• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fuzzy Logic with Archimedes Optimization Based Biomedical Data Classification Model

    2022-08-24 07:03:44MahmoudRagabandDiaaHamed
    Computers Materials&Continua 2022年8期

    Mahmoud Ragaband Diaa Hamed

    1Information Technology Department,Faculty of Computing and Information Technology,King Abdulaziz University,Jeddah 21589,Saudi Arabia

    2Centre of Artificial Intelligence for Precision Medicines,King Abdulaziz University,Jeddah 21589,Saudi Arabia

    3Department of Mathematics,Faculty of Science,Al-Azhar University,Naser City 11884,Cairo,Egypt

    4Department of Mineral Resources and Rocks,Faculty of Earth Sciences,King Abdulaziz University,Jeddah 21589,Saudi Arabia

    5Geology Department,Faculty of Science,Al-Azhar University,Naser City 11884,Cairo,Egypt

    Abstract: Medical data classification becomes a hot research topic in the healthcare sector to aid physicians in the healthcare sector for decision making.Besides,the advances of machine learning (ML) techniques assist to perform the effective classification task.With this motivation,this paper presents a Fuzzy Clustering Approach Based on Breadth-first Search Algorithm(FCA-BFS)with optimal support vector machine(OSVM)model,named FCABFS-OSVM for medical data classification.The proposed FCABFS-OSVM technique intends to classify the healthcare data by the use of clustering and classification models.Besides,the proposed FCABFSOSVM technique involves the design of FCABFS technique to cluster the medical data which helps to boost the classification performance.Moreover,the OSVM model investigates the clustered medical data to perform classification process.Furthermore,Archimedes optimization algorithm(AOA) is utilized to the SVM parameters and boost the medical data classification results.A wide range of simulations takes place to highlight the promising performance of the FCABFS-OSVM technique.Extensive comparison studies reported the enhanced outcomes of the FCABFS-OSVM technique over the recent state of art approaches.

    Keywords: Clustering;medical data classification;machine learning;parameter tuning;support vector machines

    1 Introduction

    Computational intelligent system for medical application is an exciting and important research field.Generally,a medical doctor collects their knowledge from the confirmed diagnoses and patient symptoms[1].In another word,predictive significance of symptoms towards diagnostic and diseases precision of a person are dependent extremely on a physician’s knowledge.Since treatment therapy and medical knowledge rapidly progresses,for example,the accessibility of new drugs and the existence of new diseases,it is difficult for a clinician to possess current development and knowledge in medical settings [2].Alternatively,with the emergence of computing technology,now it is relatively easy to store and acquire lots of data digitally for example in devoted dataset of electronic patient’s record.Intrinsically,the positioning of computerized medicinal decision support system (DSS)becomes a feasible method for helping physicians to accurately and swiftly identify individual patients.Nonetheless,several problems should be resolved beforehand an effective medicinal DSS could be and deployed developed that includes decision making in the existence of imprecision and uncertainty[3].Though medicinal experience and expert knowledge is significant,ranging from measuring a patient’s healthcare status to making diagnoses,advancement in machine learning(ML)methods have paved the way for medicinal practitioner to make use of computational intelligent system for DSS[4].Fig.1 depicts the process in medical image processing.

    Figure 1:Different processes involved in medical data processing

    Data mining(DM)and ML frequently utilize similar methods and they significantly overlap,but ML method on forecast,on the basis of known property learned from the trained information [5],DM methods concentrate on the detection of previously unknown property within the information.DM method employs ML method,for various purposes;at the same time,ML utilizes DM method as unsupervised learning or as a pre-processing stage to improve performance of the learning model[6].The ML algorithm is developed from the very beginning and utilized for analyzing medicinal datasets.The clustering technique plays a significant role in DM and ML methods.Domestic researcher mostly focusses on the succeeding two characteristics:(a) a clustering model enhances the performance of clustering and (b) a clustering method dynamically determine the amount of cluster centre [7].A dynamic clustering model based genetic algorithm;the key concept of the algorithm is to efficiently resolve the sensitivity of the primary state value clustering,it employed the maximal feature value ranges partitioning strategy and two phases and dynamic selection model in mutation that attain optimum clustering centre.Clustering analysis is a type of unsupervised method in recognition of patterns [8].The clustering task split an unmarked pattern based on some condition into various subsets that need equivalent instances have the more equivalents cluster centre and different instances must be separated in various groups.Thus,it is named unsupervised classification.Clustering analysis was widely employed in image processing,DM,radar target detection,object detection,and so on[9].

    This paper presents a Fuzzy Clustering Approach Based on Breadth-first Search Algorithm(FCA-BFS) with optimal support vector machine (OSVM) model,named FCABFS-OSVM for medical data classification.The proposed FCABFS-OSVM technique involves the design of FCABFS technique to cluster the medical data which helps to boost the classification performance.In addition,the OSVM model investigates the clustered medical data to perform classification process.Also,Archimedes optimization algorithm(AOA)is utilized to the SVM parameters and boost the medical data classification results.A wide range of simulations takes place to highlight the promising performance of the FCABFS-OSVM technique.

    2 Literature Review

    Yelipe et al.[10]introduced an enhanced imputation model named Imputation related class-based clustering(IM-CBC).The experiment is conducted on 9 standard data sets and the recorded outcomes with IM-CBC imputation method are compared with 10 imputation models with C4.5,k-nearest neighbor(KNN),and support vector machine(SVM)classification with fuzzy gaussian similarity and Euclidean distance models.Karlekar et al.[11]proposed an approach for medicinal data classifier with an ontology and whale optimization-related SVM algorithm.At first,privacy-preserved data are designed adapting Kronecker product bat model,later,ontology is constructed for the feature selection(FS)model.Then,optimal SVM and Ontology model is presented by incorporating whale optimization algorithm (WOA) and ontology with SVM,where WOA and ontology are utilized for selecting possible kernel parameters.

    Karim et al.[12]present an architecture for medicinal data processing that is developed on the basis of energy spectral density (ESD) and deep autoencoder (AE) models.The main innovation of presented method is to integrate ESD process as feature extractor to a unique deep sparse auto-encoder (DSAE).This enables our presented method for extracting more qualified features in a short computation time than the traditional framework.Le [13]proposes a fuzzy c-means(FCM)clustering interval type-2 cerebellar model articulation neural network(FCM-IT2CMANN)model for helping physicians improve diagnosis performance.The presented approach integrates two classifications,where FCM model is the pre-classification and the IT2CMANN is the initial classification.Implementation of gradient descent model,an adoptive laws to update the presented method is derived.

    In Kadam et al.[14],the medical data is reduced dimensionally by the PCA method.The reduction dimensionality information is converted by multiplying with weighting factors,i.e.,enhanced by WOA,to attain maximal distance among the attributes.Consequently,the information is converted into a label-distinguishable plane where the DBN system is adapted for performing the DL method,and the data classification is implemented.

    3 The Proposed Model

    In this study,a novel FCABFS-OSVM technique has been developed to classify the healthcare data by the use of clustering and classification models.The proposed FCABFS-OSVM technique encompasses different subprocesses such as data pre-processing,FCABFS based clustering,SVM based classification,and AOA based parameter optimization.Fig.2 demonstrates the overall process of FCABFS-OSVM technique.

    Figure 2:Architecture of FCABFS-OSVM technique

    3.1 Design of FCABFS Technique for Clustering Process

    At the initial stage,the FCABFS technique has been developed to group the medical data into distinct clusters.The conventional FCM approach reduces the weighted sum of squares of the distance from each data point to the respective cluster center.But FCM considers each property have a similar effect on clustering,nevertheless of the effect on distinct data properties.Still,the clustering unrelated attributes and sample noise attributes exist.Few data objects in a huge sample might have large impact on clustering results because of separation from another object.But,almost all the clustering models,and feature weighting extension,considers each sample to have an equivalent weight at the time of clustering.Consequently,the process is sensitive to noise.The data object in a huge sample might belong to distinct attributes.Few attribute objects might have a greater influence on clustering results and be named as called data with stronger reparability.In contrast,others might have lower contributions towards clustering results and called noise or isolated data.We employ the variation coefficient to minimize the contribution of noise attributes.

    In the presented method,the similarity among objects is defined by presenting an extra weight of the variation coefficient model as follows:

    in whichw=(w1,w2,...,wp)T,wk=.wkrepresent the weight of all the attribute factors anddenotes the sample mean,indicates the variation coefficient,msignifies a fuzzy parameter andJshows the loss function,Sx=represent standard deviation[15],Cimplies the number of clusters;andnmeans the number of data.

    The Lagrange multiplier model is utilized for finding the solution.The presented FCM alongside the Lagrange function is formulated by

    In the early phase of optimization,the succeeding is attained.

    Likewise,u12is enhanced by the following equation,

    From the abovementioned,the common form of the center upgrading equation is,

    Generally,to attainvj,the objective function is extended as

    Improving the above objective function gives,

    From the abovementioned,the common form of upgrading center is

    3.2 Design of Optimal SVM Based Classification Process

    Once the medical data has been clustered,they are passed into the SVM model to perform the classification process.Assume that binary classification task:{xi,yi},i=1,...,l,yi∈{-1,1},xi∈Rd,wherexirepresents the data points[16],andyiimplies the equivalent labels.It can be divided as hyperplane provided aswTx+b=0,wherewrefers theddimension co-efficient vector which is normal to hyperplane,andbsignifies the offset in the origin.The linear SVM attains a better separate margin with resolving the subsequent optimized task:

    With establishing Lagrangian multiplierαi(i=1,2,...,n),a primal issue is decreased to Lagarangian dual issue:

    It can be obvious a quadratic optimized issue with linear constraint.In KarushKuhnTucker(KKT) condition,it is realized:αi(yi(wTxi+b)-1)=0.Ifαi>0.The equivalent data points are named SVs.Therefore,the solution gets the subsequent procedure:w=wherenimplies the amount of support vectors(SVs).At this point,bis attained inyi(wTxi+b)-1=0,wherexiare SVs.Then,wandbare defined,the linear discriminant function is provided in Eq.(8).

    Generally,the 2 classes could not be linearly divided.For the purpose of the linear learning machine for working well from non-linear cases,a common idea was established.Specifically,a novel input space is mapped as to some high dimensional feature spaces in which the trained set was linearly separate.With this mapping,the decision function is formulated as:

    wherefrom the input space was signifying as the procedure ?(xi)T?(x)from the feature space[17].It could not essential for knowing the functional procedure of mappingφ(Xi)as it can be implicitly determined as one chosen kernel:(xi,xj)=?(xi)Tφ(xj).Therefore,the decision function is written as:

    Generally,some positive semi-definite function which fulfills Mercer’s criteria is kernel function.

    In order to optimally tune the weight and bias values of the SVM model,the AOA is utilized.Usually,along with other techniques,the AOA contains 2 search stages like exploration and exploitation,simulated as mathematics functions namely-,+,*,and/.Primary,the AOA creates the group ofNsolutions(agent)[18].Everyone defines the solution to tested problem.Therefore,the solution or agent signifies theXpopulation as:

    Algorithm 1:Steps of AOA Input:The parameter of AOA like dynamic exploitation parameter(α),control function amount of agents(N),and entire amount of iterations Mt.Create the primary value to the agent Xii=1,...N·while(t<Mt)do Estimate the FF to all the agents.Define the optimum agent Xb.Upgrade the MOA and MOP utilizing Eqs.(12)&(14)correspondingly(Continued)

    Algorithm 1:Continued for i=1 to N do for j=1 to Dim do Upgrade the value of r1,r2,and r3.if r1>MOA then Exploration stage Utilize Eq.(13)for updating the Xi.else Exploitation stage Utilize Eq.(15)for updating the Xi.end if end for end for t=t+1 end while Output the optimum agents(feature subset)(Xb).

    Afterward,the FF of all solutions are calculated for detecting an optimum oneXb.Next,according to the Math Optimizer Accelerated (MOA) value,AOA carries out exploration or exploitation procedures.At that point,MOAhas upgraded as the subsequent formula:

    whereasMtstands for the entire amount of iterations.MinMOAand MaxOAsignifies the minimal and maximal values of accelerated functions correspondingly.In particular,the multiplication (M) and division(D)were utilized from the exploration stage of AOA as projected from the subsequent formula:

    whereaseimplies the small integer value,UBjandLBjdenotes the lower as well as upper boundaries of search area atjthdimensional.μ=0.5 defines the control function.Also,Math Optimizer(MOP)is expressed as:

    α=5 demonstrates the dynamic parameter which defines the precision of exploitation stage throughout iteration.

    Moreover,addition (A) and subtracting (D) operators were utilized for implementing the AOA exploitation stage utilizing the subsequent formula[19].

    whereasr3indicates the arbitrary number created from zero and one.Next,the agent’s upgrading procedure was executed utilizing the AOA operator.In brief,Algorithm 1 demonstrates the important steps of the AOA.

    4 Experimental Validation

    The proposed model is tested using three datasets namely lung cancer,mammographic mass,and Statlog-heart dataset[20].Tab.1 demonstrates the details of the dataset description.Tab.2 investigates the classifier result analysis of the FCABFS-OSVM technique under distinct epochs on the lung cancer dataset.With 100 epochs,the FCABFS-OSVM technique has gained true positive rate (TPR),true negative rate(TNR),accuracy,error,and F-measure of 83.08%,80.88%,87.04%,12.96%,and 83.35%respectively.Along with that,with 300 epochs,the FCABFS-OSVM method has received TPR,TNR,accuracy,error,and F-measure of 82.63%,85.23%,86.92%,13.08%,and 85.66%correspondingly.In addition,with 500 epochs,the FCABFS-OSVM technique has gained TPR,TNR,accuracy,error,and F-measure of 83.38%,82.36%,87.22%,12.78%,and 86.78%respectively.

    Table 1:Dataset description

    Table 2:Result analysis of FCABFS-OSVM technique with different epochs under lung cancer dataset

    Fig.3 determines the receiver operating characteristics (ROC) curve analysis of the FCABFSOSVM system under lung cancer data sets.The figure revealed that the FCABFS-OSVM method has improved outcomes with a high ROC of 95.4070.Tab.3 examines the classifier analysis of the FCABFS-OSVM system under dissimilar epochs on the Mammographic mass dataset.With 100 epochs,the FCABFS-OSVM method has received TPR,TNR,accuracy,error,and F-measure of 86.59%,85.82%,89.41%,10.59%,and 86.69% correspondingly.Along with that,with 300 epochs,the FCABFS-OSVM procedure has attained TPR,TNR,accuracy,error,and F-measure of 84.15%,87.58%,88.51%,11.49%,and 86.45% correspondingly.In addition,with 500 epochs,the FCABFSOSVM method has archived TPR,TNR,accuracy,error,and F-measure of 86.66%,86.81%,86.26%,13.74%,and 88.16%correspondingly.

    Figure 3:ROC analysis of FCABFS-OSVM technique under lung cancer dataset

    Table 3:Result analysis of FCABFS-OSVM technique with different epochs under Mammographic mass dataset

    Fig.4 illustrated the ROC analysis of the FCABFS-OSVM system under Mammographic mass dataset.The figure exposed that the FCABFS-OSVM method has attained improved outcomes with the high ROC of 94.8630.

    Tab.4 explores the classifier analysis of the FCABFS-OSVM model under discrete epochs on the Statlog-Heart dataset.With 100 epochs,the FCABFS-OSVM approach has attained TPR,TNR,accuracy,error,and F-measure of 89.37%,90.38%,89.41%,10.59%,and 93.21% correspondingly.Along with that,with 300 epochs,the FCABFS-OSVM system has achieved TPR,TNR,accuracy,error,and F-measure of 90.40%,90.87%,89.48%,10.52%,and 91.35%correspondingly.In addition,with 500 epochs,the FCABFS-OSVM system has obtained TPR,TNR,accuracy,error,and Fmeasure of 91.54%,90.64%,91.12%,8.88%,and 92.79%correspondingly.

    Fig.5 proves the ROC analysis of the FCABFS-OSVM method under Statlog-Heart data set.The figure revealed that the FCABFS-OSVM method has attained improved outcomes with the maximal ROC of 96.2790.

    Figure 4:ROC analysis of FCABFS-OSVM technique under Mammographic mass dataset

    Table 4:Result analysis of FCABFS-OSVM technique with different epochs under Statlog-Heart dataset

    Figure 5:ROC analysis of FCABFS-OSVM technique under Statlog-Heart dataset

    Fig.6 offers the accuracy and loss graph analysis of the FCABFS-OSVM system on the testing data set.The result shows that the accuracy values tend to increase and loss values tend to reduce with an increasing epoch amount.Also,it is observed that the training loss is lower and validation accuracy is higher on the testing datasets.

    Figure 6:Accuracy and loss graph analysis of FCABFS-OSVM technique

    Fig.7 examine the comparative classification result analysis of the FCABFS-OSVM technique over the other methods [21].The experimental results indicated that the Decision Stump (DS) and Random Tree(RT)methods have results to lower classification results.In line with this,the DT(J48)and RT algorithms have obtained slightly improved and closer classification performance.Though the Improved ID3 technique has resulted in competitive outcome,the FCABFS-OSVM technique has accomplished maximum outcome with the TPR of 82.75%,TNR of 83.40%,accuracy of 86.90%,error of 13.10%,and F-measure of 85.34%.

    Figure 7:Comparative analysis of FCABFS-OSVM technique under lung cancer dataset

    Fig.8 inspect the comparative analysis of the FCABFS-OSVM method over the other algorithms.The experiment result indicates that the DS and RT methodologies have resulted in low classification results.In line with this,the DT(J48)and RT models have attained improved and closer classification efficiency.Though the Improved ID3 system has resulted in competitive outcome,the FCABFSOSVM algorithm has accomplished maximal results with the TPR of 86.29%,TNR of 86.39%,accuracy of 88.57%,error of 11.43%,and F-measure of 87.01%.

    Figure 8:Comparative analysis of FCABFS-OSVM technique under Mammographic mass dataset

    Fig.9 investigate the comparative analysis of the FCABFS-OSVM approach over the other algorithms.The experiment result indicates that the DS and RT methodologies have resulted in low classification outcomes.In line with this,the DT (J48) and RT methods have attained improved and closer classification efficiency.Though the Improved ID3 technique has resulted in competitive outcomes,the FCABFS-OSVM approach has attained maximal results with the TPR of 89.92%,TNR of 91.10%,accuracy of 90.10%,error of 9.90%,and F-measure of 92.06%.

    Figure 9:Comparative analysis of FCABFS-OSVM technique under Statlog-Heart dataset

    5 Conclusion

    In this study,a novel FCABFS-OSVM technique has been developed to classify the healthcare data by the use of clustering and classification models.The proposed FCABFS-OSVM technique encompasses different subprocesses such as data preprocessing,FCABFS based clustering,SVM based classification,and AOA based parameter optimization.The development of clustering and parameter tuning approaches helps to considerably boost the classification results.Furthermore,Archimedes optimization algorithm(AOA)is utilized to the SVM parameters and boost the medical data classification results.A wide range of simulations takes place to highlight the promising performance of the FCABFS-OSVM technique.An extensive comparison study reported the enhanced outcomes of the FCABFS-OSVM technique over the recent state of art approaches.In future,effective feature selection methodologies can be devised to boost the classifier results.

    Acknowledgement:The authors extend their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number(IFPIP-249-145-1442)and King Abdulaziz University,DSR,Jeddah,Saudi Arabia.

    Funding Statement:This project was supported financially by Institution Fund projects under Grant No.(IFPIP-249-145-1442).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    日韩制服骚丝袜av| 国产日本99.免费观看| 麻豆av噜噜一区二区三区| 成人美女网站在线观看视频| 少妇熟女aⅴ在线视频| 日日啪夜夜撸| 97在线视频观看| 午夜福利视频1000在线观看| 一卡2卡三卡四卡精品乱码亚洲| 中国美白少妇内射xxxbb| 国内少妇人妻偷人精品xxx网站| 日韩欧美三级三区| 毛片女人毛片| 高清在线视频一区二区三区 | 亚洲人成网站高清观看| 看十八女毛片水多多多| 婷婷六月久久综合丁香| 丝袜美腿在线中文| 直男gayav资源| 内射极品少妇av片p| 亚洲真实伦在线观看| 亚洲熟妇中文字幕五十中出| 少妇猛男粗大的猛烈进出视频 | 深夜精品福利| 老司机影院成人| 十八禁国产超污无遮挡网站| 夫妻性生交免费视频一级片| 在线免费观看的www视频| 六月丁香七月| 最近最新中文字幕大全电影3| 国产精品国产高清国产av| 人人妻人人澡欧美一区二区| 最近中文字幕高清免费大全6| 亚洲成a人片在线一区二区| 亚洲人成网站在线观看播放| 波多野结衣高清无吗| 有码 亚洲区| 亚洲国产色片| 国产伦精品一区二区三区四那| 12—13女人毛片做爰片一| 亚洲国产欧美在线一区| 给我免费播放毛片高清在线观看| av在线老鸭窝| 三级国产精品欧美在线观看| 麻豆国产97在线/欧美| 国产老妇伦熟女老妇高清| 亚洲av成人精品一区久久| 熟女电影av网| АⅤ资源中文在线天堂| 99热6这里只有精品| 国产精品电影一区二区三区| 亚洲av中文av极速乱| 有码 亚洲区| 人妻少妇偷人精品九色| 尾随美女入室| 日韩中字成人| 99riav亚洲国产免费| 午夜久久久久精精品| 女同久久另类99精品国产91| 国产男人的电影天堂91| 麻豆成人午夜福利视频| 日韩在线高清观看一区二区三区| 久久久午夜欧美精品| 成人特级av手机在线观看| 久99久视频精品免费| 国产激情偷乱视频一区二区| 2021天堂中文幕一二区在线观| 听说在线观看完整版免费高清| 午夜爱爱视频在线播放| 国产精品不卡视频一区二区| www日本黄色视频网| 狠狠狠狠99中文字幕| 免费看av在线观看网站| 国产精品乱码一区二三区的特点| 国产成人91sexporn| 久久久久九九精品影院| 免费人成在线观看视频色| 99久久久亚洲精品蜜臀av| 国产黄a三级三级三级人| 能在线免费观看的黄片| 中国美白少妇内射xxxbb| 深夜a级毛片| 日韩成人av中文字幕在线观看| 成人二区视频| 波野结衣二区三区在线| АⅤ资源中文在线天堂| 乱系列少妇在线播放| 欧美变态另类bdsm刘玥| 精品久久久久久久久亚洲| 老熟妇乱子伦视频在线观看| 国产精品国产三级国产av玫瑰| 久久午夜亚洲精品久久| 少妇的逼水好多| 2022亚洲国产成人精品| 亚洲aⅴ乱码一区二区在线播放| 免费黄网站久久成人精品| 在线观看66精品国产| av免费在线看不卡| 国产人妻一区二区三区在| 波多野结衣巨乳人妻| 国产极品天堂在线| 69av精品久久久久久| 国内久久婷婷六月综合欲色啪| 免费观看在线日韩| 深爱激情五月婷婷| 久久久久久久久久久丰满| 小说图片视频综合网站| 成人特级av手机在线观看| 色视频www国产| 内射极品少妇av片p| 日韩精品有码人妻一区| 麻豆成人午夜福利视频| 日本熟妇午夜| 九九久久精品国产亚洲av麻豆| 亚洲va在线va天堂va国产| 国产在线精品亚洲第一网站| 亚洲精品久久久久久婷婷小说 | 成人午夜高清在线视频| 国产日韩欧美在线精品| 亚洲乱码一区二区免费版| 国产精品女同一区二区软件| 别揉我奶头 嗯啊视频| 欧美三级亚洲精品| 黄色视频,在线免费观看| 国产一级毛片在线| 婷婷精品国产亚洲av| 国产私拍福利视频在线观看| a级毛色黄片| 看免费成人av毛片| 久久久久久久久大av| 好男人在线观看高清免费视频| 亚洲av中文字字幕乱码综合| 国产不卡一卡二| 插阴视频在线观看视频| 99热精品在线国产| 少妇丰满av| 国产精华一区二区三区| 特级一级黄色大片| 国产精品人妻久久久影院| 狂野欧美白嫩少妇大欣赏| 欧美+日韩+精品| 久久亚洲精品不卡| 一进一出抽搐动态| 老熟妇乱子伦视频在线观看| 国产精品日韩av在线免费观看| 非洲黑人性xxxx精品又粗又长| 91狼人影院| avwww免费| 男插女下体视频免费在线播放| 久久久精品大字幕| 神马国产精品三级电影在线观看| 免费搜索国产男女视频| 午夜精品一区二区三区免费看| 欧美+亚洲+日韩+国产| 搡老妇女老女人老熟妇| 99热精品在线国产| 亚洲欧洲国产日韩| 国产中年淑女户外野战色| 久久精品国产亚洲av涩爱 | 免费人成在线观看视频色| 2021天堂中文幕一二区在线观| 欧美成人a在线观看| 国产日韩欧美在线精品| 村上凉子中文字幕在线| 国产亚洲精品久久久com| 国产精品人妻久久久久久| 少妇被粗大猛烈的视频| 国产成人aa在线观看| 亚洲在久久综合| 国产私拍福利视频在线观看| 女人被狂操c到高潮| 亚洲av二区三区四区| av又黄又爽大尺度在线免费看 | 色尼玛亚洲综合影院| 悠悠久久av| 日韩成人av中文字幕在线观看| 一本精品99久久精品77| 欧美日韩在线观看h| 卡戴珊不雅视频在线播放| 国产高清三级在线| www日本黄色视频网| 久久九九热精品免费| 中文字幕av在线有码专区| 亚洲精品成人久久久久久| 一级毛片我不卡| kizo精华| 亚洲18禁久久av| 国产亚洲欧美98| 欧美日韩综合久久久久久| 久久久久久大精品| 久久人妻av系列| 日本五十路高清| 性插视频无遮挡在线免费观看| 午夜精品一区二区三区免费看| 国产精品无大码| 成人无遮挡网站| 国产探花在线观看一区二区| 亚洲欧洲国产日韩| 欧美3d第一页| 22中文网久久字幕| 美女cb高潮喷水在线观看| 日韩成人伦理影院| 天堂√8在线中文| 亚洲欧美精品综合久久99| 天堂中文最新版在线下载 | 亚洲av中文字字幕乱码综合| 少妇丰满av| 能在线免费观看的黄片| 国产精品久久久久久久电影| 超碰av人人做人人爽久久| 老女人水多毛片| 国产极品天堂在线| 国产真实乱freesex| 久久久久久久久久成人| 哪里可以看免费的av片| 免费黄网站久久成人精品| 国产女主播在线喷水免费视频网站 | 国产精品乱码一区二三区的特点| 国产av不卡久久| 啦啦啦啦在线视频资源| 成人亚洲欧美一区二区av| 国产精品人妻久久久影院| 性欧美人与动物交配| 久久精品91蜜桃| 舔av片在线| 在线播放国产精品三级| 3wmmmm亚洲av在线观看| av女优亚洲男人天堂| 久久久久国产网址| av在线天堂中文字幕| 最近最新中文字幕大全电影3| 国产精品福利在线免费观看| 午夜爱爱视频在线播放| 成年女人看的毛片在线观看| 我要搜黄色片| 欧美高清成人免费视频www| 日韩人妻高清精品专区| 国产精华一区二区三区| .国产精品久久| 嫩草影院精品99| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品日韩在线中文字幕 | 国产乱人视频| 日本一二三区视频观看| 亚洲经典国产精华液单| 一个人免费在线观看电影| 99热精品在线国产| 99久久精品热视频| 晚上一个人看的免费电影| 国产成人精品久久久久久| 最近中文字幕高清免费大全6| av专区在线播放| 99久久精品热视频| 校园春色视频在线观看| 91aial.com中文字幕在线观看| 精品欧美国产一区二区三| 九草在线视频观看| 日韩成人av中文字幕在线观看| 国产精品电影一区二区三区| www.色视频.com| 亚洲成a人片在线一区二区| 国内精品美女久久久久久| av在线播放精品| 国产在线男女| av又黄又爽大尺度在线免费看 | 日本一本二区三区精品| 精品人妻视频免费看| 在线免费十八禁| 三级经典国产精品| 99国产精品一区二区蜜桃av| 国产成人午夜福利电影在线观看| 精品久久久久久久久av| 亚洲在线观看片| 国内揄拍国产精品人妻在线| 中出人妻视频一区二区| 中文欧美无线码| 成人av在线播放网站| 人体艺术视频欧美日本| 欧美日韩乱码在线| 日韩在线高清观看一区二区三区| 色综合站精品国产| 天堂网av新在线| 国产精品av视频在线免费观看| 少妇熟女欧美另类| 久久精品人妻少妇| 午夜爱爱视频在线播放| 12—13女人毛片做爰片一| 能在线免费看毛片的网站| 久久精品国产亚洲av涩爱 | 国产精品乱码一区二三区的特点| 超碰av人人做人人爽久久| 国产激情偷乱视频一区二区| 亚洲av免费在线观看| 欧美极品一区二区三区四区| 五月伊人婷婷丁香| 99热这里只有是精品在线观看| 欧美精品一区二区大全| 高清毛片免费观看视频网站| 欧美最新免费一区二区三区| 天天躁日日操中文字幕| 黄色配什么色好看| 岛国在线免费视频观看| 一个人看视频在线观看www免费| 淫秽高清视频在线观看| a级一级毛片免费在线观看| 国产精品,欧美在线| 午夜精品国产一区二区电影 | 春色校园在线视频观看| 精品不卡国产一区二区三区| videossex国产| 亚洲最大成人中文| av视频在线观看入口| 午夜免费男女啪啪视频观看| 国产精品日韩av在线免费观看| 欧美一级a爱片免费观看看| 亚洲av男天堂| 天堂影院成人在线观看| 亚洲av.av天堂| 99热这里只有精品一区| 色噜噜av男人的天堂激情| 色视频www国产| 久久热精品热| 可以在线观看的亚洲视频| 免费观看在线日韩| 好男人视频免费观看在线| 内射极品少妇av片p| 欧美性猛交╳xxx乱大交人| 成人午夜精彩视频在线观看| 哪里可以看免费的av片| 99久久精品一区二区三区| 亚洲国产欧美在线一区| 亚洲三级黄色毛片| 有码 亚洲区| 免费观看精品视频网站| 久久人人爽人人爽人人片va| 欧美最黄视频在线播放免费| 亚洲国产欧美人成| 国产激情偷乱视频一区二区| 淫秽高清视频在线观看| 日日摸夜夜添夜夜添av毛片| 国产精品女同一区二区软件| 一个人看视频在线观看www免费| av在线天堂中文字幕| 日韩欧美在线乱码| 欧美一区二区亚洲| 欧美人与善性xxx| 免费看美女性在线毛片视频| 伊人久久精品亚洲午夜| 日韩成人av中文字幕在线观看| 国产成人一区二区在线| 青青草视频在线视频观看| 91精品一卡2卡3卡4卡| 一级毛片电影观看 | 欧美激情国产日韩精品一区| 91在线精品国自产拍蜜月| 搞女人的毛片| 成人午夜高清在线视频| 国产黄片美女视频| 亚洲五月天丁香| 三级经典国产精品| 18禁裸乳无遮挡免费网站照片| 婷婷精品国产亚洲av| 欧美成人a在线观看| 婷婷精品国产亚洲av| 性插视频无遮挡在线免费观看| 国产白丝娇喘喷水9色精品| 成人午夜高清在线视频| 亚洲av二区三区四区| 女人十人毛片免费观看3o分钟| 少妇熟女aⅴ在线视频| 日日干狠狠操夜夜爽| 搞女人的毛片| 最近中文字幕高清免费大全6| 日韩国内少妇激情av| 我要搜黄色片| 伦理电影大哥的女人| 成人午夜高清在线视频| 欧美最新免费一区二区三区| 春色校园在线视频观看| 边亲边吃奶的免费视频| 少妇人妻精品综合一区二区 | 毛片一级片免费看久久久久| 99视频精品全部免费 在线| 成人无遮挡网站| 亚洲中文字幕日韩| 国产真实乱freesex| 中文字幕av成人在线电影| 午夜激情福利司机影院| 黄片无遮挡物在线观看| 又爽又黄无遮挡网站| 深夜a级毛片| 亚洲av不卡在线观看| 欧美日韩精品成人综合77777| 99久国产av精品| 中文欧美无线码| 中出人妻视频一区二区| 99久久精品热视频| 亚洲在线观看片| 深夜精品福利| 国产av麻豆久久久久久久| 成年女人永久免费观看视频| 日韩在线高清观看一区二区三区| 亚洲av第一区精品v没综合| 婷婷亚洲欧美| 一级毛片我不卡| 亚洲第一区二区三区不卡| 毛片女人毛片| 又粗又爽又猛毛片免费看| 久久人人爽人人片av| 91aial.com中文字幕在线观看| 欧美成人精品欧美一级黄| 在线观看一区二区三区| 国产在视频线在精品| 在线免费观看的www视频| 成人综合一区亚洲| 青春草亚洲视频在线观看| 国产午夜精品论理片| 岛国在线免费视频观看| 国产亚洲精品久久久久久毛片| 春色校园在线视频观看| 在线观看av片永久免费下载| 女人被狂操c到高潮| 综合色av麻豆| 欧美人与善性xxx| 99国产精品一区二区蜜桃av| 亚洲中文字幕日韩| 国产黄色视频一区二区在线观看 | 一级毛片久久久久久久久女| 老熟妇乱子伦视频在线观看| 国产亚洲av嫩草精品影院| 国产爱豆传媒在线观看| 夜夜夜夜夜久久久久| 精华霜和精华液先用哪个| 欧美另类亚洲清纯唯美| 久久精品国产清高在天天线| 免费人成在线观看视频色| 床上黄色一级片| 午夜视频国产福利| 日本av手机在线免费观看| 国产白丝娇喘喷水9色精品| 男人的好看免费观看在线视频| 一区二区三区高清视频在线| 99热6这里只有精品| 欧美日本亚洲视频在线播放| 欧美极品一区二区三区四区| 亚洲一级一片aⅴ在线观看| 蜜桃久久精品国产亚洲av| 亚洲av男天堂| 国产在线男女| 欧美激情在线99| 全区人妻精品视频| 在线免费观看不下载黄p国产| 欧美日本亚洲视频在线播放| 亚洲精品乱码久久久v下载方式| 久久精品国产清高在天天线| 亚洲av中文字字幕乱码综合| 午夜亚洲福利在线播放| 亚洲成人av在线免费| 久久国内精品自在自线图片| 九九在线视频观看精品| 成人性生交大片免费视频hd| 国产精品无大码| 久久久久久久久久久丰满| 中文精品一卡2卡3卡4更新| 麻豆一二三区av精品| 深爱激情五月婷婷| 少妇熟女aⅴ在线视频| 在线观看午夜福利视频| 国产免费一级a男人的天堂| 久久久久性生活片| 午夜a级毛片| 99热这里只有是精品50| 嫩草影院精品99| 成年版毛片免费区| 久久午夜亚洲精品久久| 久久99精品国语久久久| 极品教师在线视频| 免费不卡的大黄色大毛片视频在线观看 | 日韩亚洲欧美综合| 蜜臀久久99精品久久宅男| 特大巨黑吊av在线直播| 免费电影在线观看免费观看| 亚洲av中文字字幕乱码综合| 欧美zozozo另类| av.在线天堂| 午夜激情欧美在线| 亚洲欧美成人综合另类久久久 | ponron亚洲| 国产单亲对白刺激| 国产精品一及| 免费av观看视频| 国产精品久久久久久av不卡| 欧美一区二区精品小视频在线| 免费看av在线观看网站| 在线免费观看的www视频| 国产精品人妻久久久久久| 久久韩国三级中文字幕| 国产爱豆传媒在线观看| 校园春色视频在线观看| 哪里可以看免费的av片| 久久鲁丝午夜福利片| 国产成人影院久久av| 亚洲精品日韩在线中文字幕 | 精品久久国产蜜桃| 黄色配什么色好看| 在线免费十八禁| 免费观看a级毛片全部| 久久久a久久爽久久v久久| 最近视频中文字幕2019在线8| 老熟妇乱子伦视频在线观看| 国产人妻一区二区三区在| 亚洲精品日韩av片在线观看| 男女那种视频在线观看| 免费观看人在逋| 欧美日韩一区二区视频在线观看视频在线 | 波多野结衣巨乳人妻| 色播亚洲综合网| 精品一区二区三区人妻视频| 性欧美人与动物交配| 免费不卡的大黄色大毛片视频在线观看 | 一级黄片播放器| 男女做爰动态图高潮gif福利片| 精品久久久噜噜| 18禁在线播放成人免费| 日本黄色视频三级网站网址| 欧美3d第一页| 精品午夜福利在线看| 国产探花极品一区二区| 欧美色视频一区免费| av国产免费在线观看| 成人综合一区亚洲| 欧美激情在线99| 欧美一区二区精品小视频在线| 人妻久久中文字幕网| 久久人人爽人人爽人人片va| 黄色配什么色好看| 乱系列少妇在线播放| 日韩精品有码人妻一区| 赤兔流量卡办理| 69av精品久久久久久| 午夜福利高清视频| 校园春色视频在线观看| 欧美一区二区国产精品久久精品| av福利片在线观看| 青春草国产在线视频 | 午夜精品国产一区二区电影 | 久久久精品大字幕| av在线播放精品| 一进一出抽搐gif免费好疼| 亚洲精品456在线播放app| 亚洲精品色激情综合| 伊人久久精品亚洲午夜| 成人av在线播放网站| 只有这里有精品99| 中出人妻视频一区二区| 99久久精品热视频| 天堂网av新在线| 一级毛片电影观看 | 国产av一区在线观看免费| 国产精品国产三级国产av玫瑰| 大又大粗又爽又黄少妇毛片口| 精品久久久久久久久av| 日韩在线高清观看一区二区三区| 欧美日韩乱码在线| 国产精品一区二区在线观看99 | 欧美区成人在线视频| 老司机影院成人| 亚洲精品亚洲一区二区| 99热这里只有是精品在线观看| 黄片wwwwww| 国产大屁股一区二区在线视频| 黑人高潮一二区| 国产av麻豆久久久久久久| 国产精品精品国产色婷婷| 黄色配什么色好看| 插阴视频在线观看视频| 欧美精品一区二区大全| 桃色一区二区三区在线观看| 少妇被粗大猛烈的视频| 一本精品99久久精品77| 少妇的逼好多水| 成人永久免费在线观看视频| 久久韩国三级中文字幕| 永久网站在线| 最近的中文字幕免费完整| 91av网一区二区| 老师上课跳d突然被开到最大视频| 国产成人精品婷婷| 熟妇人妻久久中文字幕3abv| 久久午夜福利片| 12—13女人毛片做爰片一| 国产单亲对白刺激| 免费电影在线观看免费观看| 亚洲精华国产精华液的使用体验 | 欧美日韩综合久久久久久| 精品一区二区三区视频在线| 天天躁夜夜躁狠狠久久av| 91精品国产九色| 国产精品免费一区二区三区在线| a级一级毛片免费在线观看| 嫩草影院新地址| 国产极品精品免费视频能看的| 夜夜夜夜夜久久久久| 久久精品国产清高在天天线| kizo精华| 男女视频在线观看网站免费| 午夜福利在线观看免费完整高清在 | 可以在线观看毛片的网站| 日日干狠狠操夜夜爽| 成人毛片60女人毛片免费| 免费看日本二区| 91麻豆精品激情在线观看国产| 少妇的逼水好多| 丝袜美腿在线中文| 悠悠久久av|