the protocol ∏PBGSwe will present should be able to prove the following facts:

    ?(p,si,1,si,2)is a valid secret pair.

    ?G1·p+G2·w=M.

    ?(d,h)is a verifiable ciphertext.

    The interaction between the two parties is as follows:

    Protocol 1:Zero-knowledge Protocol of Knowledge for PBGS Protocol 1:1.Commitment.P performs the following steps:Selects(yr,y′r)←D3 ξ1 ×D3 ξ1,yB ←D8 ξ1,(ys1,ys2)←D2 ξ2 ×D2 ξ2,ys3 ←D3 ξ3,(yp,yw)←D3 ξ1 ×D?-3 ξ1.ys=(ys1,ys2,ys3)T.Computes w1=aT 1 yr,w′1=aT1 y′r,w2=δaT2 yr-aT 2 y′r,ws=vTys,wB=ByB,wp=G1yp+G2yw.Sends w1,w′1,w2,ws,wB,wp to V.2.Challenge.V generates a challenge c ←C and sends c to P.3.Response.P computes z=rc+yr,z′=r′c+y′r,zs1=s1c+ys1,zs2=s2c+ys2,zs3=(p-r r′ s2)c+ys3,zB=rBc+yB,zp=pc+yp,zw=wc+yw.Run rejection sampling Rej((z,z′,zB,zp,zw)(rc,r′c,rBc,pc,wc),ξ1),Rej((zs1,zs2),(s1c,s2c),ξ2)and Rej(zs3,s3c,ξ3),returns ∏(z,z′,zs1,zs2,zs3,zp,zw,zB,c)to V.4.Verification.V checks: aT1 z=t1c+w1 aT1 z′=t′1c+w′1 δaT2 z-aT2 z′=(δt2-t′2)c+w2 vTzs=uc+ws BzB=yc+wB G1zp+G2zw=Mc+wp||(z,z′,zB,zp,zw)||≤B1 ∧||(zs1,zs2)||≤B2 ∧||zs3||≤B3 The verifier V returns 1 if all of the above equations hold,otherwise it returns 0.

    Theorem 1Givenr,r′←D3σ,si,1,si,2←D2σ,p←χ3,w←χ?-3andG1,G2,u,t,t′,h,d,B,yfixed in Section 4.2,forξ1≥andin Protocol 1 meets the following properties:

    ? Correctness:The proverPoutputs successfully a transcript with a probability of 1/27+2-100at least.And the verifierVwill accept the transcript with overwhelming probability when the protocol is not aborted.

    ? Honest-Verifier Zero-Knowledge:An honest verifier can simulate the transcripts with statistically indistinguishable distribution when the protocol is not aborted.

    ? Special Soundness:A valid opening of commitmentt,t′can be extracted by two accepting transcripts.

    Proof.Correctness:IfPis an honest prover,it can be got from Lemma 4 that the probability of rejection sampling is at least 1/27+2-100.The distribution(z,z′,zs1,zs2,zp,zw),zBandzs3is close to,andafter the rejection sampling.And we can get||(z,z′,zB,zp,zw)||≤B1∧||(zs1,zs2)||≤B2∧||zs3||≤B3will be held with an overwhelming probability according to Lemma 3.Therefore,Vwill accept the transcript with overwhelming probability.

    Honest-Verifier Zero-Knowledge:We only show that the protocolmeets honest-verifier zero-knowledge when the proverPis not aborted.Since the protocol will be converted to NIZKPoK by Fiat-Shamir transformation and be applied to PBGS.Vcannot get the transcript when the protocol is aborted.Then for a non-abort protocol,there is a probabilistic polynomial time(PPT)simulation algorithmS(A,v,G1,G2,B):

    We will get that the transcripts generated by the simulation algorithmS(A,v,G1,G2,B)will be accepted by the verifier with overwhelming probability.In the real protocol,the statistical distance between distribution of(z,z′,zs1,zs2,zp,zw),zB,zs3and distributionis no more than 2-100.Sincew1,w′1,w2,ws,wB,wpare completely determined byA,v,G1,G2,B,t,t′,u,y,the statistical distance between the distribution(w1,w′1,w2,ws,wB,wp,c,z,z′,zs1,zs2,zs3,zp,zw,zB)generated by the simulation algorithmS(A,v,G1,G2,B)and the distribution of real protocol is within 2-100.

    Special Soundness:Let(z,z′,zs1,zs2,zs3,zp,zw,zB,c)and(z*,z′*,z*s1,z*s2,z*s3,z*p,z*w,z*B,c*)are two transcripts of real protocol withcc*.We are able to extract a valid openingof commitmentst,t′,whereThen the following equations hold:

    The protocolis able to be converted into a NIZKPoK by Fiat-Shamir transformation.In order to do that,we define the hash functionH:{0,1}*→Cthat is used to generate challenge.And we let challengec=H(t,t′,v,A,B,y,δ,G1,G2,w1,w′1,w2,ws,wB,wp,M).Then verifierVrecoversw1,w′1,w2,ws,wB,wpfrom public information and obtainsc′.Ifc′=c,Vaccepts the transcript and outputs 1;otherwiseVreturns 0.

    4.2 PBGS Scheme

    In this section,we show a scheme of PBGS from lattice specifically.

    GSetup(1λ):

    Given a security parameterλ,the algorithm setsd=O(λ)as a power of 2,a parameter?>O(logλ),integer boundβ=poly(d)and challenge boundκ>0,prime modulusq,Q≥Gaussian parameterσ=q1/2·Set polynomial ringR=Z[X]/<Xd+1>,set of identity[N]?Zq,hash functionH:{0,1}*→C.Let gadget matrixgT=[ 1δ]∈.

    PRG1,G2((p,M),w)=1 ?G1·p+G2·w=Mmodq,

    andp←χ3,messageM∈Rq,witnessw←χ?-3.

    (f) Output gpk=(A,a,a,b,b1,G1,G2,u),gmk=Rand gtk=s.

    KeyGen(R,p,i):

    Given group master private keyR,policypand memberi∈[N],KGC will generate a signing key pair skp,iin the following way:

    (a)(si,1,si,2)←SampleD(a3,b,R,u-aT2p,σ)satisfying:

    (b) Output the signing key skp,i=(p,si,1,si,2).

    Sign(skp,i,M,w):

    Given signing key skp,i,messageM∈R?qand witnessw:

    ?(p,si,1,si,2)is a valid signing key,andvTs′=u.

    ?G1·p+G2·w=Mmodq.

    ?(d,h)is a valid verifiable ciphertext so thatBrB=y.

    (h) Output the signature ∑=(t,t′,∏,h,d).

    Verify(gpk,∑,M):

    Given gpk,signature ∑and messageM:

    (a) RecoverB1,B2,B,y,v.

    (b) Perform the verification in Section 4.1.If the verification algorithm accepts the ∏,output“Valid”;otherwise return“Invalid”.

    Open(gtk,∑):

    Given tracking key gtk and signatureΣ:

    (a) If the algorithm Verify returns“Invalid”for the signatureΣ,output ⊥and terminate;otherwise perform the following steps.

    (b) Selectc′←C,set=c-c′,wherecis a challenge defined in Section 4.1.

    (d) Computei=t2-·.Ifi∈[N],returni,otherwise return ⊥.

    5 Security Analysis

    Theorem 2(Correctness)The proposed PBGS scheme is correct with overwhelming probability.

    Proof:

    1) Verification correctness

    For gpk,gmk,gtk ←GSetup(1λ),skp,i←KeyGen(R,p,i),∑←Sign(skp,i,M,w),we computec′=H(t,t′,v,A,B,y,δ,G1,G2,w1,w′1,w2,ws,wB,wp,M)by the Verification equation in Protocol 1.Thenc′=cis hold with an overwhelming probability.Furthermore,the distribution(z,z′,zB,zp,zw),(zs1,zs2),zs3is close torespectively after rejection sampling introduced in Lemma 4.And we have||(z,z′,zB,zp,zw)|| ≤||(zs1,zs2)|| ≤||zs3|| ≤according to Lemma 3.Therefore,the probability of“Invalid←Verify(gpk,∑,M)is negligible.

    2) Opening correctness

    In signing phase,the signer generates verifiable ciphertext(h,d)by encrypting the randomr.The ciphertext(h,d)will be verified during the Verify phase.If the algorithm Verify returns“Valid”,(h,d)is a valid encryption about random r.Then administrator sets:

    c′←C,=c-c′.

    And the following equation holds:

    According to[26],we know thatwhich isAnd administrator computesrˉc=ˉrmodqto open the commitment:

    Theorem 3(Simulatability)The proposed PBGS scheme meets simulatability defined in Definition 6 under ROM,if the MLWE1,χproblem is hard.

    Proof:We will construct a PPT algorithm SimSign,which returns a simulated signature ∑*by inputting arbitrary messageM∈Rq.Specifically,the SimSign algorithm is similar to honest signature algorithm roughly,except for the following modifications:

    1) For commitmentstandt′,we modify the(i,r)as a random(i*,r*).Due to the hiding of commitment in Lemma 6,the algorithm SimSign is still indistinguishable from the honest signature algorithm.

    3) For ciphertext(h,d),we seth*=qaandd*=qb1.Then the(h*,d*)is indistinguishable from(h,d)under the MLWE1,χproblem.

    As a result,the algorithm SimSign is able to generate a simulated signature ∑*=(t*,t′*,∏*,h*,d*),which is indistinguishable from the legitimate signature generated by the honest signature algorithm.And the SimSign does not need any signing key or policy.

    After obtaining the algorithm SimSign,challengerCruns the GSetup(1λ)honestly and sends the gpk and gmk to attackerA.Aadaptively chooses policiesp1,...,pQand queries signing key ofpi.Cruns skp,i←KeyGen(gmk,p,i)and sends skp,itoA.NextAchoosesi∈[Q],M∈Rq,p←χ3,w*←χ?-3and sends them toC.If PR((p,M),w*)=0,the game will be terminated;otherwiseCcomputes simulated signature←SimSi gn(M*)and legitimate signature←Sign(skp,i,M*,w*).Finally,Cselects a bitb∈{0,1}and sendstoA.

    Since the simulated signatureis indist/inguishable from the legitimate signature,the probability thatAcorrectly guess the bitbis 1/2+negl(n).That is,the advantage ofAbreaking the simulatability of our PBGS scheme is negligible.

    Theorem 4(Full Traceability) The proposed PBGS scheme meets full traceability defined in Definition 7 under ROM,if the MSIS5,βproblem is hard.

    Proof:Assume that an attackerAsuccessfully forges an untraceable signature with non-negligible probabilityε.Then a challengerCwill construct a non-zero solution about the MSIS problem by the result ofAwith non-negligible probability.Specifically,Cinitializes the listΓ,Iand runs the GSetup(1λ)honestly.The gpk and gtk are sent toA.NextCselectsj∈[N],pj.Ahave access to the queries of signing key and signature defined in Definition 7.

    Finally,Aoutputs a signature ∑=(t,t′,∏,h,d)about messageM*∈Rq,which satisfiesand ⊥←Open(gtk,∑)orj←Open(gtk,∑),where {pj}/∈Γand(M*,) /∈I.According to the special soundness of Theorem 1,there are two different challengesCcan extractsatisfyingWe will get that the probability of completing the above extraction ofCis at leastby the forking lemma of [32],whereh1≥2 is the length of the hash functionH.For ciphertext(h,d),Cwill decrypt and obtain(,)by the tracking key gtk.According to the soundness of the verifiable encryption scheme from [26],we know thatwill hold with overwhelming probability,which means that Open(gtk,∑)∈Zq.Therefore,the probability of ⊥←Open(gtk,∑)is negligible.Since the set of identity[N]is a uniform distribution,the probability ofi=jin forged signature is 1/N.Assuming thati=j,then:

    whereRis master private key.Then:

    ThenCperforms algorithm Sample D byRto obtainsj,which fulfillsand is unknown toAin forgery phase.Letwe obtainwhere the probability of=is negligible.ThenChas constructed the equation:

    And the bound on the norm of the solution satisfies:

    Hence,Cconstructs a solution of MSIS5,βproblem with a probability ofε·Since the probability of successful forgery by attackerAis non-negligible,the probability ofε·is also non-negligible.

    6 Efficiency Analysis

    In this section,we choose three schemes of GS from lattice to carry out efficiency analysis and comparison with our scheme.We will perform a detailed analysis of the storage overhead of group public key,administrator tracking key,members signing key and signature.Firstly,we fix the security parameterλand the maximum number of membersN.Other parameters will be set as described in Section 4.2.Specifically,we setN=212,?=4,κ=26,dimensiond=212,Gaussian parametermodulusqandQare 236,272respectively.Then we get a root-hermite factor by definition from[33].Such a factor means that the parameters we chose guaranteeλ=93 bits space security against quantum adversaries.The comparison for the storage cost of the GS is listed in Tab.2.

    Table 2:Comparison of storage overhead for security level λ=93 bits

    Compared with the above three schemes of GS,our construction has lower storage overhead on key and signature to a certain extent.The size of key decreased roughly by 83.13% and the size of signature is also decreased roughly by 46.01%.

    Funding Statement:This work is supported by the National Natural Science Foundation of China(61802117),Support Plan of Scientific and Technological Innovation Team in Universities of Henan Province (20IRTSTHN013),the Youth Backbone Teacher Support Program of Henan Polytechnic University under Grant(2018XQG-10).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲综合精品二区| 内地一区二区视频在线| 国产综合懂色| av在线亚洲专区| 日韩在线高清观看一区二区三区| av.在线天堂| 久久99蜜桃精品久久| 男人舔女人下体高潮全视频| 国产精品人妻久久久影院| 嫩草影院新地址| 久久久久久国产a免费观看| 亚洲精品色激情综合| 亚洲av成人av| 一夜夜www| 亚洲婷婷狠狠爱综合网| 日韩一区二区三区影片| av黄色大香蕉| 全区人妻精品视频| 免费观看a级毛片全部| 免费电影在线观看免费观看| 大香蕉97超碰在线| 中文字幕亚洲精品专区| 一级毛片aaaaaa免费看小| 国产又色又爽无遮挡免| 亚洲精品,欧美精品| 日韩一本色道免费dvd| 人妻一区二区av| 色综合亚洲欧美另类图片| 搞女人的毛片| 一级爰片在线观看| av黄色大香蕉| 亚洲国产成人一精品久久久| 99久久人妻综合| 99久国产av精品| 一级黄片播放器| 国产成人aa在线观看| 少妇熟女欧美另类| 中文字幕久久专区| 纵有疾风起免费观看全集完整版 | 国产三级在线视频| 亚洲最大成人av| 卡戴珊不雅视频在线播放| 成年人午夜在线观看视频 | 亚洲电影在线观看av| 国产亚洲5aaaaa淫片| 激情 狠狠 欧美| 97热精品久久久久久| 99热6这里只有精品| 欧美3d第一页| 国产毛片a区久久久久| 日韩欧美 国产精品| 日韩中字成人| 午夜福利在线观看吧| 色视频www国产| 国产高清三级在线| 亚洲经典国产精华液单| 国产精品一及| 午夜福利视频精品| 欧美 日韩 精品 国产| 精品人妻一区二区三区麻豆| 不卡视频在线观看欧美| 大话2 男鬼变身卡| av免费在线看不卡| 在线观看免费高清a一片| 蜜桃久久精品国产亚洲av| 亚洲av中文字字幕乱码综合| 精品不卡国产一区二区三区| 日韩欧美三级三区| 日韩强制内射视频| 又大又黄又爽视频免费| 欧美丝袜亚洲另类| 一个人免费在线观看电影| 有码 亚洲区| 全区人妻精品视频| 国产男女超爽视频在线观看| 国产精品一区二区三区四区免费观看| 免费看光身美女| 少妇熟女aⅴ在线视频| 色综合色国产| 成年版毛片免费区| 精品酒店卫生间| av天堂中文字幕网| 国产老妇女一区| 在线天堂最新版资源| 一级毛片 在线播放| 一二三四中文在线观看免费高清| 又爽又黄无遮挡网站| 熟妇人妻久久中文字幕3abv| 亚洲精品,欧美精品| 亚洲内射少妇av| 亚洲成人久久爱视频| 亚洲精品乱码久久久v下载方式| 午夜免费观看性视频| 色网站视频免费| 黄片无遮挡物在线观看| 青春草亚洲视频在线观看| 日本黄色片子视频| 国产又色又爽无遮挡免| 成人毛片60女人毛片免费| 九色成人免费人妻av| 大片免费播放器 马上看| 日日啪夜夜爽| 网址你懂的国产日韩在线| 国产精品综合久久久久久久免费| 偷拍熟女少妇极品色| 欧美3d第一页| 国产成人午夜福利电影在线观看| av网站免费在线观看视频 | 青青草视频在线视频观看| 国产麻豆成人av免费视频| 国产激情偷乱视频一区二区| av网站免费在线观看视频 | 寂寞人妻少妇视频99o| 亚洲电影在线观看av| 一级av片app| 一级爰片在线观看| 色网站视频免费| 成人国产麻豆网| 色哟哟·www| 亚洲精品成人av观看孕妇| 免费观看精品视频网站| 夜夜看夜夜爽夜夜摸| 久久久久精品久久久久真实原创| 乱人视频在线观看| 简卡轻食公司| 成人欧美大片| 国产黄片美女视频| 爱豆传媒免费全集在线观看| 91精品伊人久久大香线蕉| 国产美女午夜福利| 国产麻豆成人av免费视频| 免费av毛片视频| 伦理电影大哥的女人| 观看免费一级毛片| 午夜久久久久精精品| 一级爰片在线观看| 成人午夜精彩视频在线观看| 国产精品不卡视频一区二区| 一个人看视频在线观看www免费| 亚洲成色77777| 老司机影院毛片| 2021天堂中文幕一二区在线观| 国产成人精品婷婷| 老司机影院成人| 午夜福利成人在线免费观看| 国产探花极品一区二区| 国产不卡一卡二| 丰满少妇做爰视频| 国产高清三级在线| 国产精品久久久久久久电影| 久久综合国产亚洲精品| 啦啦啦啦在线视频资源| 熟女电影av网| 国产成人精品婷婷| 女的被弄到高潮叫床怎么办| 亚洲av二区三区四区| 日本与韩国留学比较| 国产av国产精品国产| 天堂俺去俺来也www色官网 | 国内精品美女久久久久久| 九九久久精品国产亚洲av麻豆| 一区二区三区四区激情视频| 日本欧美国产在线视频| 十八禁网站网址无遮挡 | 日韩 亚洲 欧美在线| 欧美一级a爱片免费观看看| 人体艺术视频欧美日本| 777米奇影视久久| 麻豆乱淫一区二区| 看免费成人av毛片| 亚洲国产精品专区欧美| videossex国产| 日韩一区二区视频免费看| 欧美xxⅹ黑人| 一级a做视频免费观看| 蜜桃亚洲精品一区二区三区| 乱码一卡2卡4卡精品| 久久久久网色| av在线播放精品| av在线播放精品| 国产视频首页在线观看| 性插视频无遮挡在线免费观看| 国产免费视频播放在线视频 | 亚洲婷婷狠狠爱综合网| 国产片特级美女逼逼视频| 亚洲成人一二三区av| 免费观看精品视频网站| 国产毛片a区久久久久| 国产永久视频网站| 日本与韩国留学比较| 91av网一区二区| 精品久久国产蜜桃| 春色校园在线视频观看| 禁无遮挡网站| 少妇人妻精品综合一区二区| 如何舔出高潮| 黄色欧美视频在线观看| 高清视频免费观看一区二区 | 国产精品国产三级国产av玫瑰| 国产视频首页在线观看| 欧美成人a在线观看| 国产片特级美女逼逼视频| 久久草成人影院| 男女那种视频在线观看| 国产伦精品一区二区三区四那| 我的老师免费观看完整版| 日韩成人av中文字幕在线观看| 免费看av在线观看网站| av天堂中文字幕网| 亚洲精品久久午夜乱码| 99久久人妻综合| 亚洲欧美日韩东京热| 中文天堂在线官网| 我要看日韩黄色一级片| 国产精品蜜桃在线观看| 亚洲成人av在线免费| 丰满乱子伦码专区| 国产单亲对白刺激| 夫妻性生交免费视频一级片| 日韩不卡一区二区三区视频在线| 国模一区二区三区四区视频| av在线老鸭窝| 男女啪啪激烈高潮av片| 免费观看的影片在线观看| 亚洲三级黄色毛片| 欧美日韩在线观看h| 春色校园在线视频观看| 亚洲人成网站在线观看播放| 97人妻精品一区二区三区麻豆| 午夜精品在线福利| 亚洲精品一二三| 国产真实伦视频高清在线观看| 性色avwww在线观看| 又黄又爽又刺激的免费视频.| av在线蜜桃| 国内揄拍国产精品人妻在线| 欧美xxxx性猛交bbbb| 国产欧美日韩精品一区二区| 久久国产乱子免费精品| 亚洲国产精品成人综合色| av专区在线播放| 亚洲激情五月婷婷啪啪| 精品久久久久久久末码| 可以在线观看毛片的网站| 国产一级毛片七仙女欲春2| 搡老妇女老女人老熟妇| 午夜久久久久精精品| 日本免费在线观看一区| 丝袜美腿在线中文| 大又大粗又爽又黄少妇毛片口| 五月伊人婷婷丁香| 久久午夜福利片| 色尼玛亚洲综合影院| 少妇的逼水好多| 99久国产av精品国产电影| 亚洲欧美清纯卡通| 亚洲国产色片| 99久久人妻综合| 久久亚洲国产成人精品v| 国产高清不卡午夜福利| 国产精品一及| 国产综合精华液| 国产精品美女特级片免费视频播放器| 特大巨黑吊av在线直播| 中文字幕久久专区| 女人久久www免费人成看片| 久久99热这里只有精品18| 午夜老司机福利剧场| 国产色婷婷99| 国产精品国产三级专区第一集| 最近手机中文字幕大全| 日韩在线高清观看一区二区三区| 五月伊人婷婷丁香| 韩国av在线不卡| 成人高潮视频无遮挡免费网站| 久久久久久伊人网av| 午夜免费激情av| www.av在线官网国产| 97超视频在线观看视频| 女人被狂操c到高潮| 久久久久久九九精品二区国产| 青青草视频在线视频观看| 亚洲精品乱码久久久v下载方式| 国产免费福利视频在线观看| 一夜夜www| 久久久欧美国产精品| 97人妻精品一区二区三区麻豆| 精品午夜福利在线看| 亚洲av在线观看美女高潮| 亚洲欧美精品自产自拍| 听说在线观看完整版免费高清| 国产精品蜜桃在线观看| 国内精品美女久久久久久| 一区二区三区免费毛片| 亚洲欧美成人精品一区二区| 又大又黄又爽视频免费| 狠狠精品人妻久久久久久综合| 一级毛片黄色毛片免费观看视频| 性插视频无遮挡在线免费观看| 大又大粗又爽又黄少妇毛片口| 亚洲av中文av极速乱| 亚洲四区av| 尾随美女入室| av一本久久久久| 高清毛片免费看| 午夜福利在线观看免费完整高清在| 亚洲高清免费不卡视频| 免费av观看视频| 2018国产大陆天天弄谢| 亚洲图色成人| 久久鲁丝午夜福利片| 婷婷色麻豆天堂久久| 99热这里只有精品一区| 国产91av在线免费观看| 成人亚洲精品av一区二区| 亚洲精品一二三| 寂寞人妻少妇视频99o| 亚洲精品,欧美精品| 成人特级av手机在线观看| 婷婷色综合www| 欧美97在线视频| 夫妻性生交免费视频一级片| 久久精品国产自在天天线| 在线观看美女被高潮喷水网站| 亚洲精品乱码久久久v下载方式| 国产一区二区三区综合在线观看 | 亚洲人成网站高清观看| 亚洲精品视频女| 91久久精品国产一区二区成人| 久久久久免费精品人妻一区二区| 亚洲精品色激情综合| 国产亚洲av片在线观看秒播厂 | av免费在线看不卡| 九九爱精品视频在线观看| ponron亚洲| 亚洲欧美日韩卡通动漫| 一级毛片aaaaaa免费看小| 国产三级在线视频| 女人十人毛片免费观看3o分钟| 黄色欧美视频在线观看| 五月玫瑰六月丁香| 极品教师在线视频| 亚洲自拍偷在线| 啦啦啦中文免费视频观看日本| 国产精品99久久久久久久久| 亚洲国产欧美在线一区| 国产一区有黄有色的免费视频 | 欧美xxⅹ黑人| 欧美一级a爱片免费观看看| 亚洲成人精品中文字幕电影| 日本一二三区视频观看| 寂寞人妻少妇视频99o| 国产黄片视频在线免费观看| 不卡视频在线观看欧美| 欧美另类一区| 国产在线男女| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 婷婷色综合大香蕉| 男人狂女人下面高潮的视频| 国产女主播在线喷水免费视频网站 | 麻豆国产97在线/欧美| 欧美成人午夜免费资源| 色综合亚洲欧美另类图片| 国产精品一二三区在线看| 大香蕉久久网| 久久韩国三级中文字幕| 又黄又爽又刺激的免费视频.| 免费电影在线观看免费观看| 中文字幕亚洲精品专区| 国内揄拍国产精品人妻在线| 亚洲精品第二区| 日日啪夜夜撸| 99久国产av精品国产电影| 亚洲欧美一区二区三区黑人 | 性插视频无遮挡在线免费观看| 国产在线一区二区三区精| 免费人成在线观看视频色| 午夜激情欧美在线| 日本三级黄在线观看| 人妻一区二区av| 亚洲成人中文字幕在线播放| 国产高清有码在线观看视频| 欧美极品一区二区三区四区| 国产伦一二天堂av在线观看| 九九久久精品国产亚洲av麻豆| 午夜福利在线观看吧| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩一区二区视频在线观看视频在线 | 久久精品综合一区二区三区| 日韩 亚洲 欧美在线| 日韩在线高清观看一区二区三区| 国产av在哪里看| 国产在视频线精品| 国产午夜福利久久久久久| 欧美激情在线99| 久久这里有精品视频免费| 精品久久国产蜜桃| 日本一本二区三区精品| 男女下面进入的视频免费午夜| 别揉我奶头 嗯啊视频| 黄片无遮挡物在线观看| 久久久久久久国产电影| 91av网一区二区| 成人午夜高清在线视频| 亚洲av二区三区四区| 欧美一区二区亚洲| 少妇熟女aⅴ在线视频| 91久久精品国产一区二区三区| 亚洲图色成人| 一级毛片 在线播放| 中文字幕亚洲精品专区| 午夜福利在线在线| 亚洲精品456在线播放app| 国产精品国产三级专区第一集| 国产亚洲一区二区精品| 日日啪夜夜撸| 禁无遮挡网站| 成人毛片a级毛片在线播放| 亚洲婷婷狠狠爱综合网| 看免费成人av毛片| 午夜福利视频精品| 国内精品一区二区在线观看| 国产精品久久视频播放| 女人久久www免费人成看片| 国产精品久久视频播放| h日本视频在线播放| av一本久久久久| 久久久久久久久久成人| 听说在线观看完整版免费高清| 精品少妇黑人巨大在线播放| a级毛片免费高清观看在线播放| 丝袜喷水一区| 全区人妻精品视频| 国产一区二区亚洲精品在线观看| 欧美一级a爱片免费观看看| 色哟哟·www| 欧美一级a爱片免费观看看| 免费av毛片视频| 欧美97在线视频| 免费电影在线观看免费观看| 免费少妇av软件| 国产成人免费观看mmmm| 久久久久久久久久久丰满| 国产一区亚洲一区在线观看| 真实男女啪啪啪动态图| 免费观看a级毛片全部| 亚洲国产精品国产精品| 日韩伦理黄色片| 熟女人妻精品中文字幕| 汤姆久久久久久久影院中文字幕 | 日本一本二区三区精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲va在线va天堂va国产| 国产精品一区二区性色av| 午夜福利视频1000在线观看| av天堂中文字幕网| 舔av片在线| 可以在线观看毛片的网站| 国产成年人精品一区二区| 精品亚洲乱码少妇综合久久| 全区人妻精品视频| 狂野欧美白嫩少妇大欣赏| 身体一侧抽搐| 欧美xxxx黑人xx丫x性爽| 国产成人精品福利久久| 69人妻影院| 一个人看的www免费观看视频| 欧美激情在线99| 国产成人freesex在线| 最后的刺客免费高清国语| 亚洲经典国产精华液单| 久久久久精品性色| 国产高潮美女av| 久久午夜福利片| 欧美精品一区二区大全| 国产精品久久久久久精品电影小说 | 午夜亚洲福利在线播放| 亚洲国产日韩欧美精品在线观看| 国产精品人妻久久久影院| 69av精品久久久久久| 真实男女啪啪啪动态图| 国产精品三级大全| 国产日韩欧美在线精品| 国产亚洲最大av| 日韩欧美国产在线观看| 99热网站在线观看| 熟妇人妻不卡中文字幕| 免费播放大片免费观看视频在线观看| 亚洲av成人精品一区久久| 国产 亚洲一区二区三区 | 麻豆乱淫一区二区| 男女啪啪激烈高潮av片| 国产单亲对白刺激| 麻豆久久精品国产亚洲av| 69人妻影院| 免费看光身美女| 日韩成人av中文字幕在线观看| 熟妇人妻久久中文字幕3abv| 综合色丁香网| 九草在线视频观看| 欧美zozozo另类| www.av在线官网国产| 国产成人a∨麻豆精品| 插逼视频在线观看| 99久久精品国产国产毛片| 在线天堂最新版资源| 午夜精品在线福利| 永久免费av网站大全| 在线 av 中文字幕| 日韩av不卡免费在线播放| 三级国产精品片| 只有这里有精品99| 一级二级三级毛片免费看| 国产黄色视频一区二区在线观看| 一个人看视频在线观看www免费| 国产一区二区在线观看日韩| 成人亚洲精品av一区二区| 成人毛片60女人毛片免费| 一级毛片久久久久久久久女| 又爽又黄a免费视频| av在线观看视频网站免费| 毛片女人毛片| 特级一级黄色大片| 国产欧美另类精品又又久久亚洲欧美| 麻豆av噜噜一区二区三区| 国产精品不卡视频一区二区| xxx大片免费视频| 久久久久久久大尺度免费视频| 午夜福利网站1000一区二区三区| 国产黄片视频在线免费观看| 亚洲av成人精品一区久久| 国内少妇人妻偷人精品xxx网站| 大片免费播放器 马上看| 国产成人一区二区在线| 亚洲国产欧美在线一区| 在线 av 中文字幕| 久久精品人妻少妇| 国产精品熟女久久久久浪| 国产精品不卡视频一区二区| 亚洲一级一片aⅴ在线观看| 如何舔出高潮| 亚洲激情五月婷婷啪啪| 最后的刺客免费高清国语| 亚洲av成人精品一区久久| 亚洲精品,欧美精品| 午夜精品在线福利| 搞女人的毛片| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品国产av成人精品| 午夜精品一区二区三区免费看| 婷婷色综合大香蕉| 亚洲精品第二区| 欧美三级亚洲精品| 大片免费播放器 马上看| 国产伦一二天堂av在线观看| 91aial.com中文字幕在线观看| 午夜免费激情av| 国产免费又黄又爽又色| 亚洲av成人精品一二三区| 一级黄片播放器| 国产一级毛片七仙女欲春2| 男女视频在线观看网站免费| 欧美成人午夜免费资源| 色网站视频免费| 国产视频首页在线观看| 午夜精品国产一区二区电影 | 国产精品久久久久久久电影| 欧美性感艳星| 亚洲精品中文字幕在线视频 | 久久久亚洲精品成人影院| 少妇裸体淫交视频免费看高清| 女人久久www免费人成看片| 国产亚洲av嫩草精品影院| 国产精品一区二区性色av| 欧美成人一区二区免费高清观看| 成人美女网站在线观看视频| 久久99蜜桃精品久久| 男人和女人高潮做爰伦理| 成人高潮视频无遮挡免费网站| 久久精品综合一区二区三区| 亚洲精品一区蜜桃| 热99在线观看视频| 国产v大片淫在线免费观看| 人人妻人人澡欧美一区二区| 精品久久久精品久久久| 久久亚洲国产成人精品v| 2018国产大陆天天弄谢| 国产久久久一区二区三区| 日韩欧美精品v在线| 亚洲国产精品国产精品| av免费观看日本| 国产视频内射| 国产免费福利视频在线观看| av卡一久久| 国产精品99久久久久久久久| 欧美一区二区亚洲| 亚洲精品aⅴ在线观看| 超碰97精品在线观看| 午夜福利高清视频| 久久99热6这里只有精品| 国产一区二区在线观看日韩| 日韩欧美国产在线观看| 国产黄a三级三级三级人| 国产色婷婷99| 美女内射精品一级片tv| 熟女电影av网| 女的被弄到高潮叫床怎么办| 国产精品一及| 欧美激情久久久久久爽电影| 一区二区三区乱码不卡18| 国产精品福利在线免费观看| 亚洲图色成人| 日韩欧美三级三区| 免费无遮挡裸体视频| 亚洲av免费高清在线观看|