• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Deep Neural Network and Pseudo Relevance Feedback Based Query Expansion

    2022-08-24 03:30:24AbhishekKumarShuklaandSujoyDas
    Computers Materials&Continua 2022年5期

    Abhishek Kumar Shuklaand Sujoy Das

    Department of Mathematics,Bio-Informatics and Computer Applications,Maulana Azad National Institute of Technology Bhopal,Bhopal,Madhya Pradesh,462003,India

    Abstract: The neural network has attracted researchers immensely in the last couple of years due to its wide applications in various areas such as Data mining, Natural language processing, Image processing, and Information retrieval etc.Word embedding has been applied by many researchers for Information retrieval tasks.In this paper word embedding-based skip-gram model has been developed for the query expansion task.Vocabulary terms are obtained from the top“k”initially retrieved documents using the Pseudo relevance feedback model and then they are trained using the skip-gram model to find the expansion terms for the user query.The performance of the model based on mean average precision is 0.3176.The proposed model compares with other existing models.An improvement of 6.61%,6.93%,and 9.07%on MAP value is observed compare to the Original query, BM25 model, and query expansion with the Chi-Square model respectively.The proposed model also retrieves 84, 25, and 81 additional relevant documents compare to the original query, query expansion with Chi-Square model, and BM25 model respectively and thus improves the recall value also.The per query analysis reveals that the proposed model performs well in 30, 36, and 30 queries compare to the original query,query expansion with Chi-square model,and BM25 model respectively.

    Keywords: Information retrieval; query expansion; word embedding; neural network;deep neural network

    1 Introduction

    Over the years the web has growing exponentially and it has become difficult to retrieve the relevant documents as per the user query.The information retrieval system tries to minimize the gap between the user query and relevant documents.Various phases of the retrieval process are affected by the vagueness of the user query.For example novice user during the formulation of the query,might be uncertain in selecting the keyword to express his/her information need.The user has only a fuzzy idea about what he/she is looking for.Due to this retrieval system retrieves irrelevant documents along with relevant documents.Query expansion appends additional terms to the original query and helps in retrieving those additional relevant documents that were left out.Query expansion technique tries to minimize the word mismatch problem.Generally,queries are categorized into the following three main categories[1]

    (1) Navigational queries

    (2) Informational queries

    (3) Transactional queries

    Navigational queries are those queries that are searching a particular URL or website.Informational queries are those which search a broad area of the given query and may contain thousands of documents.Transactional queries are those which search user intention to execute some task like downloading or buying some items.In information retrieval,one method of query expansion could be the use of semantically similar terms to the original query.WordNet[2]based methods are one of the oldest methods for query expansion.It is a semantic-based approach that finds semantically similar terms of the original query terms by using synonyms,hyponyms and,meronyms of the query terms.Word embedding is a technique to find similar terms to the original query.Word2vev[3]and Glove[4]are the two well-known word embedding techniques to find the semantically similar terms to the original query terms for query expansion.Word2vec and Glove learns the word embedding vector in an unsupervised way using a deep neural network.Word2vec and Glove find the semantically similar term of original query terms using global document collection or external resources such as Wikipedia[5]or similarity thesaurus[6].The local method of query expansion searches the similar term of the original query using the Pseudo relevance feedback method.The pseudo relevance feedback method assumes that top “k”retrieved documents are relevant to the original query.It is observed that the local method of query expansion performs better than the global method of query expansion[7].

    The proposed method uses a deep neural network-based query expansion method using the skipgram model.In the proposed method of query expansion semantically similar terms of the original query are retrieved from top “k” initial retrieved documents using the Pseudo relevance feedback method.Semantically similar terms are retrieved by training the terms in top “k”initially retrieved documents using the skip-gram model.In the skip-gram model, we predict the context word of the given center word.The Skip-gram model uses an un-supervised deep neural network-based training method that successively updates the weight between two successive layers.The Skip-gram model assigns each term to a lower-dimensional vector compare to the vocabulary size,in a semantic vector space.The proposed method predicts the context word of each query term and then finds the union of these context words.The combined context words are treated as expansion terms for the given query terms.Fig.1 shows the architecture of the proposed model.

    2 Related Work

    Query expansion plays important role in improving the performance of the retrieval system.The most common method of query expansion is to extract the expansion terms from an external data collection such as Anchor text,Query log,and external corpus.References[8,9]used anchor text as a data source.References[10,11]used query log for query expansion.They applied correlation between query terms and documents term.They collected data source from click-through of documents on URL.Reference [12] used query log as a bipartite graph where query nodes are connected to URL nodes by click edges and they showed an improvement of 10%.Reference[13]proposed co-occurrencebased document-centric probabilistic model for query expansion.A continuous word embeddingbased technique for the document was proposed by [14].They reported that their model performs better than LSI based model but does not outperform TF-IDF and divergence from the randomness model.Reference[15]proposed supervised embedding-based term weighting technique for language modeling.Reference[16]proposed semantic similarities between vocabulary terms to improve the performance of the retrieval system.Reference[17]proposed word embedding technique in a supervised manner for query expansion.Reference[18]proposed word embedding-based word2vec based model for expanding the query terms.Using this model they extracted similar terms of the query terms using the K-nearest neighbor approach.They reported considerable improvement on TREC ad-hoc data.Reference[19]used Word2Vec and Glove for query expansion for ad hoc retrieval.Reference[20]used fuzzy method to reformulate and expand the user query using pseudo relevance feedback method that uses top ‘k’ranked document as a data source.Reference [21] proposed a hybrid method that uses both local and global methods as a data source.The proposed method used a combination of external corpus and top ‘k’ranked documents as a data source.Reference [22] used a combination of top retrieved documents and anchor text as a data source for query expansion.Reference[23]used query log and web search result as a data source for query reformulation and expansion.Reference[24]used Wikipedia and Freebase to expand the initial query.Reference[25]used a fuzzy-based machine learning technique to classify the liver disease patients.Reference [26] proposed a machine learning technique that diagnoses breast cancer patients using different classifiers.

    3 Query Expansion Using Deep Learning

    Deep learning is a technique that is used in almost every area of computer science to learn something.In information retrieval,continuous word embedding is widely used to improve the mean average precision (MAP).There are following two deep learning approaches of word embedding technique

    (1) The Continuous Bag of Words model(CBOW)[27]

    (2) The Skip-gram model

    Continuous bag of word model and Skip-gram model is widely used in query expansion method[28,29].A continuous bag of word model is used to predict the center word of given context words.The Skip-gram model is just the opposite of the CBOW model.The Skip-gram model predicts the context word of a given center word.In this paper Skip-gram model is used to expand the query.The proposed method predicts context words for each query term and then they are combined and treated as expansion terms.

    The proposed model is having three-layer of architectures,Input layer,hidden layer,and output layer.The proposed model used both the feed-forward network and the back-propagation method to predict the context word of a given center word.In the skip-gram model architecture,each query word is represented as one-hot encoding at the input layer.In one hot encoding representation if vocabulary size is 7000 words then in a 7000X1 vector is created and 0 is put at each index except at the index containing the center word.“1”is put at the index of the center word.The architecture of the skipgram model is shown in Fig.2.In the following diagram, the weight matrix is initialized randomly.Hidden layer is used to represent the one hot encoding into a dense representation.This is achieved through the dot product of the hot vector and weight matrix.At the next layer,we initialize another weight matrix with random weights.Then the dot product of a hidden vector and newly weighted matrix is obtained.At the next layer,activation function softmax is applied to the output value of the product of the hidden vector and newly assigned weight matrix.In the mid of the training,we have to change the weight of both the matrix so that the words surrounding the context words have a higher probability at the softmax layer.Let N represents the number of unique terms in our corpus of text,X represents the one hot encoding of our query word at input layer,N’number of neurons in the hidden layer, W(N’XN) weight matrix between the input layer and hidden layer, W’(NXN’) weight matrix between the hidden layer and output layer,and Y a softmax layer having probabilities of every word in vocabulary,then using feed-forward propagation we have

    h=wT.x

    and

    u=w′T.h

    Let ujbe the jth neuron of layer u,wjbe the word in our vocabulary where j is any index,andVwjbe the jth column of matrix W’then we have

    uj=.h

    y=softmax(u)

    yj=softmax(uj)

    Yjdenote the probability that wjis a context word

    P(wj|wi) is the probability that wjis a context word wiis the input word.The goal is to maximizeP(wj*|wi)where j*represents the indices of context words.We have to maximize

    wherey*care the vocabulary indices of context words.Context words are range from c=1,2,3,....,C.The loss function E is defined as negative log of Eq.(1)as

    Using Back Propagation we have

    The loss function is propagated from output layer to hidden layer and hidden layer to input layer from Eqs.(2)and(3).The weight W and W’is updated as

    whereWijNewandare the updated weights between input layer and hidden layer and hidden layer and output layer respectively.The algorithm of the proposed method is

    Algorithm 1:SKIP-GRAM BASED QUERY EXPANSION 1.Create hot vector X,for each query term“t”for user query Q.2.Initializeskip_window_size=l,epoch=k,voc_size=N,hid_size=N’weight_matrix1=W(N’XN),weight_matrix2=W’(NXN’).3.Using Feed Forward:3.1 Compute h=wT.x,u=w′T.h 3.2 Compute softmax(uj)=eujimages/BZ_1434_894_1682_921_1707.pngN j′=1 euj′3.3 y=softmax(u)3.4 for j←1 to N:3.4.1 yj ←softmax(uj)4.Using Back Propagation:4.1 for i ←1 to N’:4.1.1 for j←1 to N:4.1.1.1 Compute ej ←yj-tj 4.1.2 Compute eji =ej.hi 4.1.3 Compute e′ij ←ej.w′ij.xi 4.2 for m ←1 to epoch:4.2.1 for I ←1 to N’:4.2.1.1 for j ←1 to N:4.2.1.1.1 W′ji ←W′ji-eji 4.2.1.1.2 Wij ←Wij-e′ij 5.len ←Length(Q)6.leq ←「l/len■7.for each t in query Q retrieve the indices at y which has top“l(fā)eq”values.8.for each t in query Q retrieve the words corresponding to indices at y and merge them to Qm 9.Append these words to exp←Q+Qm 10.return exp

    4 Experimental Results and Discussion

    Precision and recall are the two metrics to check the performance of the retrieval system.A retrieval system with high precision and recall gives an implication to the evaluators that the proposed system is highly significant.Precision is defined as

    Mean average precision(MAP)defined as

    where

    Qj:number of relevant documents for query j

    N:number of queries

    P(doci):precision at ith relevant document

    We have performed our experiment onFIRE 2011 English test collection[30].The dataset is of size 1.1 GB containing 392577 documents.We have usedterrier3.5[31]search engine as retrieval engine.The documents are pre-processed through the following steps.

    o Text Segmentation:To split the text into sentences and then to split the sentence into tokens.

    o Stop Word Removal:This step remove all the stop words containing the documents.

    o Stemming:This step stem the root words of all the terms containing the documents.

    We have performed pre-processing on the underlying dataset by applyingPorter stemmer and Stopwordto stem the root word and to remove the stop words respectively.In the proposed method documents are retrieved using InL2c1.0 model.We have performed our experiment on 50 queries.The mean average precision value of the proposed method, query expansion with the Chi-Square model, BM25 model, and the original query are 0.3176, 0.2912, 0.2970, and 0.2979 respectively.An improvement of 6.61% to the original query is observed.The performance of the retrieval system on original query, Chi-squared based query expansion, query expansion using the proposed model and BM25 model are shown in Tabs.1–4 respectively.The performance of original queryvs.query expansion using Chi-Square,original queryvs.proposed model,Chi-Squarevs.proposed model,and original queryvs.Chi-Squarevs.proposed model is shown in Figs.3–6 respectively.From Tabs.1–4 it is observed that the proposed model outperforms to original query model, query expansion with the Chi-Square model,and BM25 model respectively.The MAP improvement of the proposed model to the original query and query expansion with Chi-square is 6.61%and 9.07%respectively.Figs.3–6 query by query analyses reveal that the proposed model retrieves 84 and 35 more relevant documents in comparison to the original query and query expansion with the Chi-Square model.The proposed model also performs well on 30 queries in comparison to and in 36 queries in comparison to the original query and query expansion with the Chi-Square model respectively.The sample query and their expansion terms using the proposed model are shown in Tab.6.In the Following Figures x-axis represents query number and y-axis represents MAP value respectively.

    Figure 1:Architecture of proposed model

    Figure 2:Deep skip-gram model architecture

    Figure 3:Performance of Chi Square based query expansion vs.original query

    Figure 4:Performance of proposed model vs.original query

    Figure 5:Performance of proposed model vs.Chi Square model

    Figure 6:Performance of proposed model vs.Chi Square model vs.original query

    Figure 7:Performance of proposed model vs.BM25 model

    Table 1:Original query

    Table 2:Query expansion using Chi Square model

    Table 3:Query expansion using proposed model

    Table 3:Continued

    Table 4:BM25 model

    5 Discussion

    From Tabs.1–5 it is clear that the proposed model performs well over the other models.The proposed model improves the MAP result 6.61%,6.93%,and 9.07%concerning original query,query BM25 model, and query expansion with Chi-Square model respectively.The proposed model also improves the result on R precision parameter 8.47%, 7.02%, and 12.13% concerning original query,BM25 model,and query expansion with Chi-Square model respectively.The proposed model improves recall value by retrieving 84, 25, and 81 additional documents compare to the original query, query expansion with the Chi-Square model,and BM25 model respectively.From Figs.4,5,and 7 it is clear that per query analysis reveals that out of 50 queries proposed model performs well in 30, 36, and 30 queries compare to the original query, query expansion with the Chi-Square model, and BM25 model respectively.Per query,analysis shows that more than 60%of queries proposed model performs well compare to other models.The proposed model performs well compare to the original query in query numbers Q128,Q129,Q130,Q131,Q133,Q139,Q140,Q141,Q143,Q144,Q146,Q147,Q148,Q150, Q154, Q155, Q156, Q157, Q159, Q160, Q162, Q163, Q165, Q166, Q169, Q170, Q171, Q172,Q173,and Q174.The proposed model also performs well compare to query expansion with the Chi-Square model in query numbers Q127, Q128, Q129, Q130, Q137, Q138, Q139, Q140, Q142, Q143,Q144, Q145, Q146, Q147, Q150, Q151, Q152, Q155, Q156, Q157, Q158, Q159, Q160, Q162, Q163,Q164, Q165, Q166, Q167, Q169, Q170, Q171, Q172, Q173, Q174, and Q1175.The proposed model also performs well compare to the BM25 model in query numbers Q127,Q128,Q129,Q130,Q132,Q133, Q139, Q140, Q141, Q143, Q144, Q146, Q147, Q148, Q150, Q154, Q155, Q156, Q157, Q159,Q160,Q162,Q163,Q165,Q166,Q169,Q171,Q172,Q173,and Q174.

    Table 5:Comparison of relative performance of proposed model with other models

    Table 6:Sample query and their expansion terms using proposed model

    Table 6:Continued

    6 Conclusion

    In this paper, the word mismatch problem is minimized by applying combination of pseudo relevance feedback and deep neural network based method.In the proposed method,we have applied the skip-gram-based neural method for selecting the expansion terms.The mean average precision of the proposed method is 0.3176.An improvement of 6.61%and 9.07%is observed on MAP parameter in comparison to the original query and query expansion with Chi-square model respectively.The proposed model also retrieves 84 and 35 more documents in comparison to original query and query expansion with Chi-square model respectively.In near future, we will try to further improve the performance of the proposed method by tuning the parameters.

    Acknowledgement:One of the authors is pursuing a full-time Ph.D.from the Department of Mathematics,Bio-informatics,and Computer Applications,Maulana Azad National Institute of Technology(MANIT)Bhopal(MP),India.He expresses sincere thanks to the Institute for providing an opportunity for him to pursue his Ph.D.work.The author also thanks the Forum of Information Retrieval and Evaluation(FIRE)to provide a dataset to perform his experimental work.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产精品二区激情视频| 看免费av毛片| 免费女性裸体啪啪无遮挡网站| av线在线观看网站| 久久ye,这里只有精品| 在线观看午夜福利视频| 免费黄频网站在线观看国产| 欧美日韩国产mv在线观看视频| av福利片在线| 在线看a的网站| 极品少妇高潮喷水抽搐| 岛国在线观看网站| 国产男女内射视频| 黄频高清免费视频| 午夜福利一区二区在线看| 亚洲中文字幕日韩| 91精品国产国语对白视频| 久久精品成人免费网站| 欧美精品高潮呻吟av久久| 免费在线观看视频国产中文字幕亚洲| √禁漫天堂资源中文www| 午夜精品在线福利| 亚洲精品美女久久久久99蜜臀| 乱人伦中国视频| 757午夜福利合集在线观看| 亚洲精品国产色婷婷电影| 免费观看a级毛片全部| av有码第一页| 巨乳人妻的诱惑在线观看| 水蜜桃什么品种好| 人妻丰满熟妇av一区二区三区 | 亚洲一区高清亚洲精品| 亚洲精品自拍成人| 99re6热这里在线精品视频| 好男人电影高清在线观看| 亚洲av片天天在线观看| 久久人妻福利社区极品人妻图片| 亚洲美女黄片视频| 美国免费a级毛片| 国产成人啪精品午夜网站| 久久中文字幕一级| 波多野结衣av一区二区av| 成年版毛片免费区| 久久久国产一区二区| 一区二区三区精品91| 精品人妻熟女毛片av久久网站| 人人妻,人人澡人人爽秒播| 啦啦啦在线免费观看视频4| 色婷婷av一区二区三区视频| 交换朋友夫妻互换小说| 宅男免费午夜| 热re99久久精品国产66热6| 亚洲精品av麻豆狂野| 精品午夜福利视频在线观看一区| 99久久综合精品五月天人人| 欧美另类亚洲清纯唯美| 性少妇av在线| 精品福利永久在线观看| 男女免费视频国产| 亚洲aⅴ乱码一区二区在线播放 | 大香蕉久久网| 在线天堂中文资源库| 日韩制服丝袜自拍偷拍| 黑人操中国人逼视频| 欧美一级毛片孕妇| 91国产中文字幕| 中文字幕人妻丝袜制服| 精品视频人人做人人爽| 热re99久久精品国产66热6| 成人国产一区最新在线观看| 久久青草综合色| 亚洲成国产人片在线观看| 桃红色精品国产亚洲av| 老司机影院毛片| 1024香蕉在线观看| 嫩草影视91久久| 国产精品1区2区在线观看. | 99久久99久久久精品蜜桃| 亚洲第一欧美日韩一区二区三区| 国产精品偷伦视频观看了| 欧美在线一区亚洲| 亚洲精品美女久久av网站| 99国产极品粉嫩在线观看| 曰老女人黄片| 久久影院123| 午夜老司机福利片| 天天添夜夜摸| 一区福利在线观看| 妹子高潮喷水视频| 韩国av一区二区三区四区| 在线av久久热| 精品福利永久在线观看| 人妻一区二区av| 国产精品免费一区二区三区在线 | 国产成人欧美| 亚洲中文日韩欧美视频| av网站在线播放免费| 一级,二级,三级黄色视频| a级片在线免费高清观看视频| 日韩免费av在线播放| 国产精品乱码一区二三区的特点 | 黄色 视频免费看| 热re99久久国产66热| 校园春色视频在线观看| 麻豆国产av国片精品| 日本a在线网址| 亚洲视频免费观看视频| 久久狼人影院| 久久婷婷成人综合色麻豆| 亚洲成人手机| av不卡在线播放| 国产无遮挡羞羞视频在线观看| 老司机在亚洲福利影院| 黄片播放在线免费| a级毛片在线看网站| 亚洲久久久国产精品| 妹子高潮喷水视频| 日日爽夜夜爽网站| aaaaa片日本免费| 免费看十八禁软件| 亚洲第一青青草原| 精品亚洲成a人片在线观看| 国产精品98久久久久久宅男小说| 亚洲精品av麻豆狂野| 成人三级做爰电影| 后天国语完整版免费观看| 高清黄色对白视频在线免费看| 精品一品国产午夜福利视频| 欧美av亚洲av综合av国产av| 欧美日韩亚洲高清精品| 丰满饥渴人妻一区二区三| 老司机深夜福利视频在线观看| 我的亚洲天堂| 777米奇影视久久| 热99re8久久精品国产| 成年人黄色毛片网站| 午夜福利在线观看吧| 亚洲七黄色美女视频| 久久久国产精品麻豆| 亚洲精品美女久久久久99蜜臀| 久久精品aⅴ一区二区三区四区| 午夜免费成人在线视频| 亚洲精品国产区一区二| 亚洲专区国产一区二区| 欧美国产精品va在线观看不卡| 久久国产亚洲av麻豆专区| 精品第一国产精品| 免费久久久久久久精品成人欧美视频| 免费在线观看亚洲国产| 久久久国产成人免费| 在线观看午夜福利视频| 日本a在线网址| 国产午夜精品久久久久久| 一二三四社区在线视频社区8| 国产蜜桃级精品一区二区三区 | 嫁个100分男人电影在线观看| 亚洲黑人精品在线| 黄片大片在线免费观看| 午夜福利在线观看吧| 天天操日日干夜夜撸| 男女免费视频国产| 午夜福利在线免费观看网站| 亚洲久久久国产精品| 热99久久久久精品小说推荐| 日本欧美视频一区| 在线视频色国产色| www.自偷自拍.com| 亚洲精品在线美女| 国产精品99久久99久久久不卡| 搡老熟女国产l中国老女人| 久久国产亚洲av麻豆专区| 日日夜夜操网爽| 少妇猛男粗大的猛烈进出视频| 正在播放国产对白刺激| √禁漫天堂资源中文www| 中出人妻视频一区二区| 久久久久国产一级毛片高清牌| 日本撒尿小便嘘嘘汇集6| 天天躁夜夜躁狠狠躁躁| 少妇的丰满在线观看| 麻豆乱淫一区二区| 亚洲全国av大片| 建设人人有责人人尽责人人享有的| 三级毛片av免费| 少妇裸体淫交视频免费看高清 | 热99久久久久精品小说推荐| 建设人人有责人人尽责人人享有的| 9热在线视频观看99| 欧美精品啪啪一区二区三区| 日日夜夜操网爽| 看免费av毛片| 久久人人爽av亚洲精品天堂| 91麻豆av在线| 久久精品国产99精品国产亚洲性色 | 美女扒开内裤让男人捅视频| 99久久国产精品久久久| 高清毛片免费观看视频网站 | 欧美最黄视频在线播放免费 | 女人被躁到高潮嗷嗷叫费观| 国产亚洲精品一区二区www | 91老司机精品| 国产精品久久久久久人妻精品电影| 亚洲av成人av| 久久精品国产清高在天天线| 国产精品久久久av美女十八| 99久久人妻综合| 亚洲av成人不卡在线观看播放网| 女人被躁到高潮嗷嗷叫费观| 飞空精品影院首页| 亚洲欧美激情在线| 久久久久国产精品人妻aⅴ院 | 999精品在线视频| 下体分泌物呈黄色| 在线观看66精品国产| 欧美日韩黄片免| 悠悠久久av| 国产精品影院久久| 丝瓜视频免费看黄片| 欧美日韩亚洲高清精品| 黑人巨大精品欧美一区二区蜜桃| 日韩欧美国产一区二区入口| 亚洲少妇的诱惑av| 日本vs欧美在线观看视频| 精品久久久久久电影网| av片东京热男人的天堂| 少妇的丰满在线观看| 大片电影免费在线观看免费| 免费av中文字幕在线| 最近最新中文字幕大全电影3 | 啦啦啦 在线观看视频| 99在线人妻在线中文字幕 | av片东京热男人的天堂| 精品久久久久久电影网| 性少妇av在线| 精品欧美一区二区三区在线| 久久久国产一区二区| 国产片内射在线| 亚洲精品国产色婷婷电影| 50天的宝宝边吃奶边哭怎么回事| 50天的宝宝边吃奶边哭怎么回事| 精品久久久久久久久久免费视频 | 国产蜜桃级精品一区二区三区 | 两人在一起打扑克的视频| 操美女的视频在线观看| 亚洲avbb在线观看| 久久午夜综合久久蜜桃| 精品少妇久久久久久888优播| 一级毛片高清免费大全| 在线观看免费高清a一片| 亚洲av片天天在线观看| 日日摸夜夜添夜夜添小说| 美女福利国产在线| 王馨瑶露胸无遮挡在线观看| 老司机在亚洲福利影院| 999久久久国产精品视频| 搡老岳熟女国产| 久久精品国产清高在天天线| 啦啦啦 在线观看视频| 性色av乱码一区二区三区2| 国产精品成人在线| 色婷婷av一区二区三区视频| 国产人伦9x9x在线观看| 9191精品国产免费久久| 免费日韩欧美在线观看| 精品国产超薄肉色丝袜足j| 成人国产一区最新在线观看| 久热这里只有精品99| 天堂√8在线中文| 男女免费视频国产| 久9热在线精品视频| 大码成人一级视频| 国产在线精品亚洲第一网站| 女同久久另类99精品国产91| www.自偷自拍.com| 欧美黑人精品巨大| 大香蕉久久网| 亚洲精华国产精华精| 免费在线观看亚洲国产| 久久久久精品国产欧美久久久| 女人爽到高潮嗷嗷叫在线视频| 久久香蕉精品热| 男女午夜视频在线观看| 日本精品一区二区三区蜜桃| 51午夜福利影视在线观看| 欧美精品一区二区免费开放| 可以免费在线观看a视频的电影网站| 黄片播放在线免费| 高清欧美精品videossex| 久久久精品区二区三区| 一区福利在线观看| 国产一区二区激情短视频| 交换朋友夫妻互换小说| 一进一出抽搐动态| 丰满人妻熟妇乱又伦精品不卡| 免费一级毛片在线播放高清视频 | 国产一区二区激情短视频| 亚洲精品中文字幕一二三四区| 他把我摸到了高潮在线观看| 日韩三级视频一区二区三区| cao死你这个sao货| 性少妇av在线| 欧美国产精品一级二级三级| 亚洲精品久久午夜乱码| 两性午夜刺激爽爽歪歪视频在线观看 | tube8黄色片| 午夜福利乱码中文字幕| 亚洲精品美女久久av网站| 亚洲av欧美aⅴ国产| e午夜精品久久久久久久| 久久国产精品人妻蜜桃| 无限看片的www在线观看| 国产99白浆流出| 亚洲国产看品久久| 亚洲一区中文字幕在线| 成人特级黄色片久久久久久久| 国产日韩欧美亚洲二区| 国产欧美日韩精品亚洲av| 交换朋友夫妻互换小说| 99久久国产精品久久久| 久久ye,这里只有精品| 国产亚洲精品一区二区www | 极品教师在线免费播放| 91国产中文字幕| av网站在线播放免费| 一级毛片精品| 亚洲欧美日韩另类电影网站| 村上凉子中文字幕在线| 两个人免费观看高清视频| 国产男女超爽视频在线观看| 久久精品亚洲av国产电影网| 亚洲一码二码三码区别大吗| 如日韩欧美国产精品一区二区三区| 国产精品久久久久久人妻精品电影| 日本wwww免费看| 久久人人爽av亚洲精品天堂| 色婷婷久久久亚洲欧美| 91字幕亚洲| 一本一本久久a久久精品综合妖精| 亚洲av日韩在线播放| 老司机午夜十八禁免费视频| 国产片内射在线| 超碰成人久久| 国产野战对白在线观看| 91精品三级在线观看| 欧美精品人与动牲交sv欧美| 两人在一起打扑克的视频| 黄色a级毛片大全视频| 欧美精品亚洲一区二区| 亚洲美女黄片视频| 女人久久www免费人成看片| 亚洲五月天丁香| 国产欧美日韩综合在线一区二区| 高清在线国产一区| 国产精品久久久久成人av| 老熟女久久久| 十八禁网站免费在线| 亚洲精品自拍成人| 十分钟在线观看高清视频www| 亚洲精品av麻豆狂野| 精品国产超薄肉色丝袜足j| 精品人妻在线不人妻| 国产精品av久久久久免费| 国产成人av教育| 欧美久久黑人一区二区| 亚洲一区中文字幕在线| videos熟女内射| 成年人免费黄色播放视频| 最新的欧美精品一区二区| 久久精品国产99精品国产亚洲性色 | 国产免费现黄频在线看| 日本撒尿小便嘘嘘汇集6| 看黄色毛片网站| 天天躁狠狠躁夜夜躁狠狠躁| 国产男女超爽视频在线观看| 久9热在线精品视频| www.精华液| 色老头精品视频在线观看| 国产在线观看jvid| 99国产综合亚洲精品| 欧美黄色淫秽网站| 精品国产国语对白av| 亚洲专区国产一区二区| 国产真人三级小视频在线观看| 99国产综合亚洲精品| 免费在线观看亚洲国产| 看片在线看免费视频| 欧美日韩av久久| 亚洲国产欧美日韩在线播放| 欧美激情 高清一区二区三区| 国产精品 国内视频| 欧美一级毛片孕妇| 热99国产精品久久久久久7| 搡老岳熟女国产| 男女之事视频高清在线观看| x7x7x7水蜜桃| 99久久99久久久精品蜜桃| 人人妻,人人澡人人爽秒播| 亚洲精品粉嫩美女一区| 免费观看a级毛片全部| 黑人欧美特级aaaaaa片| 久久久精品区二区三区| 欧美激情 高清一区二区三区| 日韩大码丰满熟妇| 日韩欧美在线二视频 | 日本一区二区免费在线视频| 久久人人爽av亚洲精品天堂| 日韩中文字幕欧美一区二区| 日韩欧美一区二区三区在线观看 | 三级毛片av免费| 亚洲成人手机| 女人被躁到高潮嗷嗷叫费观| 捣出白浆h1v1| 中文欧美无线码| 在线av久久热| 国产区一区二久久| 三级毛片av免费| 很黄的视频免费| 国产av精品麻豆| 国产精品免费一区二区三区在线 | 欧美黑人欧美精品刺激| 高清黄色对白视频在线免费看| 熟女少妇亚洲综合色aaa.| av不卡在线播放| 日韩欧美在线二视频 | 亚洲av日韩精品久久久久久密| bbb黄色大片| 久久精品国产综合久久久| 国产日韩欧美亚洲二区| 久久人妻熟女aⅴ| 成人三级做爰电影| 国产精品一区二区精品视频观看| 日韩欧美一区视频在线观看| 1024视频免费在线观看| 最近最新中文字幕大全电影3 | 国产欧美日韩综合在线一区二区| 怎么达到女性高潮| 黄色 视频免费看| 国产一区二区三区在线臀色熟女 | 久久性视频一级片| 看免费av毛片| 国产高清视频在线播放一区| 亚洲人成77777在线视频| 成人三级做爰电影| 91精品国产国语对白视频| 亚洲av成人不卡在线观看播放网| 天天添夜夜摸| av网站在线播放免费| 一边摸一边做爽爽视频免费| 99在线人妻在线中文字幕 | 成人特级黄色片久久久久久久| 99在线人妻在线中文字幕 | 国产精品亚洲一级av第二区| 久久久水蜜桃国产精品网| 夜夜夜夜夜久久久久| 色老头精品视频在线观看| 一进一出好大好爽视频| 国产精品偷伦视频观看了| 啦啦啦视频在线资源免费观看| 国产精品影院久久| 交换朋友夫妻互换小说| 黑人欧美特级aaaaaa片| 日本五十路高清| 久久精品亚洲精品国产色婷小说| 亚洲国产精品sss在线观看 | ponron亚洲| 国产亚洲精品久久久久5区| 国产精品欧美亚洲77777| 亚洲精品中文字幕在线视频| 捣出白浆h1v1| 国产区一区二久久| 变态另类成人亚洲欧美熟女 | 人妻久久中文字幕网| 超碰97精品在线观看| 黄色视频不卡| 亚洲成a人片在线一区二区| 亚洲精品一卡2卡三卡4卡5卡| 91精品三级在线观看| 精品久久蜜臀av无| 久久香蕉精品热| 视频区欧美日本亚洲| 亚洲第一欧美日韩一区二区三区| 欧美成人午夜精品| 精品国产一区二区三区久久久樱花| 国产精品一区二区免费欧美| 久久精品国产亚洲av香蕉五月 | 久热爱精品视频在线9| 欧美日本中文国产一区发布| 高清av免费在线| 欧美日韩亚洲高清精品| 满18在线观看网站| 脱女人内裤的视频| 日韩 欧美 亚洲 中文字幕| 波多野结衣一区麻豆| 岛国在线观看网站| 国产精品.久久久| 黑人猛操日本美女一级片| 国产精品综合久久久久久久免费 | 老鸭窝网址在线观看| 久久青草综合色| 精品国产一区二区三区四区第35| 久久精品成人免费网站| 天天躁日日躁夜夜躁夜夜| 国产蜜桃级精品一区二区三区 | 久久久精品区二区三区| 香蕉丝袜av| 9色porny在线观看| 国产又爽黄色视频| 欧美人与性动交α欧美精品济南到| 99国产精品一区二区三区| 精品乱码久久久久久99久播| 成人国语在线视频| 亚洲精品在线美女| 一夜夜www| 日日摸夜夜添夜夜添小说| 精品一品国产午夜福利视频| 99精品久久久久人妻精品| 激情在线观看视频在线高清 | 亚洲avbb在线观看| 精品电影一区二区在线| 日韩人妻精品一区2区三区| 亚洲午夜理论影院| 国产精品二区激情视频| 99久久综合精品五月天人人| 午夜视频精品福利| 最近最新免费中文字幕在线| 人妻丰满熟妇av一区二区三区 | 亚洲精品国产精品久久久不卡| 色综合欧美亚洲国产小说| 日日摸夜夜添夜夜添小说| 国产又色又爽无遮挡免费看| 99久久国产精品久久久| 久久精品亚洲熟妇少妇任你| 啦啦啦 在线观看视频| 成人18禁在线播放| 国产一区有黄有色的免费视频| 午夜精品久久久久久毛片777| 手机成人av网站| 成人亚洲精品一区在线观看| 国产日韩一区二区三区精品不卡| 色在线成人网| 女警被强在线播放| 久久香蕉精品热| 亚洲av电影在线进入| 91老司机精品| av视频免费观看在线观看| 十分钟在线观看高清视频www| 妹子高潮喷水视频| 午夜福利在线观看吧| 亚洲专区字幕在线| 99re6热这里在线精品视频| 午夜久久久在线观看| 婷婷精品国产亚洲av在线 | 岛国在线观看网站| 天天添夜夜摸| 一级毛片女人18水好多| 国产高清激情床上av| 老司机午夜十八禁免费视频| 国产精品98久久久久久宅男小说| 欧美日韩亚洲综合一区二区三区_| 人人澡人人妻人| av欧美777| 99久久精品国产亚洲精品| 午夜两性在线视频| 久久99一区二区三区| 男男h啪啪无遮挡| 国产蜜桃级精品一区二区三区 | 亚洲色图av天堂| 亚洲人成77777在线视频| 欧美久久黑人一区二区| 波多野结衣av一区二区av| 久9热在线精品视频| 不卡av一区二区三区| 宅男免费午夜| 中出人妻视频一区二区| 亚洲精品在线观看二区| 十八禁人妻一区二区| 欧美日韩瑟瑟在线播放| 国产精品久久久人人做人人爽| 狂野欧美激情性xxxx| 天天躁夜夜躁狠狠躁躁| 欧美亚洲 丝袜 人妻 在线| 老司机深夜福利视频在线观看| 国产精品九九99| 久久久久久久久免费视频了| 80岁老熟妇乱子伦牲交| 中文字幕色久视频| 韩国精品一区二区三区| 欧美色视频一区免费| 黑人巨大精品欧美一区二区mp4| 日本a在线网址| 热re99久久国产66热| 99re6热这里在线精品视频| 欧美精品av麻豆av| 人妻 亚洲 视频| 精品欧美一区二区三区在线| 十八禁高潮呻吟视频| 波多野结衣一区麻豆| 一区二区三区激情视频| 午夜福利在线观看吧| www日本在线高清视频| 中文字幕另类日韩欧美亚洲嫩草| 99国产精品99久久久久| 久久久久久久午夜电影 | 成熟少妇高潮喷水视频| 国产又爽黄色视频| 日韩一卡2卡3卡4卡2021年| 老熟女久久久| x7x7x7水蜜桃| 99久久人妻综合| 老司机午夜十八禁免费视频| 大型黄色视频在线免费观看| 国产欧美日韩综合在线一区二区| 少妇粗大呻吟视频| 波多野结衣一区麻豆| 丝袜在线中文字幕|