• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Diabetic Retinopathy Detection Using Classical-Quantum Transfer Learning Approach and Probability Model

    2022-08-24 03:30:54AmnaMirUmerYasinSalmanNaeemKhanAtifaAtharRiffatJabeenandSehrishAslam
    Computers Materials&Continua 2022年5期

    Amna Mir,Umer Yasin,Salman Naeem Khan,Atifa Athar,Riffat Jabeen and Sehrish Aslam

    1Department of Physics,Comsats University Islamabad,Lahore Campus,Lahore,54000,Pakistan

    2Department of Statistics,Comsats University Islamabad,Lahore Campus,Lahore,54000,Pakistan

    3Department of Computer Science,Comsats University Islamabad,Lahore Campus,Lahore,54000,Pakistan

    Abstract: Diabetic Retinopathy (DR) is a common complication of diabetes mellitus that causes lesions on the retina that affect vision.Late detection of DR can lead to irreversible blindness.The manual diagnosis process of DR retina fundus images by ophthalmologists is time consuming and costly.While, Classical Transfer learning models are extensively used for computer aided detection of DR; however, their maintenance costs limits detection performance rate.Therefore, Quantum Transfer learning is a better option to address this problem in an optimized manner.The significance of Hybrid quantum transfer learning approach includes that it performs heuristically.Thus,our proposed methodology aims to detect DR using a hybrid quantum transfer learning approach.To build our model we extract the APTOS 2019 Blindness Detection dataset from Kaggle and used inception-V3 pre-trained classical neural network for feature extraction and Variational Quantum classifier for stratification and trained our model on Penny Lane default device,IBM Qiskit BasicAer device and Google Cirq Simulator device.Both models are built based on PyTorch machine learning library.We bring about a contrast performance rate between classical and quantum models.Our proposed model achieves an accuracy of 93%–96% on the quantum hybrid model and 85%accuracy rate on the classical model.So,quantum computing can harness quantum machine learning to do work with power and efficiency that is not possible for classical computers.

    Keywords: Diabetic Retinopathy(DR);quantum transfer learning;inception-V3;variational quantum circuit;image classification

    1 Introduction

    Diabetic retinopathy(DR)is the most common form of diabetic eye disease[1].Diabetic retinopathy usually only affects people who have chronic diabetes (diagnosed or undiagnosed).Diabetic retinopathy causes an array of long-term systemic complications that have considerable impact on the patients as the disease typically affect individuals in their most reproductive years.The World Health Organization has declared that,in 2030 diabetes will be the most serious and 7th highest death causing disease across world.DR occurs due to the damage of tiny blood vessels in the retina due to chronic diabetics.This may cause hemorrhages,exudates and even swelling of the retina can cause blind spots blurry vision.Diabetic Retinopathy is a major cause of vision loss and blindness affecting millions of people across the globe.If DR is diagnosed early,it can be managed using available treatments.Regular eye fundus examination is necessary because DR do not present any symptoms at early stages.The retinal abnormalities in DR also include Hemorrhages(HM),“Cotton wool”spots,Microaneurysm(MA),Retinal neovascularization,hard exudates,which are clearly presented in Fig.1.

    Figure 1:Normal eye and Infected eye[2]

    In recent years,classical transfer learning approaches are used in the field of image classification,segmentation,and screening for DR.However,limited detection performance rates are hinderance to computer aided diagnostic.A breakthrough in the field of quantum computing can help in giving the ophthalmologist a second opinion to solve this problem by using hybrid quantum transfer learning approach.This quantum approach can result into more efficient detection of DR in patients as compared to the classical transfer learning[3,4].Quantum transfer learning and Principal Component Analysis(PCA)is currently used in various medical diagnostics[2].Zhang[5]used pathological images for Non-Hodgkin Lymphoma analysis.Similarly,classification of Arabic sign language is done using same hybrid approach[6].Therefore,this work presents a hybrid approach of quantum learning model for DR detection.

    This paper presents a hybrid approach for early detection of DR.We have compared the results of our three hybrid Quantum Transfer Learning models with one classical Transfer Learning model.We have labeled our data set into two categories i.e., no DR or DR.To build Quantum Transfer learning model, we have used inception-V3 [7] pre trained neural network for feature extraction and used quantum variational circuit for classification.Further our model is trained on penny lane default device,IBM Qiskit BasicAer device and Google Cirq Simulator device.We have built Classical transfer model on the same parameters and learning rates as defined in Quantum transfer learning model.Moreover,both models are based on pytorch machine learning Library.Our proposed model achieves an accuracy of 93%–96% on hybrid models and 85% accuracy rate on classical model.Quantum transfer learning approach has many advantages over conventional diagnostic techniques.This approach has less probability of human error and it is found to be more efficient and rapid way of finding the lesions in retina.Quantum computing approaches are great for solving optimization problems as compared to classical computing approaches.

    2 Literature Review

    Transfer learning refers to a technique for predictive modeling on a different but somehow similar problem that can be used partially or entirely to accelerate the training and improve the performance of a model.It can train deep neural network with comparatively small size of data.If a previously trained artificial neural network is successful in solving a particular problem, it can be reused with some additional training to solve a problem.Let’s consider a pre-trained deep neural network with the data set used for the solution of a problem.Transfer learning can be used to accelerates the training of neural networks as either a weight initialization scheme or feature extraction method that is retrained to solve a different or similar problem with a new dataset.

    Quantum machine learning extends the concept of transfer learning, widely applied in modern machine learning algorithms,to the emerging context of hybrid neural networks composed of classical and quantum elements.In Quantum transfer learning we focus mainly on the paradigm in which a pre-trained classical network is modified and augmented by a final quantum layer.We can use any pre trained classical neural network according to our problem for feature extraction.To classify these features with the help of “dressed quantum circuit”we need to reduce output-dimensional feature vector to final dimensions with linear transformation [8].We commonly use variational quantum classifier to classify output features from built-in neural network and variational quantum classifier used in this regard as presented in Fig.2.

    Figure 2:Variational Quantum Classifier with embedding layers U(x)and variational circuit V(θ)and final measurements in classical output f(x)εc

    In Fig.2 we have presented three basic components (embedding layers U(x), variational circuit V(θ) and final measurements) on which Variational Quantum Classifier (VQC) is built [9].We have adopted a different method to get data into quantum computers and we have used four major data encoding techniques like:Basis Encoding, Amplitude Encoding, Angle Encoding and Higher order embedding.

    One of the most important components in VQC is variational circuit.Fig.3 presents variational circuit for one qubit operation.

    Figure 3:Simple case of one Qubit

    Stateafter operation:

    |ψ >=Ry(θ2)Rx(θ1)|0>

    Sonow we can calculate the expectations value:

    <ψ|?z|ψ >=<0|Rx(θ1)?Ry(θ2)??zRy(θ2)Rx(θ1)|0>

    Aftersolving above equation we get:

    =Cos(θ1)Cos(θ2)(Direct Solved)

    It’s shows that our variational circuit depend’s on the two parameters likeθ1&θ2

    In past,many works have been reported to solve DR problem by using classical machine learning approaches using different datasets.Mansour [10] used a deep convolution neural network using transfer learning for feature extraction when building a computer aided diagnosis for DR.

    To avoid the time and resource consumption,Mohammadian[11]fine-tuned the Inception-V3 and Xception pre-trained models to classify the DR dataset into two classes.After using data augmentation to balance the dataset,an accuracy score of 87.12%on the Inception-V3,and 74.49%on the Xception model is reported.Wan et al.[12]implemented transfer learning and hyper parameter tuning on the pre-trained models AlexNet, VggNet-s, VggNet-16, VggNet-19, GoogleNet and RestNet using the Kaggle dataset and compared their performances.The highest accuracy score was that of VggNet-s model,which reached 95.68%when training with hyper-parameter tuning.Transfer learning was used to work around the problem of insufficient training dataset in for retinal vessel segmentation.Dutta et al.[13]used 2000 fundus images to train a shallow feed forward neural network,deep neural network and VggNet-16 model.On a test dataset of 300 images,the shallow neural network scored an accuracy of 42%,and the deep neural network scored 86.3%while the VggNet-16 scored 78.3%accuracy.

    It is quite evident from the majority of the work in diabetic retinopathy detection revolves around the use of various transfer learning models and performance comparison of these models.It is also observed that less emphasis has been given on improvement of quality of the diabetic retinopathy dataset which could lead to more accurate results.It is important to highlight the fact that the reliability of results generated from the transfer learning model depends on the features of the dataset.Google’s recent achievement of quantum supremacy marked the first glimpse of this promised power.This is reminiscent of how machine learning evolved towards deep learning with the advent of new computational capabilities.These new algorithms use parameterized quantum transformations called parameterized quantum circuits(PQCs),Quantum Neural Networks(QNNs),Variational quantum circuits and Dressed quantum circuits.In analogy with classical transfer learning,the parameters of a variational quantum circuits are then optimized with respect to a cost functionviaeither black-box optimization heuristics or gradient-based methods.

    3 Limitations of Existing Works and Contributions

    A tabular comparison has been outlined to discuss the limitations and contributions of the existing works.

    Table 1:Comparative analysis of existing works and their limitations and contributions

    4 Material and Method

    4.1 Dataset

    The dataset we used in our study is a publicly available retinal fundus images database from Kaggle (APTOS 2019 Blindness Detection) [14] consisting of 3662 images.This database is formed by technicians as they traveled in rural areas to take images for ophthalmologist’s review regarding diagnosis.This process is time and resource consuming.Therefore, in current study this dataset is used to get computer aided ability to screen images without the help of ophthalmologists for timely detection of disease.The obtained dataset was weed up and a clean dataset was created.The resulting dataset is labeled into two categories.In order to train our model, we have used 789 non-DR and 738 DR images.Validation of our model is carried out by using 384 images from which 198 non-DR and 186 DR images of patients.We test out model on 1738 different and random images to evaluate performance of both types of models i.e., Classical transfer learning-based model and Quantum transfer learning based model.Distribution of training data with labels of Non-DR and DR is presented in Fig.4.

    Figure 4:Distribution of training data with labels of Non-DR and DR

    4.2 Quantum Devices

    The Quantum Computing device used in our study is Penny-lane default device,IBM QiskitBasicaer and Google Cirq Simulator device.These simulators are noiseless to avoid any error.

    4.3 Image Pre-Processing

    In current work, APTOS 2019 Blindness Detection dataset is taken from Kaggle and labelled into two categories with the help of provided file in Kaggle documentation.Furthermore,resizing of imbalance images is done to 350 by 350.These images are further processed to remove extra black pixel part to covert image as input in our inception V3 pre-trained neural network.After this we have converted our images into tensor vector because machine learning model always input data in the form of vectors.We have done some normalization of parameters like([0.485,0.456,0.406])to remove any misbalancing during resizing of images[15,16].

    5 Proposed Hybrid Quantum Transfer Learning Model

    We have proposed hybrid Quantum transfer learning model, in which we have used inceptionv3 pre trained neural network for feature extraction.Inception-v3 is a pre-trained convolutional neural network model that is 48 layers deep that is used to reduce images to 2048-dimensional feature vector[1].

    To classify these features with the help of 4-qubit “dressed quantum circuit” we have reduced 2048-dimensional feature vector to 4 dimensions with linear transformation[8].Variational quantum classifier,built for our problem is presented in Fig.5.

    Figure 5:Variational quantum classifier of(four qubits)

    Following steps are performed to build quantum classifier

    1.Firstly,we have initialized 4 qubits in|0)state and then apply Hadamard(H)gate on these 4 qubits to make them in superposition state of zero and one[1].

    2.Then we have applied, additional transformation to encode our classical data with unitary circuit.To perform this operation, we encoded our 4-dimensional feature vector as a parameters or weights into our circuit consisting of Ry(fi)gates and U(α,β,θ,γ)circuit.

    3.We have a sequence of trainable variational layers having an entanglement layer and a data encoding circuit.We have 3 CNOT gates in the entanglement layer which makes all qubits,entangled

    4.In the end we have done measurements on each 4-qubits to get the expected value along the z-operator.

    Fig.6, clearly presents the complete flow of our proposed model from first block A (inception V3)to its final measurement block(between Non-DR or DR(0,1)).

    Figure 6:Flowchart of the proposed Quantum Transfer learning model

    6 Experimental Evaluation

    We have trained two models,first is classical model using classical transfer learning and second is quantum model using quantum transfer learning with the same training data set and parameters.We have setup learning rate 0.0004 which is same for both models and used Adam optimization algorithm and Cross Entropy function as activation function.Online google Colab notebook is being used to run our model.

    We have evaluated our model with five basic standards:Accuracy,Precision,Recall,f1-score and specificity with the following formulas.

    WhereTp=True Positive,F(xiàn)P=False Positive,TN=True Negative,F(xiàn)N=False Negative.

    Fig.7 shows confusion matrix of our four models.First matrix is based on Classical Transfer learning model and other three matrices are Quantum Transfer learning models which are Trained on Google Cirq Simulator,IBM Qiskit BasicAer device and penny lane default device)[14].

    Figure 7:Confusion matrix of classical model and hybrid quantum model in(a),(b),(c),(d)

    Performance of classical and hybrid quantum models on 5 epochs are presented in Figs.8 and 9.Our results presented that accuracy rate of Classical model, Pannylane default device, IBM Qiskit BasicAer device and Google Cirq Simulator Device is found to be 85.14%, 91.48%, 93.25%and 94.11%respectively.Therefore,it is observed that Google Cirq Simulator device presented high accuracy rate of 94.11%as compared to other hybrid or classical models.Validation accuracy of our models is presented in Fig.9[15].

    Tab.2.shows comparison based on five standard tests like Accuracy Rate,Precision Rate,Recall,F(xiàn)1 Score, specificity of both classical model and hybrid quantum models train on (PannyLane,BasicAer Qiskit and Cirq Simulator) for just 5 epochs.Tab.2 also shows Criq Simulator device has superior performance on the basis of all performance merits as compared to other simulators and models including Classical computer and Pannylane.

    Figure 8:Accuracy rate of classical model and hybrid quantum model

    Figure 9:(a) Validation Accuracy with number of epochs.(b) Validation loss of different quantum devices or classical computer with number of epochs

    Table 2:Comparison based on standard test

    In Tab.3,we have compared the overall Model accuracy based on the labels of DR or Non-DR and performed evaluation for PannyLane,BasicAer Qiskit,Cirq Simulator and Classical Computer.It can be seen in Tab.3 that overall accuracy for 0-No DR is found to be 95%and 88%for 1-DR.This shows that our transfer learning approach is capable of DR detection with much higher accuracy and less errors.This technique can further be linked with mobile applications to enable DR detection at local level with the help of a specialized doctor.

    Table 3:Comparison based on standard test

    7 Statistical Distribution Study for Diabetic Retinopathy(DR)Data

    The probability distributions are used in Statistics to make the detection of any change in the trend of the data.If a probability distribution is fitted accurately to the data, then it will be helpful to detect the change in data at early stage.In this section we tried to fit five different probability distributions such as Reflected Power function distribution,Kumarswamy Lehmann-2 Power function distribution (KL2PFD), Beta Lehmann-2 Power function distribution (BL2PFD), Weighted Power function distribution(WPFD)and Exponentiated Generalized Power function distribution(EGPFD)which are generated and used in medical diagnosis in literature [17–20] to get the better probability distribution for diabetic retinopathy diagnostic data.If we get early diagnosis of the patients that suffer from retinopathy,it will make the medical team to treat it at early stage.

    The probability density function (pdf) of the proposed Reflected Power function distribution(RPDF)for the diabetic retinopathy are given as

    The probability density function(pdf)of Kumarswamy Lehmann-2 Power function distribution(KL2PFD)are given as

    Where“γ”and"β"are the shape and scale parameters.Also,the parameters“θ”and“φ”are the tuning shape parameters.

    The probability density function(pdf)of Beta Lehmann-2 Power function distribution(BL2PFD)are given as

    where“γ”and"β"are the shape and scale parameters.Also,the parameters“α”and“b”are the tuning shape parameters.

    The probability density function(pdf)Weighted Power function distribution(WPFD)is given as

    where“γ”and"β"are the shape and scale parameters.

    The probability density function (pdf) Exponentiated Generalized Power function distribution(EGPFD)is given as

    where“γ”and"φ"are the shape and scale parameters.Also,the parameters“α”and“β”are the tuning shape parameters.

    In this section, we have analyzed diabetic retinopathy data using statistical modeling.We have derived the estimates and their standard errors of the parameters of distributions using modified maximum likelihood method.The results are presented in Tab.4.We have compared the proposed probability distributions using Goodness of fit measures such as Akaike information criteria(AIC),corrected Akaike information criteria (CAIC), Baysian information criteria (BIC), Hannan-Quinn information criteria(HQIC)and log likelihood criteria(LogL).

    Table 4:The estimates for parameters of distribution and their standard errors(in parentheses)

    The TTT-plot is presented in Fig.10,which shows that the HRF has a first concave downward and then concave upward for upside-down bathtub-shaped failure rate.So, we can easily fit above mentioned probability distributions on the diabetic retinopathy data.

    In Tabs.4 and 5 and Fig.11,we have compared the performances of the proposed distributions for the diabetic retinopathy diagnostic data and we see that Reflected Power function distribution(RPFD)best described the diabetic retinopathy data and can be used for further statistical approach.We have proposed an efficient hybrid quantum learning (Section 6) reflected power function distribution in statistical terms to get early detection of any future patient to get a chance of suffering from diabetic retinopathy disease.So,we have presented hybrid quantum learning along with probability distribution for the detection of diabetic patients,suffering from retinopathy disease.

    Figure 10:TTT plot and Boxplot for DR data

    Table 5:Goodness of fit measures for Diabetic Retinopathy diagnostic data

    Figure 11:Estimated pdf and cdf plots for Train Diagnosis Data

    8 Conclusion

    A hybrid quantum transfer learning approach is adopted to model early DR detection.From our results we clearly see that Google Cirq simulator shows higher efficiency in terms of model accuracy.Moreover,already used Classical training model have presented large gap in accuracy rate.We report superiority of Quantum models in terms of performance and speed.During training of our models,we see Pannylane default device takes very less time as compared to other models.Overall performance of Pannylane default device is very good in term of time.This work suggests that there might be some variation in performance of these quantum devices but these show high performance rate when compared with classical model and is verified by statistical methods as well.This performance analysis shows that computer aided technique can be used in mobile applications for timely detection of DR in rural areas.

    Acknowledgement:The authors would like to thank Pannylane,IBM Qiskit,Google Cirq for providing access to their resources and quantum devices that are used to simulate our models.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产精品久久久久久av不卡| 97超级碰碰碰精品色视频在线观看| 69人妻影院| 美女cb高潮喷水在线观看| 男人狂女人下面高潮的视频| 日日夜夜操网爽| 成人特级黄色片久久久久久久| 2021天堂中文幕一二区在线观| 久久人人爽人人爽人人片va| 午夜福利在线观看吧| 老司机午夜福利在线观看视频| 中文字幕久久专区| 国产精品一区二区性色av| 99久久精品热视频| 午夜老司机福利剧场| 成人av一区二区三区在线看| 欧美日韩精品成人综合77777| 国产精品人妻久久久影院| 夜夜爽天天搞| 直男gayav资源| 欧美精品啪啪一区二区三区| 国产精品无大码| 综合色av麻豆| 中文字幕精品亚洲无线码一区| 十八禁国产超污无遮挡网站| 动漫黄色视频在线观看| 美女高潮喷水抽搐中文字幕| 久久九九热精品免费| 黄色丝袜av网址大全| 欧美激情久久久久久爽电影| 亚洲美女视频黄频| 久久天躁狠狠躁夜夜2o2o| 欧美成人免费av一区二区三区| 搡老熟女国产l中国老女人| 久久久久久九九精品二区国产| 免费电影在线观看免费观看| 真人一进一出gif抽搐免费| 中文在线观看免费www的网站| 看十八女毛片水多多多| 99热网站在线观看| 久久天躁狠狠躁夜夜2o2o| 色视频www国产| 久久久久久久久中文| 亚洲一区二区三区色噜噜| 午夜影院日韩av| 99久久精品热视频| 国产精品,欧美在线| 在线免费观看的www视频| 久久精品国产亚洲av香蕉五月| 色在线成人网| 亚洲自拍偷在线| 国产三级在线视频| 成人三级黄色视频| 国产爱豆传媒在线观看| 少妇人妻一区二区三区视频| 国内揄拍国产精品人妻在线| 99热只有精品国产| 国产精品女同一区二区软件 | 欧美成人a在线观看| 成人av在线播放网站| 亚洲成a人片在线一区二区| av黄色大香蕉| 色综合婷婷激情| 国产女主播在线喷水免费视频网站 | 最后的刺客免费高清国语| 1024手机看黄色片| 国产成人av教育| 久久久色成人| 男插女下体视频免费在线播放| 亚洲最大成人手机在线| 免费在线观看成人毛片| 色av中文字幕| 亚洲人成网站高清观看| 国产精品乱码一区二三区的特点| 三级国产精品欧美在线观看| 国产一区二区亚洲精品在线观看| 国产欧美日韩一区二区精品| 午夜福利视频1000在线观看| 日韩高清综合在线| 无人区码免费观看不卡| 丝袜美腿在线中文| 乱系列少妇在线播放| 特大巨黑吊av在线直播| 啦啦啦观看免费观看视频高清| 伦精品一区二区三区| 国产白丝娇喘喷水9色精品| 亚洲欧美激情综合另类| 亚洲精华国产精华液的使用体验 | 淫秽高清视频在线观看| 毛片一级片免费看久久久久 | 成人欧美大片| 一个人看的www免费观看视频| 国产三级在线视频| 国产一区二区亚洲精品在线观看| 亚洲av免费高清在线观看| 国产日本99.免费观看| 国产av一区在线观看免费| 一本精品99久久精品77| 色5月婷婷丁香| 免费观看在线日韩| 精品人妻视频免费看| 九九热线精品视视频播放| videossex国产| 蜜桃久久精品国产亚洲av| 国产精品1区2区在线观看.| 免费电影在线观看免费观看| 欧美xxxx性猛交bbbb| 18+在线观看网站| 国产精品福利在线免费观看| 国产精品久久视频播放| 亚洲三级黄色毛片| 国产 一区精品| 久久6这里有精品| 欧洲精品卡2卡3卡4卡5卡区| 身体一侧抽搐| 在线观看美女被高潮喷水网站| 91精品国产九色| 亚洲专区国产一区二区| 天堂√8在线中文| 三级毛片av免费| 久久久精品大字幕| 日韩国内少妇激情av| 在线观看一区二区三区| 男女之事视频高清在线观看| 欧美日韩亚洲国产一区二区在线观看| 久久香蕉精品热| 少妇猛男粗大的猛烈进出视频 | 午夜激情福利司机影院| 中文资源天堂在线| 久久婷婷人人爽人人干人人爱| 高清毛片免费观看视频网站| 欧美日韩国产亚洲二区| 99久久精品热视频| aaaaa片日本免费| 亚洲欧美日韩东京热| 热99在线观看视频| 毛片女人毛片| 日韩一区二区视频免费看| 午夜福利18| 岛国在线免费视频观看| 国产大屁股一区二区在线视频| 日本黄大片高清| 欧美性猛交黑人性爽| 最新在线观看一区二区三区| 国产毛片a区久久久久| 黄片wwwwww| videossex国产| 啦啦啦韩国在线观看视频| 久久久午夜欧美精品| 欧美zozozo另类| 一本精品99久久精品77| 日日啪夜夜撸| 日本a在线网址| 亚洲图色成人| 日本免费一区二区三区高清不卡| 69人妻影院| 真实男女啪啪啪动态图| av天堂在线播放| 亚洲性夜色夜夜综合| 成熟少妇高潮喷水视频| 身体一侧抽搐| 夜夜爽天天搞| netflix在线观看网站| 久久精品久久久久久噜噜老黄 | 午夜免费成人在线视频| 亚洲欧美清纯卡通| 成人永久免费在线观看视频| 日本精品一区二区三区蜜桃| 性欧美人与动物交配| 欧美日韩综合久久久久久 | 中文字幕人妻熟人妻熟丝袜美| 99视频精品全部免费 在线| 国产不卡一卡二| 亚洲国产精品sss在线观看| 美女cb高潮喷水在线观看| 色视频www国产| 午夜精品一区二区三区免费看| 国产探花极品一区二区| 全区人妻精品视频| 亚洲欧美日韩无卡精品| 国产国拍精品亚洲av在线观看| 给我免费播放毛片高清在线观看| 99热这里只有是精品50| 国产午夜精品久久久久久一区二区三区 | 少妇人妻一区二区三区视频| 给我免费播放毛片高清在线观看| 日韩精品中文字幕看吧| 噜噜噜噜噜久久久久久91| 国产精品嫩草影院av在线观看 | 精品99又大又爽又粗少妇毛片 | 亚洲av.av天堂| 少妇的逼好多水| 嫩草影院新地址| 成人鲁丝片一二三区免费| 91狼人影院| 婷婷精品国产亚洲av在线| 欧美性猛交黑人性爽| 能在线免费观看的黄片| 99热这里只有是精品50| 在线观看66精品国产| 国产男靠女视频免费网站| 免费不卡的大黄色大毛片视频在线观看 | 黄色配什么色好看| 午夜福利欧美成人| 在线观看午夜福利视频| 国产伦一二天堂av在线观看| 欧美精品国产亚洲| 欧洲精品卡2卡3卡4卡5卡区| 97碰自拍视频| 好男人在线观看高清免费视频| 国产伦精品一区二区三区四那| 国产高清视频在线播放一区| 亚洲欧美日韩无卡精品| 亚洲av美国av| 免费人成视频x8x8入口观看| 婷婷丁香在线五月| 色综合色国产| 热99在线观看视频| 国产成人影院久久av| 亚洲精品乱码久久久v下载方式| 人妻夜夜爽99麻豆av| 亚洲七黄色美女视频| 特大巨黑吊av在线直播| 亚洲国产日韩欧美精品在线观看| 国产免费男女视频| 国产av在哪里看| 床上黄色一级片| 久久久久九九精品影院| 亚洲av不卡在线观看| 看黄色毛片网站| 免费看a级黄色片| 嫩草影院精品99| 麻豆精品久久久久久蜜桃| 联通29元200g的流量卡| 麻豆成人av在线观看| 亚洲内射少妇av| 精品无人区乱码1区二区| 亚洲性久久影院| 日韩人妻高清精品专区| 国产精品久久久久久精品电影| 国产精品自产拍在线观看55亚洲| 午夜爱爱视频在线播放| 国产精品野战在线观看| 亚洲成人久久性| 国产成人福利小说| 无人区码免费观看不卡| 中文资源天堂在线| 最好的美女福利视频网| 一边摸一边抽搐一进一小说| 欧美高清性xxxxhd video| 99久久久亚洲精品蜜臀av| 男女视频在线观看网站免费| 成人高潮视频无遮挡免费网站| 免费av毛片视频| 免费观看的影片在线观看| 校园春色视频在线观看| 搡老熟女国产l中国老女人| 日韩欧美精品v在线| 成年女人永久免费观看视频| 国产成人影院久久av| 国产高清三级在线| 国产精品1区2区在线观看.| 亚洲美女视频黄频| 毛片女人毛片| 成人综合一区亚洲| 日本黄色视频三级网站网址| 国产精品一及| 毛片一级片免费看久久久久 | 精品国内亚洲2022精品成人| 亚洲中文字幕日韩| 国产蜜桃级精品一区二区三区| 人妻少妇偷人精品九色| 欧美三级亚洲精品| 午夜免费激情av| 国产精品国产高清国产av| 欧美日韩中文字幕国产精品一区二区三区| 亚洲在线自拍视频| 日本 av在线| 亚洲欧美激情综合另类| 嫩草影视91久久| 久久久久九九精品影院| 国产高清不卡午夜福利| 嫩草影院入口| 伦理电影大哥的女人| 国产精品爽爽va在线观看网站| 久久久久久久亚洲中文字幕| 他把我摸到了高潮在线观看| 色尼玛亚洲综合影院| 欧美又色又爽又黄视频| 三级毛片av免费| 国产一区二区三区视频了| 女人十人毛片免费观看3o分钟| 亚洲欧美日韩高清在线视频| 嫩草影视91久久| 九色成人免费人妻av| 成人国产综合亚洲| 3wmmmm亚洲av在线观看| 国产亚洲精品久久久com| 校园春色视频在线观看| av天堂中文字幕网| 国产男人的电影天堂91| 精品人妻熟女av久视频| 日日摸夜夜添夜夜添av毛片 | 琪琪午夜伦伦电影理论片6080| 91久久精品国产一区二区成人| 在线播放国产精品三级| 国产极品精品免费视频能看的| 校园人妻丝袜中文字幕| 老师上课跳d突然被开到最大视频| 国产精品一区二区性色av| 成人无遮挡网站| 国产探花极品一区二区| 我要搜黄色片| 两性午夜刺激爽爽歪歪视频在线观看| 欧美性感艳星| 欧美+日韩+精品| 久久久久久久午夜电影| 亚洲中文日韩欧美视频| 国国产精品蜜臀av免费| 亚洲中文日韩欧美视频| 狂野欧美激情性xxxx在线观看| 可以在线观看毛片的网站| 日本精品一区二区三区蜜桃| 午夜精品一区二区三区免费看| 高清日韩中文字幕在线| 女的被弄到高潮叫床怎么办 | 真实男女啪啪啪动态图| 99热只有精品国产| 天堂网av新在线| www.色视频.com| 老司机午夜福利在线观看视频| 亚洲精品一区av在线观看| 少妇人妻精品综合一区二区 | 国产精品人妻久久久久久| 国产一区二区在线av高清观看| 欧美极品一区二区三区四区| 国产精品亚洲一级av第二区| .国产精品久久| 啦啦啦韩国在线观看视频| 色噜噜av男人的天堂激情| 麻豆国产av国片精品| 国产亚洲精品av在线| 久久亚洲精品不卡| bbb黄色大片| 小说图片视频综合网站| 99热只有精品国产| 干丝袜人妻中文字幕| 国产午夜精品论理片| 黄片wwwwww| 午夜精品久久久久久毛片777| 日韩,欧美,国产一区二区三区 | 十八禁网站免费在线| 亚洲第一电影网av| 欧美bdsm另类| 久久久久久久久久久丰满 | 夜夜夜夜夜久久久久| 婷婷精品国产亚洲av在线| 国产中年淑女户外野战色| 12—13女人毛片做爰片一| 日韩亚洲欧美综合| 亚洲专区中文字幕在线| 国产日本99.免费观看| 午夜福利在线在线| 欧美中文日本在线观看视频| 一a级毛片在线观看| 欧美另类亚洲清纯唯美| 国产精品久久久久久精品电影| 亚洲第一电影网av| 亚洲av免费在线观看| 色尼玛亚洲综合影院| 国产蜜桃级精品一区二区三区| 别揉我奶头 嗯啊视频| 亚洲精品日韩av片在线观看| 国产v大片淫在线免费观看| 精华霜和精华液先用哪个| 一级av片app| 色在线成人网| 中文字幕免费在线视频6| 午夜a级毛片| 亚洲图色成人| 深夜精品福利| 国产伦精品一区二区三区四那| 国产一区二区亚洲精品在线观看| 国产亚洲精品av在线| av在线天堂中文字幕| 欧美高清成人免费视频www| a级毛片免费高清观看在线播放| 99精品在免费线老司机午夜| 国国产精品蜜臀av免费| 欧美日韩国产亚洲二区| 亚洲国产精品成人综合色| 国产乱人伦免费视频| 亚洲黑人精品在线| 麻豆成人av在线观看| 久久久久九九精品影院| 日韩欧美 国产精品| 午夜爱爱视频在线播放| 最好的美女福利视频网| 一卡2卡三卡四卡精品乱码亚洲| 国产一区二区在线观看日韩| 级片在线观看| 少妇的逼好多水| 午夜视频国产福利| 美女xxoo啪啪120秒动态图| 欧美人与善性xxx| 女人十人毛片免费观看3o分钟| 亚洲经典国产精华液单| 国产成人影院久久av| 欧美日韩黄片免| 日韩亚洲欧美综合| 99riav亚洲国产免费| 国产毛片a区久久久久| 日本 欧美在线| 亚洲成人免费电影在线观看| 国产精品一区www在线观看 | 国内久久婷婷六月综合欲色啪| 男女做爰动态图高潮gif福利片| 色尼玛亚洲综合影院| 亚洲一级一片aⅴ在线观看| 久久久久久久亚洲中文字幕| 丰满乱子伦码专区| 不卡视频在线观看欧美| 欧美成人a在线观看| 亚洲中文字幕日韩| 亚洲人与动物交配视频| 97人妻精品一区二区三区麻豆| 精品日产1卡2卡| 日本 av在线| 真实男女啪啪啪动态图| 成人特级av手机在线观看| 伦精品一区二区三区| 亚洲国产精品成人综合色| 国产精品亚洲一级av第二区| 久99久视频精品免费| 国产男靠女视频免费网站| 如何舔出高潮| 国产精品国产三级国产av玫瑰| 国产探花在线观看一区二区| 深爱激情五月婷婷| 亚洲精品一卡2卡三卡4卡5卡| 久久国内精品自在自线图片| 日韩欧美国产一区二区入口| 色av中文字幕| 国产精品人妻久久久影院| 亚洲av成人精品一区久久| 高清日韩中文字幕在线| 麻豆一二三区av精品| 少妇裸体淫交视频免费看高清| 国产精品乱码一区二三区的特点| 18禁裸乳无遮挡免费网站照片| 免费在线观看影片大全网站| 午夜激情福利司机影院| 少妇丰满av| 国产高清三级在线| 嫩草影院精品99| 国产毛片a区久久久久| 久久久久九九精品影院| 此物有八面人人有两片| 国内精品久久久久精免费| 久久久久九九精品影院| 小蜜桃在线观看免费完整版高清| 色综合亚洲欧美另类图片| 成年女人毛片免费观看观看9| 亚洲成人久久性| 欧美xxxx黑人xx丫x性爽| 国产伦一二天堂av在线观看| 精品久久久久久久久av| 国产精品久久电影中文字幕| 欧美又色又爽又黄视频| 人妻少妇偷人精品九色| 亚洲一区二区三区色噜噜| 性色avwww在线观看| 欧美不卡视频在线免费观看| 狂野欧美激情性xxxx在线观看| 99精品在免费线老司机午夜| 亚洲av美国av| 日韩大尺度精品在线看网址| 国产男人的电影天堂91| av专区在线播放| 中文字幕熟女人妻在线| 日日摸夜夜添夜夜添av毛片 | 男人狂女人下面高潮的视频| 免费电影在线观看免费观看| 午夜日韩欧美国产| 亚洲五月天丁香| 国产高清视频在线播放一区| 极品教师在线视频| 亚洲av.av天堂| 中文字幕av在线有码专区| 久久6这里有精品| 永久网站在线| 久久精品国产99精品国产亚洲性色| 国产主播在线观看一区二区| av专区在线播放| 亚洲七黄色美女视频| av.在线天堂| 亚洲人与动物交配视频| 午夜影院日韩av| 蜜桃亚洲精品一区二区三区| 精品久久久久久,| 国产亚洲欧美98| 国产色爽女视频免费观看| 色吧在线观看| 精品久久久噜噜| АⅤ资源中文在线天堂| 天堂av国产一区二区熟女人妻| 久久精品综合一区二区三区| 国产在线男女| 久久精品影院6| 成人欧美大片| av在线天堂中文字幕| 国产免费男女视频| 欧美黑人巨大hd| 日本-黄色视频高清免费观看| 午夜爱爱视频在线播放| 2021天堂中文幕一二区在线观| 麻豆精品久久久久久蜜桃| 少妇人妻一区二区三区视频| 性欧美人与动物交配| 午夜福利欧美成人| 免费黄网站久久成人精品| 九九久久精品国产亚洲av麻豆| 又爽又黄无遮挡网站| 亚洲成人精品中文字幕电影| 国产精品久久久久久久久免| 欧美日韩精品成人综合77777| 亚洲不卡免费看| 他把我摸到了高潮在线观看| 久久久久精品国产欧美久久久| 久久精品国产清高在天天线| 欧美国产日韩亚洲一区| 草草在线视频免费看| 级片在线观看| 日韩欧美三级三区| 黄色欧美视频在线观看| 国产欧美日韩精品亚洲av| 99久久精品一区二区三区| 国产精品日韩av在线免费观看| 午夜免费男女啪啪视频观看 | 日日干狠狠操夜夜爽| 熟女电影av网| 国产欧美日韩一区二区精品| 99久久久亚洲精品蜜臀av| 精品午夜福利视频在线观看一区| 美女高潮喷水抽搐中文字幕| 免费看光身美女| 最近在线观看免费完整版| 午夜福利18| 淫妇啪啪啪对白视频| 日日干狠狠操夜夜爽| 亚洲一区二区三区色噜噜| 特大巨黑吊av在线直播| 精品久久国产蜜桃| 波野结衣二区三区在线| xxxwww97欧美| 国产高清视频在线观看网站| 黄色一级大片看看| 热99re8久久精品国产| 99热网站在线观看| 成人永久免费在线观看视频| 在现免费观看毛片| 日韩精品有码人妻一区| 日韩欧美在线乱码| 国产精华一区二区三区| 婷婷色综合大香蕉| 午夜视频国产福利| 亚洲va在线va天堂va国产| 少妇人妻一区二区三区视频| 啦啦啦韩国在线观看视频| 夜夜爽天天搞| 国产男靠女视频免费网站| 国产精品一区二区免费欧美| 一区二区三区四区激情视频 | 免费av不卡在线播放| 久99久视频精品免费| 久久久成人免费电影| 91狼人影院| 久9热在线精品视频| 草草在线视频免费看| 精品一区二区三区av网在线观看| 亚洲熟妇熟女久久| 尾随美女入室| 亚洲aⅴ乱码一区二区在线播放| 免费av不卡在线播放| 久久久久九九精品影院| 国产高潮美女av| 夜夜夜夜夜久久久久| 男女下面进入的视频免费午夜| 国产 一区 欧美 日韩| 有码 亚洲区| 免费av观看视频| 亚洲aⅴ乱码一区二区在线播放| 久久香蕉精品热| 一级黄片播放器| 亚洲一级一片aⅴ在线观看| 人妻制服诱惑在线中文字幕| 国产成人av教育| 精品乱码久久久久久99久播| 搡老熟女国产l中国老女人| 久久午夜亚洲精品久久| 五月伊人婷婷丁香| 18+在线观看网站| 99久久精品国产国产毛片| 最新中文字幕久久久久| 人人妻人人看人人澡| 精品久久久久久久末码| 国产高清视频在线播放一区| 国产精品伦人一区二区| 免费不卡的大黄色大毛片视频在线观看 | 亚洲人与动物交配视频| 日日撸夜夜添| 欧美日韩瑟瑟在线播放| 无人区码免费观看不卡| 深夜精品福利| 波野结衣二区三区在线|