• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Intelligent Fuzzy Based High Gain Non-Isolated Converter for DC Micro-Grids

    2022-08-24 03:31:50BharathidasanIndragandhiRamyaKuppusamyYuvarajaTeekaramanShabanaUroojandNorahAlwadi
    Computers Materials&Continua 2022年5期

    M.Bharathidasan,V.Indragandhi,Ramya Kuppusamy,Yuvaraja Teekaraman,Shabana Uroojand Norah Alwadi

    1School of Electrical Engineering,Vellore Institute of Technology,Vellore,India

    2Department of Electrical and Electronics Engineering,Sri Sairam College of Engineering,Bangalore,India

    3Mobility,Logistics,and Automotive Technology Research Centre,F(xiàn)aculty of Engineering,ETEC,Department of Electrical Engineering and Energy Technology,Vrije Universiteit Brussel,Brussel,1050,Belgium

    4Department of Electrical Engineering,College of Engineering,Princess Nourah bint Abdulrahman University,Riyadh 84428,Saudi Arabia

    5Department of Physics,College of Sciences,Princess Nourah bint Abdulrahman University,Riyadh,11671,Saudi Arabia

    Abstract:Renewable electricity options,such as fuel cells,solar photovoltaic,and batteries,are being integrated,which has made DC micro-grids famous.For DC micro-grid systems, a multi input interleaved non-isolated dc-dc converter is suggested by the use of coupled inductor techniques.Since it compensates for mismatches in photovoltaic devices and allows for separate and continuous power flow from these sources.The proposed converter has the benefits of high gain, a low ripple in the output voltage, minimal stress voltage across the power semiconductor devices, a low ripple in inductor current, high power density, and high efficiency.Soft-switching techniques are used to realize that the reverse recovery issue of the diodes is moderated, the leakage energy is reused, and no new scheme is appropriated.To reduce conduction losses,minimum voltage rating MOSFETs with a low ONresistance can be utilized.The converter can supply the required power from the load in the absence of one or two resources.Furthermore,due to the high gain of boosting voltage, the converter works in an Adaptive Neuro-Fuzzy Inference System (ANFIS).The operation principle, steady-state analysis of the proposed converter, is given and simulated utilizing MATLAB/Simulink simulation software.

    Keywords: Renewable energy sources; DC micro-grid; multi-input converter;soft-switching techniques;high gain

    Abbreviations

    ANFISAdaptive Neuro-Fuzzy Inference System

    CICoupled Inductor

    DCDirect Current

    DDuty Cycles

    EVElectric Vehicle

    FCFuel Cell

    FISFuzzy Inference System

    FPGAField Programmable Gate Arrays

    LCInductor-Capacitor

    LkLeakage Inductance

    LmMagnetizing Inductor

    MOSFETMetal Oxide Semiconductor Field Effect Transistor

    MPPTMaximum Power Point Tracking.

    PVPhotovoltaic

    SCSwitched Capacitor

    SOCState of Charge

    VMVoltage Multiplier

    ZVSZero Voltage Switching

    1 Introduction

    The penetration of distributed generation sources is causing DC micro-grid technology to evolve.To satisfy the demands of the dc load, DC power generators generate a minimum output voltage,necessitating the use of high efficiency, high gain dc-dc converters [1].The rising population’s daily demand for electric energy is a major source of concern for the power sector.Hybridizing energy has picked up fame in grid-connected micro-grid [2,3].Hydropower stations with intra/interannual control provide lots of benefits over other kinds of hydroelectric power,including faster grid response,flexibility,and compatibility in energy generation.For long-term hydropower operations,systematic recommendations on the energy ecosystem are presented in[4].Another choice is to use a quadratic boost converter for applications requiring high gain [5].Other than renewable energy conversion,high gain dc-dc converters are now utilized in a number of applications, including high-intensity discharge lamp ballasts for vehicle headlamps, battery backup systems, electric traction, and some medical equipment[6].Different water-body-top PV plants are being reported in the literature[7,8].The problem of a canal-top PV system and the main grid distributing power to match load demands were discussed in[9].

    Numerous high voltage gain dc-dc converters are introduced in[10,11]to address the disadvantages of simple boost converters for high voltage step-up applications.The source of renewable energy expansion will largely catalyze the use of maximum boost converters with a more efficient and reliable for converting endless energies into a power grid[12].High voltage spikes can cause the severe diode to reverse recovery problems also [13,14].High voltage gain with canceling the input current ripple is presented[15].Multi-inputs converters have been classified into two methods,isolated multi-input converter and non-isolated multi-input converter.

    To achieve the required maximum voltage gain,various isolated dc-dc converter topologies have been proposed in the literature [16,17].However, transformer core saturation is a problem with this type of converter.Hence, a non-isolated dc-dc converter can thus be utilized to reach a high gain of voltage while easy circuit and minimum cost [18].Non-isolated high gain converters provide the following, Voltage Multiplier (VM) cell [19], Switched Capacitor (SC) [20,21], the quadratic boost[22],cascade boost[23].Thus,the resonant inductor is coupled to the SC converter to neglect the problem of diode recovery and to restrict the maximum current[24].

    In [25], high gain of voltage with minimum duty cycles are accomplished at utilizing capacitor charging strategies, and voltage spikes are disposed of on the most switch, an inactive voltage clamp circuit is utilized.In [26], comprehensively review and classification of different dc-dc stepup converters according to their characteristics and methods of increasing voltage.Dual input,dual output,low power converter application is presented in[27].Based on this concept,a dc-dc converter for the hybrid energy storage framework in EV[28].A new double input Zero-Voltage Switching(ZVS)converter comprised of two boost units in [29] can be connected to low-power applications such as portable devices.In[30],a multiphase non-isolated resonant large-gain converter has been proposed for applications of high-current with extensive load ranges.

    A new topology of the interleaved boost converter block diagram will be located in Fig.1.The proper controller is attempted to control the voltage output given to load under different working conditions.In[31],a new boost multi-input dc-dc converter is associated with the grid.Based on duty ratio selection,several coupled inductor-based step-up converter topologies have a high gain of voltage while reducing switch voltage stress[32,33].In order to achieve the desired voltage conversion ratio,the coupled inductor’s turn ratio is often increased, resulting in minimizing the current ripple; an input filter is needed [34].The CI converters may bring about excellent performance by adopting voltage clamp circuits[35,36].The converter offered in[37,38]offers a large boost converter through the use of CI and a voltage lift technique.It combines a soft-switching technique and coupled inductor using a parallel LC resonant tank circuit [39].Non-isolated Quazi Z-source converter along with the CI[40] minimizes the stress of voltage between the components and across the elements and enhances the gain of voltage without limiting the duty cycle.In this paper, a multi input interleaved coupled inductor based non-isolated converter is designed and in order to attain high gain of voltage without a high turn ratio.The main converter topology proposed in Section 2 describes design considerations in Section 3,Simulation results and discussion in Section 4,and Section 5 conclusions.

    Figure 1:Block diagram of a new topology of the interleaved boost converter

    2 Proposed Converter Topology

    The design of a multi-inputs interleaved DC-DC step-up converter along with coupled inductor is delineated in Fig.2.This will expand the voltage gain,maintaining high power density and diminish the voltage stress on the power semiconductor devices,and moderate the current ripple.

    Figure 2:Multi-inputs interleaved DC-DC step-up converter along with the coupled inductor

    This is best suited for high-power application permits for a reduction in the ripple of the input current and conduction mode.The behavioral control portion of this paper of the converter is analyzed with reference to sources.The switching modes of the used converter are visible in Fig.3.

    Figure 3:The new converter switching signals

    2.1 Operation Modes

    This section explains the proposed converter working principles.The new converter can be worked in three other ways utilizing the same circuit by controlling the like switches.

    State-1:During this situation, FC and PV are green charging batteries and supplying power to load.S1, S3, and S4are ON and are driving within the mode as appeared in Fig.4a.Magnetizing inductor (Lm) stores energy.Besides, Lmand leakage inductance (Lk) is charged at source voltage.When the coupling coefficient is 1.The Magnetic inductor current is directly increased.D2and D6don’t conduct,they are reverse biased,and the voltage of the capacitor remains fixed.In either case,D1,D3,D4,and D5will run in this state.At last,load energy is provided by the capacitor output Co.

    Figure 4:Modes of operation(a)state-1(b)state-2(c)state-3

    When the switch is turned on,each leakage inductance and the magnetization are loaded,and the following equation can be achieved.

    where VLkand VLmare the voltage across the leakage inductance voltage and the magnetization inductance,respectively.In view of the coupling effect, the voltages across the leakage and magnetization inductances can be expressed as

    where k-coupling co-efficient and Vin-input voltage

    State-2:In state-2 condition,F(xiàn)C and PV release the battery and provide energy to the load.The switch,S4,is OFF,and S1,S2,S3are ON,as appeared in Fig.4b.D5doesn’t conduct,and after that,they are green reverse biased.During this state,the inductor L1is charged by VPV,and the magnetic inductor Lmdischarges the energy to the output capacitor.Be that as it may,the diode of D1,D2,D3,D4,and D6are forward biased and conduct.

    State-3:FC and PV power the load, whereas the battery is not utilized.In this situation, the system operates without green charging or discharging the battery.The switches S1, S3are ON, and the remaining switches are OFF,as appeared in Fig.4c.The diode of D1,D3,and D4is turned ON.The inductor L1and Lmare green charged through control sources VPVand VFC,individually.

    2.2 Controlling Techniques

    In this article,a controller related to an ANFIS has emerged for a multi-input interleaved boost converter.The ANFIS is a conventional fuzzy system,except that at each stage,the calculations are performed by a layer of hidden neurons, a neural network to enhance the knowledge of the system.Provides learning skills and contains components of in relative parameters of ANFIS membership function and input and output vary with learning.Output errors are used to adapt to the required parameters using standard back-propagation algorithms.Fig.5 shows a flowchart of the power management technique.

    Figure 5:Flowchart of the power management technique

    It is necessary to change the FIS structure by dividing the desired format.In work[41],ANFIS design and implementation reference model controller related MPPT utilizing FPGA for PV.Fig.6 shows the new controller design of the controller for the output ON-OFF switch.The design of Fuzzy based controller to this proposed converter is unique.This is considered as one of the major limitation in this research work.

    Figure 6:ANFIS controller design for output ON-OFF(a)Switch 1and 3(b)Switch 2 and 4

    3 Design Considerations

    Switch current to find out the minimum input voltage, duty cycle (D), for less source voltage is used because it has maximum switch current.

    VIN(min)-Minimum input voltage,VOUT-Required output voltage,η-converter efficiency

    The inductor value is calculated from the current and voltage ripple, respectively.The inductor value is characterized as

    VIN-Input voltage,fs-switching frequency,ΔIL-Estimated inductor ripple current

    IOUT(max)-Maximum output current necessary.

    The coupled inductor turns proportion plays a critical part in regulating the stress of current and voltage between power devices.The average magnetizing inductance current (ILm(avg)) may be determined as follows

    N-turns ratio,Iout-output current

    The magnetizing current ripple(ΔILm)can be specified by

    The magnetizing inductance depends on the source current and may be computed as follows

    Determining the turn’s ratio plays a critical part in getting the gain of voltage, the stress of the voltage on the switch,and the diode.

    The capacitor value is given by the taking after formula

    COUT(min)–minimum capacitor output,ΔVOUT-Preferred ripple of the output voltage.

    Fig.7 depicts the proposed control scheme for E(k),DE(k),and the rule viewer using a membership function fuzzy controller.Fig.8 appearance curves of the duty cycle and voltage gain.It can be observed that a new converter performs maximum gain of voltage without an especially a maximum turn ratio.Fig.9 displays the power loss error compared to the power loss of the proposed converter.It can be noticed that the mainline losses of power are diode inductor losses,switch loss,and inductor losses.They are improving the efficiency of the new converter.

    Figure 7:(a)Design of fuzzy(b)Input variable DE(k)Membership functions(c)Input variable E(k)Membership functions(d)Rule viewer

    Figure 8:Voltage gain vs.duty cycle

    Figure 9:Input voltage vs.power loss

    4 Simulation Results and Discussion

    To affirm the effectiveness of the new proposed is simulated utilizing MATLAB/Simulink software package.Each source inputs are configured in a 20 V.24 V,3-Ah lithium-ion battery that is utilized as an element of energy storage.

    High power density, high reliability, act, and high-temperature recycling are the lithium-ion batteries characteristics.Be that as its one of demerits is the high cost [42].Li-ion type batteries are utilized broadly due to their great act in practical electronic devices [43].The proposed converter simulation parameters are appropriate in Tab.1.

    Table 1:Continued

    In order to fulfill the control battery state of charge (SOC), the ANFIS control mechanism is used.Here the battery to charger and discharge on their SOC, the ANFIS controller has a greater dynamic response, and it has the merits of less stable errors and faster response times.Comparative analysis has also been performed for better analysis of results;the results of the simulations confirm the newly implemented converter performance(Figs.10 and 11)and show the transient behavior.Fig.12 appears the output current and voltage waveform obtained from the proposed converter simulation.The system’s output voltage remains very well regulated at the required level,with no overshoots.The output voltage of the system has a very low level of ripple Fig.13.

    Figure 10:Simulation results of input voltages and output voltage

    Figure 11:Simulation result of the inductor current

    Figure 12:Simulation results of load current and voltage

    Figure 13:Simulation results of battery SOC,battery current,and voltage

    Moreover, the MOSFET voltage stress is lower than the output voltage.As a result of soft switching technology,turn-OFF switching losses in each switch would be reduced and helps to improve the system efficiency.

    From Fig.14,the normalized voltage stress with respect to the semiconductor is significantly less than with other converters.Inductor current sharing is obviously greater, which reduces the current ripple.

    Figure 14:Switch voltage stress vs.duty cycle

    This reduces the output capacitor’s size and increases the converter’s overall power density.Fig.15 shows the converter efficiency.Subsequently,the proposed converter made it incredibly reasonable for connecting a renewable energy application that needed high voltage gain and efficiency.All of the simulation results show that the proposed interleaved non-isolated great boost dc-dc converter control technique for renewable energy system applications will provide reasonable results even when converter operations change.

    Figure 15:Output power and efficiency

    4.1 Description

    The following discussion points may be extracted from the simulations and case studies mentioned above.

    ·An impartiality comparison with previous research validates the constructed interleaved nonisolated coupled inductor-based high step-up dc-dc converter,as shown in Tab.2.

    ·The simulation results illustrate the transient behavior of the newly implemented converter Figs.10 and 11.The output current and voltage waveforms from the suggested converter simulation are shown in Fig.12.

    ·The ANFIS controller (Fig.6) has a fast response time, a better dynamic response, and it is utilized to monitor the output voltage variations.

    ·Voltage stress with respect to the semiconductor The ANFIS controller(Fig.14)is significantly less than with other converters,and efficiency also improved(Fig.14).

    ·A non-isolated interleaved high gain DC-DC converter with coupled inductor was proposed and to attain a high gain of voltage.

    Table 2:Execution comparison between other topologies and proposed converter

    Table 2:Continued

    5 Conclusions

    A non-isolated interleaved high gain DC-DC converter with coupled inductor was proposed in this paper in order to attain a high gain of voltage without a high turn ratio.In the absence of one or two resources,the converter is capable of supplying the required power to the load.The modeled converter is in three separate operating states and is used to create a suitable controller.The gain of voltage,stress voltage on the switches and diodes, conduction losses, and performance of the proposed converter were all studied.The percentage of voltage stress on diodes and switches was lower in the proposed converter as compared to the output voltage, and low-voltage rated MOSFETs with a limited ONresistance were supplied to minimize the loss of conduction.It is also possible to obtain a low-ripple continuous input current,and the ANFIS regulation technique would be used to monitor the output voltage variations.The converter process is evaluated and verified using Matlab/Simulink simulation.

    Acknowledgement:This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.

    Funding Statement:This research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    美女视频免费永久观看网站| 一本—道久久a久久精品蜜桃钙片| 日本-黄色视频高清免费观看| 国产伦在线观看视频一区| 如何舔出高潮| 女性被躁到高潮视频| 卡戴珊不雅视频在线播放| 免费观看性生交大片5| 我要看日韩黄色一级片| 免费大片18禁| 国产高清国产精品国产三级| 久久久久视频综合| 亚洲精品乱久久久久久| 一级毛片 在线播放| 国产成人免费观看mmmm| 色吧在线观看| 国产亚洲午夜精品一区二区久久| 免费大片18禁| 亚洲高清免费不卡视频| av国产久精品久网站免费入址| 日本av手机在线免费观看| 亚洲欧洲精品一区二区精品久久久 | 色5月婷婷丁香| 在线观看一区二区三区激情| 久久久国产欧美日韩av| 免费黄网站久久成人精品| 欧美日韩亚洲高清精品| 九九爱精品视频在线观看| 内地一区二区视频在线| 在线观看人妻少妇| 亚洲国产精品国产精品| 国产免费又黄又爽又色| 亚洲三级黄色毛片| 国产成人精品一,二区| 久久久a久久爽久久v久久| 蜜桃久久精品国产亚洲av| 又爽又黄a免费视频| 一级av片app| 熟妇人妻不卡中文字幕| 免费少妇av软件| 精品久久久噜噜| 国产在线男女| 午夜免费男女啪啪视频观看| 色5月婷婷丁香| 五月开心婷婷网| 精品国产一区二区三区久久久樱花| 最近中文字幕2019免费版| 午夜福利在线观看免费完整高清在| 黑丝袜美女国产一区| 亚洲成色77777| av天堂中文字幕网| 日本免费在线观看一区| 久久人妻熟女aⅴ| 日本黄大片高清| 日韩一区二区视频免费看| 午夜免费观看性视频| 久久人人爽人人片av| 日本午夜av视频| 亚洲精品,欧美精品| 国产一区二区在线观看日韩| 视频区图区小说| xxx大片免费视频| 一级毛片电影观看| 嫩草影院入口| 99九九在线精品视频 | 人人妻人人爽人人添夜夜欢视频 | 亚洲精品日韩在线中文字幕| 亚洲精品视频女| av免费观看日本| 日韩中文字幕视频在线看片| 噜噜噜噜噜久久久久久91| 啦啦啦中文免费视频观看日本| 国模一区二区三区四区视频| 日韩 亚洲 欧美在线| 男人和女人高潮做爰伦理| 亚洲va在线va天堂va国产| 亚洲av免费高清在线观看| 日本黄色片子视频| 国产无遮挡羞羞视频在线观看| 中文字幕免费在线视频6| 国产免费又黄又爽又色| 97超碰精品成人国产| 国产熟女欧美一区二区| 22中文网久久字幕| 最新的欧美精品一区二区| 国内少妇人妻偷人精品xxx网站| 国产极品天堂在线| 深夜a级毛片| 视频区图区小说| 777米奇影视久久| 免费久久久久久久精品成人欧美视频 | 亚洲高清免费不卡视频| 99久久人妻综合| 国产高清不卡午夜福利| xxx大片免费视频| a 毛片基地| 午夜视频国产福利| 日韩伦理黄色片| 亚洲高清免费不卡视频| 国产爽快片一区二区三区| 人人妻人人看人人澡| 内射极品少妇av片p| a级片在线免费高清观看视频| 久久鲁丝午夜福利片| 日本黄色日本黄色录像| 在线精品无人区一区二区三| 欧美激情极品国产一区二区三区 | 国产精品久久久久成人av| 青春草国产在线视频| 欧美变态另类bdsm刘玥| av福利片在线| 久久6这里有精品| 女的被弄到高潮叫床怎么办| 免费观看av网站的网址| 国产成人精品婷婷| 久久精品久久久久久久性| 国产成人freesex在线| 免费播放大片免费观看视频在线观看| 三级经典国产精品| 日韩三级伦理在线观看| 久久99热6这里只有精品| 国产成人freesex在线| 草草在线视频免费看| 插阴视频在线观看视频| 亚洲欧美成人精品一区二区| 国产一区二区在线观看av| 国产精品熟女久久久久浪| 日韩欧美一区视频在线观看 | 丝瓜视频免费看黄片| 亚洲电影在线观看av| 黑人猛操日本美女一级片| 99热6这里只有精品| 国产色爽女视频免费观看| 免费看不卡的av| 看十八女毛片水多多多| 亚洲av欧美aⅴ国产| 久久精品国产自在天天线| 国产精品人妻久久久影院| 亚洲欧洲精品一区二区精品久久久 | 春色校园在线视频观看| 亚洲欧美日韩另类电影网站| 久久久久久人妻| 亚洲av成人精品一区久久| a级片在线免费高清观看视频| 久久久久久久久久久免费av| 边亲边吃奶的免费视频| 如日韩欧美国产精品一区二区三区 | 午夜精品国产一区二区电影| 国产午夜精品一二区理论片| 日韩,欧美,国产一区二区三区| 三级国产精品欧美在线观看| 如日韩欧美国产精品一区二区三区 | 乱码一卡2卡4卡精品| 大又大粗又爽又黄少妇毛片口| 日韩一区二区视频免费看| 欧美97在线视频| 欧美精品高潮呻吟av久久| 久久狼人影院| 国产精品一区二区三区四区免费观看| 大又大粗又爽又黄少妇毛片口| 亚洲欧美日韩东京热| 国产精品久久久久久久电影| 亚洲真实伦在线观看| 亚洲国产精品专区欧美| 国产精品一区二区在线不卡| 一区二区三区免费毛片| 性色av一级| 国产成人精品一,二区| 亚洲在久久综合| 99视频精品全部免费 在线| 久久99精品国语久久久| www.色视频.com| 日韩强制内射视频| av卡一久久| 水蜜桃什么品种好| 亚洲精品乱码久久久v下载方式| 国产精品99久久久久久久久| 亚洲精品乱码久久久久久按摩| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩熟女老妇一区二区性免费视频| 中国三级夫妇交换| 亚洲精品456在线播放app| 人人妻人人澡人人爽人人夜夜| 久久久国产一区二区| 亚洲精品456在线播放app| 夜夜看夜夜爽夜夜摸| 国产亚洲最大av| 精品99又大又爽又粗少妇毛片| 天堂中文最新版在线下载| 国国产精品蜜臀av免费| 在线观看人妻少妇| 精品久久久久久久久亚洲| 国产成人免费无遮挡视频| 大片免费播放器 马上看| 精品人妻偷拍中文字幕| 国产成人免费观看mmmm| 亚洲国产色片| 午夜免费男女啪啪视频观看| 2022亚洲国产成人精品| 久久综合国产亚洲精品| 国产无遮挡羞羞视频在线观看| h视频一区二区三区| 天天操日日干夜夜撸| 欧美少妇被猛烈插入视频| 亚洲欧美日韩另类电影网站| 九草在线视频观看| 亚洲欧美一区二区三区黑人 | av免费在线看不卡| 国产精品久久久久成人av| 人妻 亚洲 视频| 亚洲欧美精品自产自拍| 国产成人91sexporn| 99九九在线精品视频 | 街头女战士在线观看网站| 中国国产av一级| 人妻少妇偷人精品九色| 欧美成人午夜免费资源| 久久久久久久久久久久大奶| 日韩欧美精品免费久久| 国产在线视频一区二区| 国产高清国产精品国产三级| 精品久久久噜噜| 欧美日韩精品成人综合77777| 日本欧美国产在线视频| 亚洲av二区三区四区| 久久久精品94久久精品| 一级爰片在线观看| 少妇人妻久久综合中文| 亚洲av不卡在线观看| 日本-黄色视频高清免费观看| 欧美日韩视频高清一区二区三区二| 国产色爽女视频免费观看| 如日韩欧美国产精品一区二区三区 | 99九九线精品视频在线观看视频| 国产在线一区二区三区精| 免费观看在线日韩| 亚洲国产欧美在线一区| 国产精品熟女久久久久浪| 国产日韩欧美在线精品| 成人毛片a级毛片在线播放| 在线观看三级黄色| 热99国产精品久久久久久7| 欧美精品高潮呻吟av久久| 久久人妻熟女aⅴ| 久久久国产一区二区| 国产乱来视频区| 免费看光身美女| 国产亚洲91精品色在线| 伊人久久国产一区二区| 欧美bdsm另类| 免费看av在线观看网站| 国产精品国产三级专区第一集| 国产精品久久久久成人av| 久久久久国产网址| 欧美另类一区| 大又大粗又爽又黄少妇毛片口| 国产真实伦视频高清在线观看| 日本欧美国产在线视频| 人体艺术视频欧美日本| 黑人猛操日本美女一级片| 精品人妻熟女av久视频| 成人18禁高潮啪啪吃奶动态图 | 搡女人真爽免费视频火全软件| 丰满乱子伦码专区| 韩国av在线不卡| 九草在线视频观看| 极品人妻少妇av视频| 美女cb高潮喷水在线观看| 精品一区二区三卡| 国产黄色免费在线视频| av天堂久久9| 女的被弄到高潮叫床怎么办| 熟女电影av网| 日韩av免费高清视频| 日本黄色片子视频| 狂野欧美白嫩少妇大欣赏| 99久久综合免费| 一个人免费看片子| 久久女婷五月综合色啪小说| 国产成人91sexporn| 少妇人妻精品综合一区二区| 九草在线视频观看| 99久久中文字幕三级久久日本| 亚洲欧美清纯卡通| 欧美变态另类bdsm刘玥| 日韩欧美精品免费久久| tube8黄色片| 婷婷色麻豆天堂久久| av国产精品久久久久影院| a级毛色黄片| 国产精品一区二区性色av| 精品卡一卡二卡四卡免费| 亚洲性久久影院| 欧美国产精品一级二级三级 | 26uuu在线亚洲综合色| 免费在线观看成人毛片| 人妻夜夜爽99麻豆av| 国精品久久久久久国模美| 精品亚洲成国产av| 中文天堂在线官网| 伦理电影免费视频| 亚洲图色成人| 国产熟女欧美一区二区| 色婷婷av一区二区三区视频| 中文乱码字字幕精品一区二区三区| 两个人免费观看高清视频 | 黄色视频在线播放观看不卡| 人人妻人人爽人人添夜夜欢视频 | 亚洲欧美清纯卡通| 久久久久国产网址| 国产高清有码在线观看视频| 欧美+日韩+精品| 亚洲精品国产成人久久av| 成人综合一区亚洲| 精品午夜福利在线看| 狠狠精品人妻久久久久久综合| 日本黄大片高清| 黄色怎么调成土黄色| 如何舔出高潮| 精品国产露脸久久av麻豆| 精品久久久久久久久av| 啦啦啦啦在线视频资源| 成人亚洲欧美一区二区av| 日韩av免费高清视频| 一级av片app| 日本-黄色视频高清免费观看| 王馨瑶露胸无遮挡在线观看| 久久久国产精品麻豆| 在线观看国产h片| 国产av一区二区精品久久| 777米奇影视久久| 国产高清三级在线| 亚洲av福利一区| 国产色爽女视频免费观看| www.色视频.com| 欧美成人午夜免费资源| www.色视频.com| 亚洲精品乱码久久久v下载方式| av福利片在线| 丝袜在线中文字幕| 亚洲熟女精品中文字幕| 亚洲国产成人一精品久久久| 视频区图区小说| 午夜精品国产一区二区电影| 久久久久精品久久久久真实原创| 亚洲精品乱码久久久v下载方式| 22中文网久久字幕| 国产亚洲欧美精品永久| 少妇人妻 视频| 美女内射精品一级片tv| 成人综合一区亚洲| 国内少妇人妻偷人精品xxx网站| 日韩伦理黄色片| 亚洲va在线va天堂va国产| 国产成人精品一,二区| 伊人久久精品亚洲午夜| 精品国产乱码久久久久久小说| 国产免费视频播放在线视频| 久久精品国产鲁丝片午夜精品| 日韩,欧美,国产一区二区三区| 欧美精品一区二区免费开放| 国产男人的电影天堂91| 91精品国产国语对白视频| 三级国产精品片| 日韩熟女老妇一区二区性免费视频| 99久久精品热视频| 丝袜脚勾引网站| 免费看光身美女| 桃花免费在线播放| 少妇人妻精品综合一区二区| 精品酒店卫生间| 精品久久国产蜜桃| 99久久人妻综合| 日本与韩国留学比较| 能在线免费看毛片的网站| 日韩电影二区| 亚洲av日韩在线播放| 国产亚洲午夜精品一区二区久久| 欧美 亚洲 国产 日韩一| 免费人成在线观看视频色| 久久99精品国语久久久| 精品久久久精品久久久| 欧美高清成人免费视频www| 国产一区二区在线观看日韩| 国产精品一区www在线观看| 中文资源天堂在线| 3wmmmm亚洲av在线观看| 亚洲婷婷狠狠爱综合网| 亚洲三级黄色毛片| 精品人妻偷拍中文字幕| 人人澡人人妻人| 中文字幕制服av| 男女免费视频国产| 国产亚洲最大av| 中文字幕人妻熟人妻熟丝袜美| 日韩欧美 国产精品| 亚洲精品久久午夜乱码| 欧美97在线视频| 国产精品偷伦视频观看了| 高清不卡的av网站| 晚上一个人看的免费电影| 国产成人精品福利久久| 精品午夜福利在线看| 免费黄色在线免费观看| 国产高清不卡午夜福利| 精品一区在线观看国产| 高清在线视频一区二区三区| 这个男人来自地球电影免费观看 | 人体艺术视频欧美日本| 国产亚洲欧美精品永久| 在线观看www视频免费| 亚洲国产日韩一区二区| 国产成人免费观看mmmm| 亚洲欧美中文字幕日韩二区| 久久久久国产网址| 十分钟在线观看高清视频www | 极品少妇高潮喷水抽搐| 日本与韩国留学比较| 国产精品久久久久成人av| 免费大片黄手机在线观看| √禁漫天堂资源中文www| 自线自在国产av| 2022亚洲国产成人精品| 精品久久久精品久久久| 99久久精品一区二区三区| 亚洲精品久久久久久婷婷小说| 日韩成人av中文字幕在线观看| 午夜精品国产一区二区电影| 伦理电影大哥的女人| 中国三级夫妇交换| 嘟嘟电影网在线观看| 国产av精品麻豆| 美女国产视频在线观看| 亚洲欧美一区二区三区国产| 黄色一级大片看看| 精品国产一区二区久久| 国产精品99久久99久久久不卡 | 亚洲伊人久久精品综合| 亚洲国产最新在线播放| 国产午夜精品一二区理论片| 欧美bdsm另类| 中文乱码字字幕精品一区二区三区| 不卡视频在线观看欧美| 亚洲欧洲日产国产| 欧美精品高潮呻吟av久久| 国产精品.久久久| 久久99蜜桃精品久久| av不卡在线播放| 久久亚洲国产成人精品v| 亚洲欧美成人综合另类久久久| 最近2019中文字幕mv第一页| 亚洲欧美日韩东京热| 一级毛片电影观看| 九九爱精品视频在线观看| 91aial.com中文字幕在线观看| 一本久久精品| 国产成人一区二区在线| 亚洲欧洲日产国产| 国产日韩欧美在线精品| 精品一区二区免费观看| 欧美精品亚洲一区二区| 国产成人精品久久久久久| 亚洲婷婷狠狠爱综合网| 欧美老熟妇乱子伦牲交| 亚洲精品色激情综合| 亚洲成人一二三区av| 亚洲av日韩在线播放| 亚洲av电影在线观看一区二区三区| 乱人伦中国视频| 91aial.com中文字幕在线观看| 女性被躁到高潮视频| 成人亚洲精品一区在线观看| 久久影院123| 久久这里有精品视频免费| 丰满乱子伦码专区| 大香蕉久久网| 亚洲综合精品二区| 2022亚洲国产成人精品| 高清毛片免费看| 亚州av有码| 97在线人人人人妻| 国产精品秋霞免费鲁丝片| 超碰97精品在线观看| 亚洲av欧美aⅴ国产| 午夜福利视频精品| 久久这里有精品视频免费| 26uuu在线亚洲综合色| 中文乱码字字幕精品一区二区三区| 99视频精品全部免费 在线| 久久青草综合色| 午夜免费男女啪啪视频观看| 在线天堂最新版资源| 一本久久精品| 国产亚洲5aaaaa淫片| 精品99又大又爽又粗少妇毛片| 亚洲精品色激情综合| 久久狼人影院| 国产亚洲91精品色在线| 涩涩av久久男人的天堂| 一区二区三区精品91| 久久久久精品性色| 久久女婷五月综合色啪小说| 9色porny在线观看| 一个人免费看片子| 91aial.com中文字幕在线观看| 中文乱码字字幕精品一区二区三区| av有码第一页| 久久人人爽av亚洲精品天堂| 国产又色又爽无遮挡免| 夫妻午夜视频| 夜夜爽夜夜爽视频| 亚州av有码| 亚洲av成人精品一区久久| 少妇的逼好多水| 国产在线视频一区二区| 我要看黄色一级片免费的| 只有这里有精品99| 国产亚洲av片在线观看秒播厂| 一级a做视频免费观看| 亚洲欧美日韩东京热| 婷婷色综合www| 自拍偷自拍亚洲精品老妇| 久热久热在线精品观看| 久久精品国产自在天天线| 在线观看www视频免费| 最新的欧美精品一区二区| 乱系列少妇在线播放| 久久久久久久久久人人人人人人| 日本爱情动作片www.在线观看| 国产在线男女| 日韩三级伦理在线观看| 国产深夜福利视频在线观看| 亚洲欧美精品专区久久| 久久久久精品性色| 国产成人精品久久久久久| 亚洲四区av| 国产免费福利视频在线观看| 日韩亚洲欧美综合| 精品国产一区二区三区久久久樱花| 9色porny在线观看| av专区在线播放| 2018国产大陆天天弄谢| 精品亚洲乱码少妇综合久久| 婷婷色综合大香蕉| 啦啦啦啦在线视频资源| 亚洲精品视频女| 丰满饥渴人妻一区二区三| 久久久午夜欧美精品| 啦啦啦啦在线视频资源| 久久精品国产自在天天线| 狠狠精品人妻久久久久久综合| 九色成人免费人妻av| 五月开心婷婷网| 乱系列少妇在线播放| 一区二区av电影网| 国产午夜精品一二区理论片| 最后的刺客免费高清国语| 国产精品偷伦视频观看了| 丁香六月天网| 精品少妇久久久久久888优播| 国产精品一区二区性色av| 纯流量卡能插随身wifi吗| 有码 亚洲区| 久久女婷五月综合色啪小说| 国产视频内射| 爱豆传媒免费全集在线观看| 国产一区二区三区综合在线观看 | 亚洲欧洲精品一区二区精品久久久 | 国产精品免费大片| 免费人成在线观看视频色| 又粗又硬又长又爽又黄的视频| 国产高清三级在线| 欧美精品国产亚洲| 日本91视频免费播放| 亚洲美女视频黄频| 十八禁高潮呻吟视频 | 最近2019中文字幕mv第一页| 午夜日本视频在线| 久久精品国产亚洲网站| 日本色播在线视频| 久久久久久久大尺度免费视频| 99热国产这里只有精品6| 少妇人妻精品综合一区二区| 亚洲av日韩在线播放| a 毛片基地| 天天操日日干夜夜撸| 国产精品久久久久久av不卡| 日韩,欧美,国产一区二区三区| 热re99久久国产66热| 欧美日韩综合久久久久久| 欧美 日韩 精品 国产| 久久99精品国语久久久| 热re99久久精品国产66热6| 日本色播在线视频| 免费看av在线观看网站| av在线观看视频网站免费| 欧美成人精品欧美一级黄| 色婷婷av一区二区三区视频| 另类亚洲欧美激情| 18禁在线无遮挡免费观看视频| 一级毛片黄色毛片免费观看视频| 国产精品久久久久成人av| 国产成人精品无人区| 少妇 在线观看| 免费人妻精品一区二区三区视频| 特大巨黑吊av在线直播| 国产成人免费观看mmmm| a级一级毛片免费在线观看| 成人特级av手机在线观看| 国产伦理片在线播放av一区| 视频中文字幕在线观看| av有码第一页| 99久久综合免费| 熟女电影av网| 在线 av 中文字幕|