• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Diabetic Retinopathy Detection Using Classical-Quantum Transfer Learning Approach and Probability Model

    2022-08-24 03:30:54AmnaMirUmerYasinSalmanNaeemKhanAtifaAtharRiffatJabeenandSehrishAslam
    Computers Materials&Continua 2022年5期

    Amna Mir,Umer Yasin,Salman Naeem Khan,Atifa Athar,Riffat Jabeen and Sehrish Aslam

    1Department of Physics,Comsats University Islamabad,Lahore Campus,Lahore,54000,Pakistan

    2Department of Statistics,Comsats University Islamabad,Lahore Campus,Lahore,54000,Pakistan

    3Department of Computer Science,Comsats University Islamabad,Lahore Campus,Lahore,54000,Pakistan

    Abstract: Diabetic Retinopathy (DR) is a common complication of diabetes mellitus that causes lesions on the retina that affect vision.Late detection of DR can lead to irreversible blindness.The manual diagnosis process of DR retina fundus images by ophthalmologists is time consuming and costly.While, Classical Transfer learning models are extensively used for computer aided detection of DR; however, their maintenance costs limits detection performance rate.Therefore, Quantum Transfer learning is a better option to address this problem in an optimized manner.The significance of Hybrid quantum transfer learning approach includes that it performs heuristically.Thus,our proposed methodology aims to detect DR using a hybrid quantum transfer learning approach.To build our model we extract the APTOS 2019 Blindness Detection dataset from Kaggle and used inception-V3 pre-trained classical neural network for feature extraction and Variational Quantum classifier for stratification and trained our model on Penny Lane default device,IBM Qiskit BasicAer device and Google Cirq Simulator device.Both models are built based on PyTorch machine learning library.We bring about a contrast performance rate between classical and quantum models.Our proposed model achieves an accuracy of 93%–96% on the quantum hybrid model and 85%accuracy rate on the classical model.So,quantum computing can harness quantum machine learning to do work with power and efficiency that is not possible for classical computers.

    Keywords: Diabetic Retinopathy(DR);quantum transfer learning;inception-V3;variational quantum circuit;image classification

    1 Introduction

    Diabetic retinopathy(DR)is the most common form of diabetic eye disease[1].Diabetic retinopathy usually only affects people who have chronic diabetes (diagnosed or undiagnosed).Diabetic retinopathy causes an array of long-term systemic complications that have considerable impact on the patients as the disease typically affect individuals in their most reproductive years.The World Health Organization has declared that,in 2030 diabetes will be the most serious and 7th highest death causing disease across world.DR occurs due to the damage of tiny blood vessels in the retina due to chronic diabetics.This may cause hemorrhages,exudates and even swelling of the retina can cause blind spots blurry vision.Diabetic Retinopathy is a major cause of vision loss and blindness affecting millions of people across the globe.If DR is diagnosed early,it can be managed using available treatments.Regular eye fundus examination is necessary because DR do not present any symptoms at early stages.The retinal abnormalities in DR also include Hemorrhages(HM),“Cotton wool”spots,Microaneurysm(MA),Retinal neovascularization,hard exudates,which are clearly presented in Fig.1.

    Figure 1:Normal eye and Infected eye[2]

    In recent years,classical transfer learning approaches are used in the field of image classification,segmentation,and screening for DR.However,limited detection performance rates are hinderance to computer aided diagnostic.A breakthrough in the field of quantum computing can help in giving the ophthalmologist a second opinion to solve this problem by using hybrid quantum transfer learning approach.This quantum approach can result into more efficient detection of DR in patients as compared to the classical transfer learning[3,4].Quantum transfer learning and Principal Component Analysis(PCA)is currently used in various medical diagnostics[2].Zhang[5]used pathological images for Non-Hodgkin Lymphoma analysis.Similarly,classification of Arabic sign language is done using same hybrid approach[6].Therefore,this work presents a hybrid approach of quantum learning model for DR detection.

    This paper presents a hybrid approach for early detection of DR.We have compared the results of our three hybrid Quantum Transfer Learning models with one classical Transfer Learning model.We have labeled our data set into two categories i.e., no DR or DR.To build Quantum Transfer learning model, we have used inception-V3 [7] pre trained neural network for feature extraction and used quantum variational circuit for classification.Further our model is trained on penny lane default device,IBM Qiskit BasicAer device and Google Cirq Simulator device.We have built Classical transfer model on the same parameters and learning rates as defined in Quantum transfer learning model.Moreover,both models are based on pytorch machine learning Library.Our proposed model achieves an accuracy of 93%–96% on hybrid models and 85% accuracy rate on classical model.Quantum transfer learning approach has many advantages over conventional diagnostic techniques.This approach has less probability of human error and it is found to be more efficient and rapid way of finding the lesions in retina.Quantum computing approaches are great for solving optimization problems as compared to classical computing approaches.

    2 Literature Review

    Transfer learning refers to a technique for predictive modeling on a different but somehow similar problem that can be used partially or entirely to accelerate the training and improve the performance of a model.It can train deep neural network with comparatively small size of data.If a previously trained artificial neural network is successful in solving a particular problem, it can be reused with some additional training to solve a problem.Let’s consider a pre-trained deep neural network with the data set used for the solution of a problem.Transfer learning can be used to accelerates the training of neural networks as either a weight initialization scheme or feature extraction method that is retrained to solve a different or similar problem with a new dataset.

    Quantum machine learning extends the concept of transfer learning, widely applied in modern machine learning algorithms,to the emerging context of hybrid neural networks composed of classical and quantum elements.In Quantum transfer learning we focus mainly on the paradigm in which a pre-trained classical network is modified and augmented by a final quantum layer.We can use any pre trained classical neural network according to our problem for feature extraction.To classify these features with the help of “dressed quantum circuit”we need to reduce output-dimensional feature vector to final dimensions with linear transformation [8].We commonly use variational quantum classifier to classify output features from built-in neural network and variational quantum classifier used in this regard as presented in Fig.2.

    Figure 2:Variational Quantum Classifier with embedding layers U(x)and variational circuit V(θ)and final measurements in classical output f(x)εc

    In Fig.2 we have presented three basic components (embedding layers U(x), variational circuit V(θ) and final measurements) on which Variational Quantum Classifier (VQC) is built [9].We have adopted a different method to get data into quantum computers and we have used four major data encoding techniques like:Basis Encoding, Amplitude Encoding, Angle Encoding and Higher order embedding.

    One of the most important components in VQC is variational circuit.Fig.3 presents variational circuit for one qubit operation.

    Figure 3:Simple case of one Qubit

    Stateafter operation:

    |ψ >=Ry(θ2)Rx(θ1)|0>

    Sonow we can calculate the expectations value:

    <ψ|?z|ψ >=<0|Rx(θ1)?Ry(θ2)??zRy(θ2)Rx(θ1)|0>

    Aftersolving above equation we get:

    =Cos(θ1)Cos(θ2)(Direct Solved)

    It’s shows that our variational circuit depend’s on the two parameters likeθ1&θ2

    In past,many works have been reported to solve DR problem by using classical machine learning approaches using different datasets.Mansour [10] used a deep convolution neural network using transfer learning for feature extraction when building a computer aided diagnosis for DR.

    To avoid the time and resource consumption,Mohammadian[11]fine-tuned the Inception-V3 and Xception pre-trained models to classify the DR dataset into two classes.After using data augmentation to balance the dataset,an accuracy score of 87.12%on the Inception-V3,and 74.49%on the Xception model is reported.Wan et al.[12]implemented transfer learning and hyper parameter tuning on the pre-trained models AlexNet, VggNet-s, VggNet-16, VggNet-19, GoogleNet and RestNet using the Kaggle dataset and compared their performances.The highest accuracy score was that of VggNet-s model,which reached 95.68%when training with hyper-parameter tuning.Transfer learning was used to work around the problem of insufficient training dataset in for retinal vessel segmentation.Dutta et al.[13]used 2000 fundus images to train a shallow feed forward neural network,deep neural network and VggNet-16 model.On a test dataset of 300 images,the shallow neural network scored an accuracy of 42%,and the deep neural network scored 86.3%while the VggNet-16 scored 78.3%accuracy.

    It is quite evident from the majority of the work in diabetic retinopathy detection revolves around the use of various transfer learning models and performance comparison of these models.It is also observed that less emphasis has been given on improvement of quality of the diabetic retinopathy dataset which could lead to more accurate results.It is important to highlight the fact that the reliability of results generated from the transfer learning model depends on the features of the dataset.Google’s recent achievement of quantum supremacy marked the first glimpse of this promised power.This is reminiscent of how machine learning evolved towards deep learning with the advent of new computational capabilities.These new algorithms use parameterized quantum transformations called parameterized quantum circuits(PQCs),Quantum Neural Networks(QNNs),Variational quantum circuits and Dressed quantum circuits.In analogy with classical transfer learning,the parameters of a variational quantum circuits are then optimized with respect to a cost functionviaeither black-box optimization heuristics or gradient-based methods.

    3 Limitations of Existing Works and Contributions

    A tabular comparison has been outlined to discuss the limitations and contributions of the existing works.

    Table 1:Comparative analysis of existing works and their limitations and contributions

    4 Material and Method

    4.1 Dataset

    The dataset we used in our study is a publicly available retinal fundus images database from Kaggle (APTOS 2019 Blindness Detection) [14] consisting of 3662 images.This database is formed by technicians as they traveled in rural areas to take images for ophthalmologist’s review regarding diagnosis.This process is time and resource consuming.Therefore, in current study this dataset is used to get computer aided ability to screen images without the help of ophthalmologists for timely detection of disease.The obtained dataset was weed up and a clean dataset was created.The resulting dataset is labeled into two categories.In order to train our model, we have used 789 non-DR and 738 DR images.Validation of our model is carried out by using 384 images from which 198 non-DR and 186 DR images of patients.We test out model on 1738 different and random images to evaluate performance of both types of models i.e., Classical transfer learning-based model and Quantum transfer learning based model.Distribution of training data with labels of Non-DR and DR is presented in Fig.4.

    Figure 4:Distribution of training data with labels of Non-DR and DR

    4.2 Quantum Devices

    The Quantum Computing device used in our study is Penny-lane default device,IBM QiskitBasicaer and Google Cirq Simulator device.These simulators are noiseless to avoid any error.

    4.3 Image Pre-Processing

    In current work, APTOS 2019 Blindness Detection dataset is taken from Kaggle and labelled into two categories with the help of provided file in Kaggle documentation.Furthermore,resizing of imbalance images is done to 350 by 350.These images are further processed to remove extra black pixel part to covert image as input in our inception V3 pre-trained neural network.After this we have converted our images into tensor vector because machine learning model always input data in the form of vectors.We have done some normalization of parameters like([0.485,0.456,0.406])to remove any misbalancing during resizing of images[15,16].

    5 Proposed Hybrid Quantum Transfer Learning Model

    We have proposed hybrid Quantum transfer learning model, in which we have used inceptionv3 pre trained neural network for feature extraction.Inception-v3 is a pre-trained convolutional neural network model that is 48 layers deep that is used to reduce images to 2048-dimensional feature vector[1].

    To classify these features with the help of 4-qubit “dressed quantum circuit” we have reduced 2048-dimensional feature vector to 4 dimensions with linear transformation[8].Variational quantum classifier,built for our problem is presented in Fig.5.

    Figure 5:Variational quantum classifier of(four qubits)

    Following steps are performed to build quantum classifier

    1.Firstly,we have initialized 4 qubits in|0)state and then apply Hadamard(H)gate on these 4 qubits to make them in superposition state of zero and one[1].

    2.Then we have applied, additional transformation to encode our classical data with unitary circuit.To perform this operation, we encoded our 4-dimensional feature vector as a parameters or weights into our circuit consisting of Ry(fi)gates and U(α,β,θ,γ)circuit.

    3.We have a sequence of trainable variational layers having an entanglement layer and a data encoding circuit.We have 3 CNOT gates in the entanglement layer which makes all qubits,entangled

    4.In the end we have done measurements on each 4-qubits to get the expected value along the z-operator.

    Fig.6, clearly presents the complete flow of our proposed model from first block A (inception V3)to its final measurement block(between Non-DR or DR(0,1)).

    Figure 6:Flowchart of the proposed Quantum Transfer learning model

    6 Experimental Evaluation

    We have trained two models,first is classical model using classical transfer learning and second is quantum model using quantum transfer learning with the same training data set and parameters.We have setup learning rate 0.0004 which is same for both models and used Adam optimization algorithm and Cross Entropy function as activation function.Online google Colab notebook is being used to run our model.

    We have evaluated our model with five basic standards:Accuracy,Precision,Recall,f1-score and specificity with the following formulas.

    WhereTp=True Positive,F(xiàn)P=False Positive,TN=True Negative,F(xiàn)N=False Negative.

    Fig.7 shows confusion matrix of our four models.First matrix is based on Classical Transfer learning model and other three matrices are Quantum Transfer learning models which are Trained on Google Cirq Simulator,IBM Qiskit BasicAer device and penny lane default device)[14].

    Figure 7:Confusion matrix of classical model and hybrid quantum model in(a),(b),(c),(d)

    Performance of classical and hybrid quantum models on 5 epochs are presented in Figs.8 and 9.Our results presented that accuracy rate of Classical model, Pannylane default device, IBM Qiskit BasicAer device and Google Cirq Simulator Device is found to be 85.14%, 91.48%, 93.25%and 94.11%respectively.Therefore,it is observed that Google Cirq Simulator device presented high accuracy rate of 94.11%as compared to other hybrid or classical models.Validation accuracy of our models is presented in Fig.9[15].

    Tab.2.shows comparison based on five standard tests like Accuracy Rate,Precision Rate,Recall,F(xiàn)1 Score, specificity of both classical model and hybrid quantum models train on (PannyLane,BasicAer Qiskit and Cirq Simulator) for just 5 epochs.Tab.2 also shows Criq Simulator device has superior performance on the basis of all performance merits as compared to other simulators and models including Classical computer and Pannylane.

    Figure 8:Accuracy rate of classical model and hybrid quantum model

    Figure 9:(a) Validation Accuracy with number of epochs.(b) Validation loss of different quantum devices or classical computer with number of epochs

    Table 2:Comparison based on standard test

    In Tab.3,we have compared the overall Model accuracy based on the labels of DR or Non-DR and performed evaluation for PannyLane,BasicAer Qiskit,Cirq Simulator and Classical Computer.It can be seen in Tab.3 that overall accuracy for 0-No DR is found to be 95%and 88%for 1-DR.This shows that our transfer learning approach is capable of DR detection with much higher accuracy and less errors.This technique can further be linked with mobile applications to enable DR detection at local level with the help of a specialized doctor.

    Table 3:Comparison based on standard test

    7 Statistical Distribution Study for Diabetic Retinopathy(DR)Data

    The probability distributions are used in Statistics to make the detection of any change in the trend of the data.If a probability distribution is fitted accurately to the data, then it will be helpful to detect the change in data at early stage.In this section we tried to fit five different probability distributions such as Reflected Power function distribution,Kumarswamy Lehmann-2 Power function distribution (KL2PFD), Beta Lehmann-2 Power function distribution (BL2PFD), Weighted Power function distribution(WPFD)and Exponentiated Generalized Power function distribution(EGPFD)which are generated and used in medical diagnosis in literature [17–20] to get the better probability distribution for diabetic retinopathy diagnostic data.If we get early diagnosis of the patients that suffer from retinopathy,it will make the medical team to treat it at early stage.

    The probability density function (pdf) of the proposed Reflected Power function distribution(RPDF)for the diabetic retinopathy are given as

    The probability density function(pdf)of Kumarswamy Lehmann-2 Power function distribution(KL2PFD)are given as

    Where“γ”and"β"are the shape and scale parameters.Also,the parameters“θ”and“φ”are the tuning shape parameters.

    The probability density function(pdf)of Beta Lehmann-2 Power function distribution(BL2PFD)are given as

    where“γ”and"β"are the shape and scale parameters.Also,the parameters“α”and“b”are the tuning shape parameters.

    The probability density function(pdf)Weighted Power function distribution(WPFD)is given as

    where“γ”and"β"are the shape and scale parameters.

    The probability density function (pdf) Exponentiated Generalized Power function distribution(EGPFD)is given as

    where“γ”and"φ"are the shape and scale parameters.Also,the parameters“α”and“β”are the tuning shape parameters.

    In this section, we have analyzed diabetic retinopathy data using statistical modeling.We have derived the estimates and their standard errors of the parameters of distributions using modified maximum likelihood method.The results are presented in Tab.4.We have compared the proposed probability distributions using Goodness of fit measures such as Akaike information criteria(AIC),corrected Akaike information criteria (CAIC), Baysian information criteria (BIC), Hannan-Quinn information criteria(HQIC)and log likelihood criteria(LogL).

    Table 4:The estimates for parameters of distribution and their standard errors(in parentheses)

    The TTT-plot is presented in Fig.10,which shows that the HRF has a first concave downward and then concave upward for upside-down bathtub-shaped failure rate.So, we can easily fit above mentioned probability distributions on the diabetic retinopathy data.

    In Tabs.4 and 5 and Fig.11,we have compared the performances of the proposed distributions for the diabetic retinopathy diagnostic data and we see that Reflected Power function distribution(RPFD)best described the diabetic retinopathy data and can be used for further statistical approach.We have proposed an efficient hybrid quantum learning (Section 6) reflected power function distribution in statistical terms to get early detection of any future patient to get a chance of suffering from diabetic retinopathy disease.So,we have presented hybrid quantum learning along with probability distribution for the detection of diabetic patients,suffering from retinopathy disease.

    Figure 10:TTT plot and Boxplot for DR data

    Table 5:Goodness of fit measures for Diabetic Retinopathy diagnostic data

    Figure 11:Estimated pdf and cdf plots for Train Diagnosis Data

    8 Conclusion

    A hybrid quantum transfer learning approach is adopted to model early DR detection.From our results we clearly see that Google Cirq simulator shows higher efficiency in terms of model accuracy.Moreover,already used Classical training model have presented large gap in accuracy rate.We report superiority of Quantum models in terms of performance and speed.During training of our models,we see Pannylane default device takes very less time as compared to other models.Overall performance of Pannylane default device is very good in term of time.This work suggests that there might be some variation in performance of these quantum devices but these show high performance rate when compared with classical model and is verified by statistical methods as well.This performance analysis shows that computer aided technique can be used in mobile applications for timely detection of DR in rural areas.

    Acknowledgement:The authors would like to thank Pannylane,IBM Qiskit,Google Cirq for providing access to their resources and quantum devices that are used to simulate our models.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产一级毛片在线| 欧美久久黑人一区二区| 超色免费av| 久久免费观看电影| 你懂的网址亚洲精品在线观看| 成年人免费黄色播放视频| 看免费成人av毛片| 日韩av不卡免费在线播放| 美女大奶头黄色视频| 纵有疾风起免费观看全集完整版| 国产成人精品在线电影| 欧美激情极品国产一区二区三区| av视频免费观看在线观看| 国产一卡二卡三卡精品 | 久久精品国产亚洲av涩爱| 国产成人精品福利久久| 69精品国产乱码久久久| av片东京热男人的天堂| 一级毛片电影观看| 欧美少妇被猛烈插入视频| 精品国产一区二区三区久久久樱花| 亚洲人成77777在线视频| 久久久国产精品麻豆| 在线天堂最新版资源| 亚洲国产精品一区二区三区在线| 久久女婷五月综合色啪小说| 国产免费现黄频在线看| 亚洲国产精品一区二区三区在线| 国产精品 国内视频| 91aial.com中文字幕在线观看| 亚洲成国产人片在线观看| 男男h啪啪无遮挡| 欧美成人精品欧美一级黄| 高清视频免费观看一区二区| 免费人妻精品一区二区三区视频| 国产精品女同一区二区软件| 国产精品蜜桃在线观看| 男人添女人高潮全过程视频| 亚洲人成网站在线观看播放| 欧美人与善性xxx| kizo精华| 精品少妇黑人巨大在线播放| 99re6热这里在线精品视频| 国产免费现黄频在线看| 国产精品一区二区在线观看99| 99国产精品免费福利视频| 亚洲av日韩精品久久久久久密 | 天天影视国产精品| 国产午夜精品一二区理论片| 久久天堂一区二区三区四区| 精品国产一区二区三区四区第35| 国产野战对白在线观看| 在线亚洲精品国产二区图片欧美| 日韩中文字幕欧美一区二区 | 国产成人免费无遮挡视频| 国产一区二区 视频在线| 各种免费的搞黄视频| 高清av免费在线| 中文字幕色久视频| av片东京热男人的天堂| 亚洲精品国产色婷婷电影| 亚洲,一卡二卡三卡| 曰老女人黄片| 国产精品熟女久久久久浪| 亚洲,欧美精品.| 国产成人午夜福利电影在线观看| 国产又色又爽无遮挡免| 美女午夜性视频免费| 人妻 亚洲 视频| 深夜精品福利| 不卡视频在线观看欧美| 人体艺术视频欧美日本| 亚洲一卡2卡3卡4卡5卡精品中文| 中文字幕av电影在线播放| 亚洲国产欧美日韩在线播放| 90打野战视频偷拍视频| 日韩中文字幕视频在线看片| av女优亚洲男人天堂| 午夜福利乱码中文字幕| 黄频高清免费视频| 国产亚洲欧美精品永久| 亚洲欧美一区二区三区国产| 十八禁网站网址无遮挡| 日本wwww免费看| 国产免费视频播放在线视频| 亚洲精品一区蜜桃| 高清黄色对白视频在线免费看| 久久久国产一区二区| 老司机亚洲免费影院| 欧美精品高潮呻吟av久久| 大话2 男鬼变身卡| 亚洲精品国产色婷婷电影| 国产亚洲av高清不卡| 国产精品久久久人人做人人爽| 国产极品天堂在线| 亚洲色图综合在线观看| 久久久久久久大尺度免费视频| 99re6热这里在线精品视频| 免费观看a级毛片全部| 青青草视频在线视频观看| 亚洲成人一二三区av| 欧美黑人欧美精品刺激| 国产精品秋霞免费鲁丝片| 久久韩国三级中文字幕| av在线老鸭窝| 亚洲精品日韩在线中文字幕| 少妇猛男粗大的猛烈进出视频| 熟妇人妻不卡中文字幕| 99国产综合亚洲精品| 极品人妻少妇av视频| 午夜福利影视在线免费观看| 久久天堂一区二区三区四区| 国产精品秋霞免费鲁丝片| 国语对白做爰xxxⅹ性视频网站| 天天影视国产精品| av在线观看视频网站免费| 黑人欧美特级aaaaaa片| videos熟女内射| 黄频高清免费视频| 狂野欧美激情性xxxx| 中文字幕最新亚洲高清| 一区二区三区四区激情视频| 最近手机中文字幕大全| 777久久人妻少妇嫩草av网站| 一个人免费看片子| 欧美激情 高清一区二区三区| 免费观看av网站的网址| 如日韩欧美国产精品一区二区三区| 汤姆久久久久久久影院中文字幕| 日韩伦理黄色片| 菩萨蛮人人尽说江南好唐韦庄| av福利片在线| 777米奇影视久久| 高清av免费在线| 国精品久久久久久国模美| 免费在线观看视频国产中文字幕亚洲 | 国产av精品麻豆| 亚洲精品乱久久久久久| 9热在线视频观看99| 1024香蕉在线观看| 日韩一卡2卡3卡4卡2021年| 国产精品嫩草影院av在线观看| 亚洲人成网站在线观看播放| 亚洲国产av影院在线观看| 亚洲自偷自拍图片 自拍| 在线观看免费视频网站a站| 亚洲人成电影观看| 女人爽到高潮嗷嗷叫在线视频| 日韩视频在线欧美| 在线观看免费日韩欧美大片| 一级毛片我不卡| 国产精品香港三级国产av潘金莲 | 久久午夜综合久久蜜桃| 亚洲av在线观看美女高潮| 大话2 男鬼变身卡| 国产免费视频播放在线视频| 亚洲精品久久成人aⅴ小说| 丝袜人妻中文字幕| 啦啦啦中文免费视频观看日本| 日本91视频免费播放| 国产精品久久久久久人妻精品电影 | 高清在线视频一区二区三区| 国产女主播在线喷水免费视频网站| 中国国产av一级| 九九爱精品视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 黑人欧美特级aaaaaa片| 日本91视频免费播放| 亚洲av国产av综合av卡| 欧美日韩国产mv在线观看视频| 一区福利在线观看| bbb黄色大片| a级毛片黄视频| 久久精品国产亚洲av涩爱| e午夜精品久久久久久久| 9热在线视频观看99| 国产一区二区三区综合在线观看| 亚洲欧洲日产国产| 涩涩av久久男人的天堂| 国产黄频视频在线观看| 2021少妇久久久久久久久久久| 久久久欧美国产精品| 99香蕉大伊视频| 亚洲精品国产av成人精品| 1024香蕉在线观看| 啦啦啦在线观看免费高清www| 国产无遮挡羞羞视频在线观看| 亚洲av电影在线进入| 亚洲精品国产一区二区精华液| 欧美日韩av久久| 18禁观看日本| 人妻 亚洲 视频| 最近最新中文字幕大全免费视频 | 看十八女毛片水多多多| 天堂中文最新版在线下载| 制服诱惑二区| 七月丁香在线播放| 免费久久久久久久精品成人欧美视频| 国产av国产精品国产| 老司机在亚洲福利影院| 国产一区有黄有色的免费视频| 亚洲国产精品999| 国产av精品麻豆| 只有这里有精品99| 日韩av免费高清视频| 一二三四中文在线观看免费高清| 亚洲国产精品成人久久小说| 少妇精品久久久久久久| 天堂中文最新版在线下载| 大码成人一级视频| 亚洲欧美精品综合一区二区三区| 日韩一区二区视频免费看| 久久人妻熟女aⅴ| 亚洲国产欧美一区二区综合| 国产精品秋霞免费鲁丝片| 黄色毛片三级朝国网站| 久久久久久久大尺度免费视频| 一本一本久久a久久精品综合妖精| 交换朋友夫妻互换小说| av福利片在线| 国产av国产精品国产| 亚洲精品在线美女| 欧美黑人精品巨大| 色94色欧美一区二区| av免费观看日本| 亚洲情色 制服丝袜| 欧美日韩精品网址| 亚洲国产毛片av蜜桃av| 在线观看免费午夜福利视频| 国产日韩欧美视频二区| 欧美在线一区亚洲| 高清欧美精品videossex| 深夜精品福利| 精品一区在线观看国产| 青春草视频在线免费观看| 久久精品久久久久久噜噜老黄| 777久久人妻少妇嫩草av网站| 久久久久久久久久久免费av| 国产精品一区二区在线不卡| 在线观看一区二区三区激情| 哪个播放器可以免费观看大片| 日本欧美国产在线视频| 亚洲国产日韩一区二区| www.熟女人妻精品国产| 精品亚洲成国产av| av福利片在线| 激情视频va一区二区三区| 精品免费久久久久久久清纯 | 9热在线视频观看99| 90打野战视频偷拍视频| 国产av国产精品国产| 80岁老熟妇乱子伦牲交| 最新在线观看一区二区三区 | 丁香六月天网| 久久久精品国产亚洲av高清涩受| 国产精品蜜桃在线观看| 国产精品无大码| 亚洲精品日本国产第一区| 大香蕉久久网| 久久青草综合色| 国产精品香港三级国产av潘金莲 | 色综合欧美亚洲国产小说| 一区二区日韩欧美中文字幕| 大香蕉久久成人网| 中文字幕av电影在线播放| 男女无遮挡免费网站观看| 国产精品无大码| 日韩欧美精品免费久久| 十八禁高潮呻吟视频| 精品国产乱码久久久久久男人| 大码成人一级视频| 亚洲少妇的诱惑av| 欧美日韩成人在线一区二区| 午夜激情久久久久久久| 两性夫妻黄色片| 国产精品免费大片| 日韩免费高清中文字幕av| 免费少妇av软件| 叶爱在线成人免费视频播放| 99热国产这里只有精品6| 男女边吃奶边做爰视频| 国产精品嫩草影院av在线观看| 波多野结衣av一区二区av| 精品国产露脸久久av麻豆| 中文字幕色久视频| 久久久久网色| 欧美在线黄色| 又大又爽又粗| 久久 成人 亚洲| 热99久久久久精品小说推荐| 黑人猛操日本美女一级片| 男女午夜视频在线观看| 色婷婷av一区二区三区视频| 999久久久国产精品视频| 久久性视频一级片| 丰满饥渴人妻一区二区三| 国产精品久久久久久人妻精品电影 | 自线自在国产av| 大香蕉久久成人网| 韩国高清视频一区二区三区| 免费人妻精品一区二区三区视频| 日韩一区二区三区影片| 18在线观看网站| a 毛片基地| 肉色欧美久久久久久久蜜桃| 亚洲国产最新在线播放| 色94色欧美一区二区| 国产99久久九九免费精品| 亚洲欧美成人精品一区二区| 国产片内射在线| 久久国产精品男人的天堂亚洲| 亚洲av男天堂| 精品亚洲乱码少妇综合久久| 午夜老司机福利片| 亚洲图色成人| 精品国产一区二区久久| 成年av动漫网址| 欧美人与性动交α欧美精品济南到| 国产日韩欧美视频二区| 麻豆av在线久日| 丝袜脚勾引网站| 免费女性裸体啪啪无遮挡网站| 久久精品国产综合久久久| 看免费成人av毛片| 国产1区2区3区精品| 久久久久精品人妻al黑| 一区二区三区四区激情视频| 国产在线免费精品| 日日爽夜夜爽网站| videosex国产| 精品少妇内射三级| av有码第一页| 久久 成人 亚洲| 国产欧美亚洲国产| 91精品伊人久久大香线蕉| 99国产精品免费福利视频| 国产男女内射视频| 国产精品久久久av美女十八| 久久久久视频综合| 亚洲少妇的诱惑av| 亚洲一级一片aⅴ在线观看| www.自偷自拍.com| 视频区图区小说| 热re99久久精品国产66热6| 超色免费av| 国产精品国产三级国产专区5o| 母亲3免费完整高清在线观看| 成年人午夜在线观看视频| 欧美激情高清一区二区三区 | 久久女婷五月综合色啪小说| √禁漫天堂资源中文www| 秋霞在线观看毛片| 80岁老熟妇乱子伦牲交| 哪个播放器可以免费观看大片| 国产亚洲最大av| 伊人久久大香线蕉亚洲五| 人人妻人人澡人人爽人人夜夜| 日本vs欧美在线观看视频| 日韩免费高清中文字幕av| 久久毛片免费看一区二区三区| 欧美精品一区二区大全| 久久久久精品国产欧美久久久 | 欧美激情 高清一区二区三区| 欧美人与性动交α欧美精品济南到| 卡戴珊不雅视频在线播放| 日韩一区二区视频免费看| 亚洲欧美成人综合另类久久久| 曰老女人黄片| 色网站视频免费| 成人漫画全彩无遮挡| 一边摸一边抽搐一进一出视频| 日韩欧美一区视频在线观看| 操美女的视频在线观看| 老司机靠b影院| 男女下面插进去视频免费观看| 丰满迷人的少妇在线观看| 久久久久久人妻| 欧美xxⅹ黑人| 欧美精品av麻豆av| 亚洲国产成人一精品久久久| 精品福利永久在线观看| 日日爽夜夜爽网站| 亚洲国产看品久久| 亚洲国产欧美在线一区| 一区福利在线观看| 成人18禁高潮啪啪吃奶动态图| 亚洲国产精品999| 精品一区二区三区av网在线观看 | 男女高潮啪啪啪动态图| 欧美黄色片欧美黄色片| 日本爱情动作片www.在线观看| 十八禁网站网址无遮挡| 亚洲婷婷狠狠爱综合网| 51午夜福利影视在线观看| 日本欧美国产在线视频| 国产精品 国内视频| 秋霞在线观看毛片| 国产熟女午夜一区二区三区| 亚洲专区中文字幕在线 | 日本91视频免费播放| 国产精品人妻久久久影院| 一级爰片在线观看| 久久久精品94久久精品| 亚洲国产精品999| 午夜免费鲁丝| 国产精品一区二区在线观看99| 一级毛片我不卡| 天堂中文最新版在线下载| 男人爽女人下面视频在线观看| a级毛片在线看网站| 久热爱精品视频在线9| 国产黄色免费在线视频| 亚洲成人一二三区av| 操出白浆在线播放| av在线app专区| 亚洲国产欧美在线一区| 国产又色又爽无遮挡免| 亚洲色图综合在线观看| 人体艺术视频欧美日本| 亚洲一区中文字幕在线| 一区二区三区精品91| 在线观看www视频免费| 国产精品一国产av| 亚洲图色成人| av网站在线播放免费| 欧美黑人精品巨大| 午夜免费鲁丝| 大陆偷拍与自拍| 五月天丁香电影| 天天躁夜夜躁狠狠久久av| 秋霞在线观看毛片| 免费在线观看黄色视频的| 女人高潮潮喷娇喘18禁视频| 日韩av免费高清视频| 国产又色又爽无遮挡免| 啦啦啦在线免费观看视频4| 久久久久久久久久久免费av| 免费日韩欧美在线观看| 国产精品国产三级专区第一集| 啦啦啦啦在线视频资源| 日韩制服骚丝袜av| 日本欧美视频一区| 亚洲av电影在线观看一区二区三区| 捣出白浆h1v1| 亚洲国产最新在线播放| 一级片免费观看大全| 黄网站色视频无遮挡免费观看| h视频一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 中文字幕人妻丝袜制服| 国产亚洲最大av| 精品亚洲乱码少妇综合久久| 国产一区二区三区av在线| 亚洲婷婷狠狠爱综合网| 另类亚洲欧美激情| 久久久精品国产亚洲av高清涩受| 欧美成人午夜精品| 国产福利在线免费观看视频| 国产日韩一区二区三区精品不卡| 亚洲成人免费av在线播放| 十八禁人妻一区二区| 国产成人a∨麻豆精品| 亚洲男人天堂网一区| 精品午夜福利在线看| 三上悠亚av全集在线观看| 久久久亚洲精品成人影院| 午夜福利视频精品| av有码第一页| 高清不卡的av网站| 国产毛片在线视频| 激情五月婷婷亚洲| 丝袜喷水一区| 亚洲美女黄色视频免费看| 日韩免费高清中文字幕av| 欧美日韩亚洲综合一区二区三区_| 好男人视频免费观看在线| 久热这里只有精品99| www.精华液| 午夜免费男女啪啪视频观看| 黄色怎么调成土黄色| 最近中文字幕2019免费版| a 毛片基地| 日本色播在线视频| 一级爰片在线观看| 黄片播放在线免费| 欧美日韩综合久久久久久| 欧美精品亚洲一区二区| 免费在线观看黄色视频的| 日本欧美视频一区| 观看美女的网站| 国产有黄有色有爽视频| 国产乱来视频区| 视频区图区小说| 男女无遮挡免费网站观看| 色视频在线一区二区三区| 精品国产露脸久久av麻豆| 久热爱精品视频在线9| 日韩伦理黄色片| 国产免费又黄又爽又色| 久久热在线av| 精品国产乱码久久久久久男人| 亚洲欧美日韩另类电影网站| 精品国产一区二区久久| 考比视频在线观看| 中文字幕高清在线视频| 久久免费观看电影| 九九爱精品视频在线观看| 免费久久久久久久精品成人欧美视频| 看免费成人av毛片| 人体艺术视频欧美日本| 最近的中文字幕免费完整| 观看av在线不卡| 久久久国产欧美日韩av| 国产精品女同一区二区软件| 国产熟女欧美一区二区| 亚洲熟女毛片儿| av片东京热男人的天堂| 亚洲成人国产一区在线观看 | 亚洲精品国产av蜜桃| 日韩大片免费观看网站| kizo精华| 美国免费a级毛片| 十八禁人妻一区二区| 97在线人人人人妻| 亚洲av电影在线观看一区二区三区| 亚洲成人av在线免费| 侵犯人妻中文字幕一二三四区| 只有这里有精品99| av在线老鸭窝| 校园人妻丝袜中文字幕| 天堂中文最新版在线下载| 亚洲av综合色区一区| 成年女人毛片免费观看观看9 | 久久久国产精品麻豆| 欧美日韩精品网址| 在线观看免费午夜福利视频| 亚洲精品久久成人aⅴ小说| 一二三四中文在线观看免费高清| av网站免费在线观看视频| 国产爽快片一区二区三区| 国产亚洲午夜精品一区二区久久| 美女高潮到喷水免费观看| 午夜激情av网站| 精品国产一区二区久久| 国产一卡二卡三卡精品 | 大香蕉久久网| 狂野欧美激情性bbbbbb| 99久久精品国产亚洲精品| 久久久欧美国产精品| 欧美乱码精品一区二区三区| 久久性视频一级片| 国产xxxxx性猛交| 亚洲精品久久午夜乱码| 纵有疾风起免费观看全集完整版| 亚洲精品国产av蜜桃| 国产精品 欧美亚洲| 久久久国产精品麻豆| 亚洲五月色婷婷综合| 亚洲免费av在线视频| 国产精品二区激情视频| 亚洲四区av| 中文字幕人妻熟女乱码| 成年动漫av网址| 亚洲精品av麻豆狂野| 永久免费av网站大全| 欧美日韩亚洲高清精品| 欧美少妇被猛烈插入视频| 黑丝袜美女国产一区| 久久久精品区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 欧美黑人欧美精品刺激| 91精品国产国语对白视频| 国产精品一区二区在线观看99| 精品卡一卡二卡四卡免费| 丝袜美腿诱惑在线| 亚洲一区中文字幕在线| 亚洲精品自拍成人| 亚洲欧美激情在线| 国产精品无大码| 欧美成人午夜精品| 街头女战士在线观看网站| 国产一级毛片在线| 69精品国产乱码久久久| 女人被躁到高潮嗷嗷叫费观| 91国产中文字幕| 亚洲av综合色区一区| 精品国产一区二区久久| 午夜影院在线不卡| 美女扒开内裤让男人捅视频| 宅男免费午夜| 青青草视频在线视频观看| 久久精品人人爽人人爽视色| 99久国产av精品国产电影| 久久天躁狠狠躁夜夜2o2o | av线在线观看网站| 国产男人的电影天堂91| 久久久国产精品麻豆| 国产亚洲一区二区精品| 午夜激情久久久久久久| 夫妻性生交免费视频一级片| 国产精品一二三区在线看| 中文字幕色久视频| 成人免费观看视频高清| 一边摸一边做爽爽视频免费| 狂野欧美激情性xxxx| 日韩熟女老妇一区二区性免费视频| 麻豆精品久久久久久蜜桃| av网站在线播放免费| 天天添夜夜摸| 妹子高潮喷水视频| 亚洲精品国产一区二区精华液| 大陆偷拍与自拍| 晚上一个人看的免费电影| 欧美精品av麻豆av| 亚洲一码二码三码区别大吗|