• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Mathematical Model for Streptococcus suis Infection in Pig-Human Population with Humidity Effect

    2022-08-24 03:28:32InthiraChaiyaKamonchatTrachooKamsingNonlaoponandDinPrathumwan
    Computers Materials&Continua 2022年5期

    Inthira Chaiya,Kamonchat Trachoo,Kamsing Nonlaopon and Din Prathumwan,*

    1Department of Mathematics,F(xiàn)aculty of Science,Mahasarakham University,Mahasarakham,44150,Thailand

    2Department of Mathematics,F(xiàn)aculty of Science,Khon Kaen University,Khon Kaen,40002,Thailand

    Abstract: In this paper, we developed a mathematical model for Streptococcus suis, which is an epidemic by considering the moisture that affects the infection.The disease is caused by Streptococcus suis infection found in pigs which can be transmitted to humans.The patients of Streptococcus suis were generally found in adults males and the elderly who contacted pigs or who ate uncooked pork.In human cases, the infection can cause a severe illness and death.This disease has an impact to the financial losses in the swine industry.In the development of models for this disease,we have divided the population into 7 related groups which are susceptible pig compartment,infected pig compartment,quarantined pig compartment,recovered pig compartment, susceptible human compartment, infected human compartment,and recovered human compartment.After that, we use this model and a quarantine strategy to analyze the spread of the infection.In addition, the basic reproduction number R0 is determined by using the next-generation matrix which can analyze the stability of the model.The numerical simulations of the proposed model are illustrated to confirm the results from theorems.The results showed that there is an effect from moisture to the disease transmission.When the moisture increases the disease infection also increases.

    Keywords: Streptococcus suis; mathematical model; stability analysis;infectious disease;reproduction number

    1 Introduction

    Nowadays,one of the major problems in the world is zoonotic pathogen such as Rift Valley fever,SARS,pandemic influenza H1N1 2009,Yellow fever,Avian Influenza(H5N1)and(H7N9),West Nile virus[1],the Middle East respiratory syndrome coronavirus(MERSCoV)[2],and novel coronavirus(COVID-19) [3].Streptococcus suisis an infectious agent which is widely found in pigs around the world.This pathogen is generally found in the upper respiratory tract,genital,and alimentary tracts of the pigs[4,5].Streptococcus suisis a Gram-positive bacterium and a facultative anaerobic bacterium which is a primary agent of sepsis and meningitis in pigs[6,7].In pig farms,the disease can transmit from pig to pig rapidly.The reported rate of mortality in pigs fromStreptococcus suisis about 20%[8].It can classify at least 35 serotypes,for examples,serotypes 1 to 31,33,and 1/2[9,10].Serotypes 1 to 9 and 14 are most commonly found in pigs around the world[11,12].

    In 1968,the first human who was infected withStreptococcus suiswas found in Denmark[4,5].This situation confirms thatStreptococcus suiscan transmit from pig to human.Serotype 2 is reported that it is frequently found in human infections[13,14],but in some cases,the infections are caused by other serotypes.Kerdsin et al.reported that serotypes 2 and 14 are involved in human cases that found in Thailand[15,16].Dutkiewicz et al.presented that disease found in human caused byS.suisserotypes 2,4,5,14,16,21 and 24[12].S.suisserotype 9 which is the most common found in pigs in Europe was found the first case infection in human in May 2013 locating in northern of Thailand[17].In addition,Hatrongjit et al.reported the first case of serotype 31 in human[18]in the central region of Thailand.The common symptoms of this disease in human are fever,headache,meningitis,septicemia,arthritis,pneumonia,and hearing loss[19].

    To prevent the spread of the disease, the mathematical models become powerful tools for describing the dynamics of the disease.They can forecast the future behaviors of the disease with many assumptions.The solutions of the model can be simulated satisfying the given parameters from the hypothesis.Recently,many mathematical models have been used to describe the behavior of infectious disease[20–24].Rahman et al.proposed the nonlinear SEITR fractional order model of tuberculosis disease by using Atangana-Baleanu derivative which consists of 5 population groups[25].Arfan et al.[26]presented the fractional order model to predict the dynamic of tumor with drug intervention.The nonlinear fractional order mathematical model for predicting the dynamic of COVID-19 was created by Shah et al.[27].Almuqrin et al.proposed the fractional model for forecasting the transmission of Ebola virus in bats population by using Atangana-Baleanu fractional derivative[28].Srivastava et al.improved the mathematical model for studying the dynamic of diabetes patients[29].Alzaid et al.[30] studied the dynamic of HIV-1 infection by using the mathematical model and showed that the mathematical model is efficient.The fractional order model of HIV with source term was proposed by Shah et al.to consider the behavior of CD4+T-cells which depending on the concentration of the viral load[31].The symmetry and asymmetry concepts can be linked to the epidemic model[32–34].

    A number of research studied the disease fromStreptococcus suison epidemiology and medicine.However,a few pieces of the research proposed and studied the mathematical model forStreptococcus suis.Shen et al.[35] proposed the SIQRW model to explore the outbreaks of S.Suis.Giang et al.proposed the stochastic model and SEI model to predict the behavior of the disease and fitted the model parameters with collected data [9].The proposed models consider the transmission on pig population only.However,to our knowledge,no research considering the disease transmission between pigs and humans forStreptococcus suis.

    In this paper,we propose a mathematical model to describe the disease transmission ofStreptococcus suisin humans and pigs.The novelty of this work is the improved mathematical model from one species to two species population.We classify the population of pigs and humans into 4 classes and 3 classes,respectively.This work contains the analysis of the model and numerical simulations to study the dynamic behavior of the disease.We also find the basic reproduction numbers to explain the rapid transmission and study the stability of the solution of the model.

    This paper is constructed as follows; In Section 2, we present the mathematical model which expresses the Streptococcus suis transmission.The analysis of the proposed model is shown in Section 3 which includes a basic reproduction number,equilibrium points,and their stability.The numerical simulations are given in Section 4 and follow by a conclusion in Section 5.

    2 Model Formulation

    In this section, we describe the model formulation ofStreptococcus suisdisease transmission in humans and pigs.Based on the classical epidemiology model,we propose a new generalized model ofStreptococcus suisinfection which is SIQR-SIR model.There are some facts about the environmental factors such as temperature and relative humidity[36–38].So,we consider the effect of the moisture in the air for disease transmission in the pig farm.

    The investigated population is divided into two subpopulations.These are pig population and human population.Then,both subpopulations of pigs and human are separated into four classes and three classes, respectively.These are a pig susceptible class (Sp), pig infectious class (Ip), pig isolated class(Qp),pig recovery class(Rp),human susceptible class(Sh),human infectious class(Ih),and human recovery class(Rp).We assume that the total population at timetisN(t).We have that

    Sp(t)+Ip(t)+Qp(t)+Rp(t)=Np(t),

    Sh(t)+Ih(t)+Rh(t)=Nh(t),

    and

    Sp(t)+Ip(t)+Qp(t)+Rp(t)+Sh(t)+Ih(t)+Rh(t)=Np(t)+Nh(t)=N(t),

    whereNp(t)is the total population of pigs,andNh(t)is the total population of human at timet.

    We can write the dynamic equations forNp(t)andNh(t)as the following.

    The new infection in pigs can be described .whereβ1is the transmission coefficient per unit of time per pig in the susceptible class contact with infectious class[39].The new infection in human can be described byβ2ShIp+β3ShIhwhereβ2is the transmission coefficient per unit of time per person in the susceptible class in contact with pig infectious class,β3is the transmission coefficient per unit of time per person in the susceptible class contact with the infectious class.In our model,we investigate the relative humidity for considering the infection of this disease in pigs.Then,the new infection in pigs can be expressed byβ1MSpIpinstead ofβ1SpIp,whereMis the moisture in the air(relative humidity).In addition,we assume that the disease cannot be transmitted from human to pigs.Throughout this paper,we assume that all parameters are positive constants.

    The model of disease transmission byStreptococcus suiscan be represented by the system of differential equations as follows:

    wherebis the pig removal rate,ais the pig death rate induced by the disease,δis the rate from infectious class to isolated class in pigs,eis the transition rate from isolated class to recovery class,μis the human natural death rate,αis the death rate induced by disease,andγis the transition rate from infectious class to recovery class.The model form is valid only ifa≤bandα≤μ.

    Eq.(1a) expresses the rate of change of the population of susceptible pig.The number of susceptible pigs increases only via birthN1described in the first term on the right-hand side.On the other hand, the population of them decreases due to the removal rate of pig(b), transmission ofStreptococcus suisfrom infected pig to susceptible pig(β1)and moisture effect(M).

    Eq.(1b)expresses the rate of change of the population of the infected pig.On the right-hand side,the first term represents the number of infected pigs increases due to susceptible pig becoming infected pig with the rateβ1Mfollowed by the negative effects of disease death rate(a),removal rate(b),and isolated rate(δ).

    Eq.(1c)expresses the rate of change of the population of the isolated pig.On the right-hand side,the first term represents the increase in the population of isolated pig due to the isolation of infected pig with the rate Δ followed by the negative effects of disease death rate(a), removal rate(b), and recovered rate(∈).

    Eq.(1d) expresses the rate of change of the population of the recovered pig.On the right-hand side,the first term represents the increase in the population of the recovered pig due to treatment with the rate∈,and the last term represents the removal rate(b)of pigs.

    Eq.(1e) expresses the rate of change of the population of susceptible human.The number of susceptible pigs increases only via birthN2described in the first term on the right-hand side.On the other hand,the population of them decreases due to the transmission ofStreptococcus suisfrom infected pig to susceptible human(β2)and infected human to susceptible human(β3).The last term represents the natural death rate(μ)of human.

    Eq.(1f) expresses the rate of change of the population of the infected human.On the righthand side, the first term and second term represent the number of the infected human increases due to susceptible human becoming infected human by contact with the infected pigs(β2) and the infected human(β3), respectively.The remaining terms are the negative effects of disease death rate(α),recovered rate(γ),and natural death rate(μ).

    Eq.(1g) expresses the rate of change of the population of recovered human.On the right-hand side,the first term represents the increase in the population of recovered human due to treatment with the rate(γ),and the last term represents the natural death rate(μ)of human

    LetSp(0) =Sp0,Ip(0) =Ip0,Qp(0) =Qp0,Rp(0) =Rp0,Sh(0) =Sh0,Ih(0) =Ih0,Rh(0) =Rh0.A flowchart of the SIQR-SIR model of pigs and human which describe by the system(1)is shown in Fig 1.

    Figure 1:Flowchart of SIQR-SIR(Susceptible-Infectious-Isolation-Recovery-Susceptible-Infectious-Recovery)model for human and pigs

    The values of population classesSp(t),Ip(t),Qp(t),Rp(t),Sh(t),Ih(t),Rh(t) at timetis nonnegative numbers.

    Therefore,the positive invariant of the system(1)is

    3 Model Analysis

    3.1 Equilibria

    The equilibria are obtained by setting all equations of the system(1)to be zero.

    By solving the system(4),We get three equilibrium points:

    i) Disease-free equilibrium

    ii) Pig disease free equilibrium

    whereA≡α+γ+μ.

    Note that,E2exists ifβ3N2-μA >0.

    iii)The endemic equilibrium

    where

    withX≡β3N2-A(β2I*p+μ)andB≡a+b+δ.

    Note that,E*exists ifβ1MN1-bB >0.

    3.2 Basic Reproduction Number

    The basic reproduction number is the expected number of secondary cases produced by a single infection in a completely susceptible population.To compute the basic reproduction number and to study the local stability of the equilibrium,we use the next generation matrix method[40,41].We define x′=f(x)-v(x),where x = [Ip,Qp,Ih]Twheref(x)is the matrix of new infection terms,andv(x)is the matrix of transfer terms into compartment and out of compartment as:

    The corresponding Jacobian matrices are

    Then,we obtain

    We obtain three eigenvalues ofFV-1as:

    Hence,the spectral radii are,and

    3.3 The Stability of Disease-Free Equilibrium(E1)

    Theorem 1.The disease-free equilibrium point(E1)is locally asymptotically stable if R01<1 andR02<1.

    Proof.The model system(1)has the Jacobian matrix at the pointE1as:

    The corresponding eigenvalues ofJ(E1)are

    Note thatλ6is negative ifR02<1 andλ7is negative ifR01<1.

    Therefore,the disease-free equilibrium(E1)of the model system(1)is locally asymptotically stable due to all negative real part eigenvalues ifR01<1 andR02<1.□

    3.4 The Stability of Pig Disease Free Equilibrium(E2)

    Theorem 2.The pig disease free equilibrium(E2) is locally asymptotically stable ifR01>1 andR02<1.

    Proof.The pig disease-free equilibrium

    exists and is positive ifR01>1.

    The model system(1)has the Jacobian matrix at the pointE2as:

    The corresponding eigenvalues ofJ(E2)are

    Note thatλ5is negative ifR02<1 whileλ6andλ7have negative real part ifR01>1.

    Therefore,the pig disease free equilibrium(E2)of the system(1)is locally asymptotically stable ifR01>1 andR02<1.□

    3.5 The Stability of Endemic Equilibrium(E*)

    Theorem 3.The endemic equilibrium(E*)is locally asymptotically stable if R01<1 andR02>1.

    Proof.The endemic equilibrium

    exists and is positive ifR02>1.

    The model system(1)has the Jacobian matrix at the pointE*as:

    where

    The corresponding eigenvalues ofJ(E*)are

    where

    and

    Next,we consider

    and

    We obtain thatλ4andλ5has negative real part ifR02>1.

    Then,let us consider

    Then,we get

    IfR01<1,I*pandI*hare positive i.e.,R02>1,then we obtain

    Thus,the eigenvaluesλ5andλ6have a negative real part ifR01<1 andR02>1.

    Therefore,the endemic equilibrium(E*)of the model system(1)is locally asymptotically stable ifR01<1 andR02>1.□

    We can draw the bifurcation diagram to describe the basic reproduction numbers and stability as shown in Fig.2.

    Figure 2:The bifurcation region

    4 Numerical Examples and Discussion

    The numerical results of the system (1) are computed by using MATLAB with the given initial values:

    Sp(0)=4057,Ip(0)=1000,Qp(0)=0,Rp(0)=0,Sh(0)=50000,Ih(0)=1000,Rh(0)=0.

    The numerical results of the system(1)with the parameter values as shown in Tab.1.Note that the parameters and initial values are obtained from data in[35]and[42].

    Table 1:Parameter values of the system(1)

    The solution trajectories tend to the disease-free equilibrium(E1)which satisfy Theorem 1 with the remaining parameter valuesμ=0.9,α=0.9,γ=0.9,M=0.9,a=0.9,β2=0.1,and Δ =0.9 as shown in Fig.3.The calculated reproduction numbers of this case areR01= 0.9568<1 andR02=0.5625<1.

    Figure 3:The simulation results of the system(1),(a)The plots of asymptotic population density of pig susceptible population(Sp),pig infectious population(Ip),pig isolated population(Qp),and pig recovery population (Rp) with respect to time t tends to the equilibrium (E1), and (b) The plots of asymptotic population density of human susceptible population (Sh), human infectious population(Ih),and human recovery population(Rh)with respect to time t tends to the equilibrium(E1)

    The results showed that the number of pig infectious cases dramatically decreased in the first quarter.After that, the decreasing of pig infectious cases slowly decreased.Then, it tended to the equilibrium value.Fig.3a, the number of pig susceptible population increased after infectious cases were recovered.In addition, the isolated population increased when the number of infectious cases increased to control the spread of the disease.Then, it decreased after the number of infectious cases decreased.In human case (Fig.3b), the number of infectious populations increased in the first quarter,then the number increased and approached to the equilibrium number.Therefore,the parameters of this case provided that the disease died out.

    The solution trajectories tend to the disease-free equilibrium(E2)which satisfy Theorem 2 with the remaining parameter valuesμ= 0.6,α= 0.5,γ= 0.4,M= 0.3,a= 0.7,β2= 0.1,and Δ = 0.8 as shown in Fig.4.The calculated reproduction numbers of this case areR01= 2.5833>1andR02=0.2125<1.

    The results showed that the number of pig infectious cases dramatically decreased in the first quarter.After that, the decreasing of pig infectious cases slowly decreased.Then, it tended to the equilibrium value.The number of pig susceptible population increased after infectious cases decreased.In human case (Fig.4b), the number of infectious populations dramatically increased in the first quarter, then it decreased and approached to the equilibrium number.Therefore, the result of this case indicated that the disease in pig died out while it still appeared in human.

    Figure 4:The simulation results of the system(1),(a)The plots of asymptotic population density of pig susceptible population (Sp),pig infectious population (Ip), pig isolated population (Qp), and pig recovery population (Rp)with respect to time t tends to the equilibrium (E2), and (b) The plots of asymptotic population density of human susceptible population (Sh), human infectious population(Ih),and human recovery population(Rh)with respect to time t tends to the equilibrium(E2)

    The numerical results of the system(1)with the remaining parameter valuesμ=0.5,α=0.6,γ=0.1,M= 0.9,a= 0.3,β2= 0.01,and Δ = 0.1 withR01= 0.9568<1 andR02= 1.2473>1.The solution trajectories tend to the endemic equilibrium(E*) which satisfy Theorem 3 as shown in Fig.5.The number of pig susceptible population decreased in the first five quarters then it increased and approached to the equilibrium.The number of pig infectious population increase in the first quarter then it tends to equilibrium after five quarters.In human case,the number of human infectious population increased sharply in the first two quarters.After that,it decreased and tend to equilibrium value.The number of recovery population increased in the first quarter then it decreased and approached to equilibrium value.The result of this case showed that the disease still appeared in both human and pigs.

    To consider the effect of moisture, the numerical results of the system (1) with the remaining parameter valuesμ= 0.5,α= 0.6,γ= 0.1,a= 0.01,β2= 0.01, and Δ = 0.01.The solutions trajectories are computed with various values of relative humidityMas 0.1, 0.3, 0.5, 0.7,and 0.9 is shown in Fig.6.

    In Fig.6, the result indicates that when the relative humidity(M) increases the pig infectious population density also increases.Particularly, the trajectories of pig infectious population decrease and approach to constant values whenM= 0.1, 0.3,and 0.5.On the other hand,the number of pig infectious population increase and go to equilibrium value whenM= 0.7 and 0.9.Moreover,whenM=0.1 and 0.3 the trajectories approach zero.This means that the disease will die out when there is less moisture in the air.Therefore,the result confirms that there is an effect of the moisture in the air to the infection of Streptococcussuisas mentioned in the literature.

    Figure 5:The simulation results of the system(1),(a)The plots of asymptotic population density of pig susceptible population(Sp),pig infectious population(Ip),pig isolated population(Qp),and pig recovery population (Rp) with respect to time t tends to the equilibrium (E*), and (b) The plots of asymptotic population density of human susceptible population (Sh), human infectious population(Ih),and human recovery population(Rh)with respect to time t tends to the equilibrium(E*)

    Figure 6:The simulation results of the pig infectious population (Ip) for various values of relative humidity M with respect to time t

    5 Conclusions

    We have proposed the mathematical model for predicting the disease transmission ofStreptococcus suisbetween pigs and humans,which is developed from the SIQR model that considered only in the pig population.The pigs-human epidemiology model ofStreptococcus suistransmission which is SIQR-SIR model is investigated.The model combined with susceptible(Sp),infection(Ip),isolation(Qp),and recovery(Rp)for pig population and susceptible(Sh),infectious(Ih),and recovery(Rh)for human population.Moreover, we studied the effect of moisture in the air on disease transmission.The equilibria of the model were analyzed.Then, the next-generation matrix was used to find the basic reproduction numbersR01,andR02.We obtained the conditions of the equilibrium pointsE1,E2,andE*which are locally asymptotically stable in Theorem 1,Theorem 2,and Theorem 3,respectively.The results show that ifR01<1 andR02<1,the equilibrium pointsE1is locally asymptotically stable whileE2is locally asymptotically stable ifR01>1 andR02<1.Finally,the endemic equilibrium(E*)is locally asymptotically stable ifR01<1 andR02>1.The bifurcation diagram is also presented.The numerical examples confirmed the results of Theorems.The results indicated that moisture affects disease transmission.When the air has higher moisture the transmission of the pathogen is also high.Moreover,the model can be improved by considering infection of newborn pigs from infectious adult female pigs.

    Acknowledgement:This research was financially supported by the young researcher development project of Khon Kaen University.Appreciation is extended to Faculty of Science, Khon Kaen University,Khon Kaen,Thailand.

    Funding Statement:This research was financially supported by the young researcher development project of Khon Kaen University.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲av电影在线观看一区二区三区| 又黄又粗又硬又大视频| 热re99久久精品国产66热6| 高清毛片免费看| 日韩一区二区视频免费看| 久久久国产精品麻豆| 中文天堂在线官网| 久久久久久伊人网av| 有码 亚洲区| 18禁在线无遮挡免费观看视频| 热99国产精品久久久久久7| 老司机影院成人| 国产精品久久久久久精品电影小说| 水蜜桃什么品种好| 欧美国产精品va在线观看不卡| 热re99久久国产66热| 最后的刺客免费高清国语| 王馨瑶露胸无遮挡在线观看| 水蜜桃什么品种好| 蜜桃国产av成人99| 妹子高潮喷水视频| 妹子高潮喷水视频| a级毛色黄片| 国产精品久久久久久精品古装| 飞空精品影院首页| 欧美3d第一页| 纯流量卡能插随身wifi吗| 国产乱来视频区| 99久国产av精品国产电影| 国产一区二区激情短视频 | 亚洲精品一二三| 午夜免费观看性视频| 夜夜爽夜夜爽视频| 男人添女人高潮全过程视频| 少妇的逼水好多| 亚洲av在线观看美女高潮| 午夜福利在线观看免费完整高清在| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 99香蕉大伊视频| 一级片免费观看大全| 大话2 男鬼变身卡| 狠狠婷婷综合久久久久久88av| 夫妻性生交免费视频一级片| 日韩熟女老妇一区二区性免费视频| 色5月婷婷丁香| 国产伦理片在线播放av一区| 少妇的逼水好多| 国产精品.久久久| 交换朋友夫妻互换小说| 777米奇影视久久| 男男h啪啪无遮挡| 亚洲成人一二三区av| 考比视频在线观看| 视频在线观看一区二区三区| 一级毛片电影观看| 欧美成人午夜精品| 久久亚洲国产成人精品v| 国产精品 国内视频| 国产欧美另类精品又又久久亚洲欧美| 午夜91福利影院| 丝袜在线中文字幕| 少妇高潮的动态图| 日韩不卡一区二区三区视频在线| 少妇猛男粗大的猛烈进出视频| 性色av一级| 赤兔流量卡办理| 最近最新中文字幕大全免费视频 | 国产亚洲av片在线观看秒播厂| 日韩,欧美,国产一区二区三区| 视频在线观看一区二区三区| 国产日韩一区二区三区精品不卡| 亚洲av综合色区一区| 日本欧美视频一区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 免费看av在线观看网站| 国产精品99久久99久久久不卡 | 日日爽夜夜爽网站| 久久精品久久精品一区二区三区| 亚洲高清免费不卡视频| 少妇猛男粗大的猛烈进出视频| 午夜福利视频精品| 丝袜美足系列| 国产免费视频播放在线视频| av在线播放精品| 免费大片18禁| 黄色怎么调成土黄色| 国产av国产精品国产| av在线播放精品| 国产在视频线精品| 国产精品久久久久久精品电影小说| 欧美精品亚洲一区二区| 国产日韩欧美视频二区| 韩国高清视频一区二区三区| 日韩成人伦理影院| 男人操女人黄网站| 美女福利国产在线| 国产亚洲精品第一综合不卡 | 一本久久精品| 午夜影院在线不卡| 伊人亚洲综合成人网| 国产激情久久老熟女| 日本欧美国产在线视频| 一区二区日韩欧美中文字幕 | 国精品久久久久久国模美| 国产69精品久久久久777片| 亚洲人成网站在线观看播放| 中文欧美无线码| 青春草亚洲视频在线观看| 黄色视频在线播放观看不卡| 国产伦理片在线播放av一区| 又大又黄又爽视频免费| av国产久精品久网站免费入址| 黑人巨大精品欧美一区二区蜜桃 | 国产亚洲精品久久久com| 日日啪夜夜爽| 人成视频在线观看免费观看| av天堂久久9| 最近的中文字幕免费完整| 80岁老熟妇乱子伦牲交| 成人手机av| 91在线精品国自产拍蜜月| 蜜桃国产av成人99| 国产精品.久久久| 亚洲国产av新网站| 美国免费a级毛片| 91成人精品电影| 99国产综合亚洲精品| 看非洲黑人一级黄片| 国产精品免费大片| 日韩在线高清观看一区二区三区| 香蕉精品网在线| 18禁观看日本| 久久久欧美国产精品| 亚洲欧美精品自产自拍| 亚洲精品日韩在线中文字幕| 国产精品无大码| 国产精品熟女久久久久浪| 欧美精品亚洲一区二区| 亚洲精品中文字幕在线视频| 男人舔女人的私密视频| 国产又爽黄色视频| 免费在线观看完整版高清| 成人亚洲欧美一区二区av| 国产精品 国内视频| 久久久精品94久久精品| 欧美日韩亚洲高清精品| 日本免费在线观看一区| av一本久久久久| 99热6这里只有精品| 国产亚洲一区二区精品| 亚洲性久久影院| 成人黄色视频免费在线看| 黄色毛片三级朝国网站| 精品亚洲成a人片在线观看| 亚洲经典国产精华液单| 久久人人爽人人爽人人片va| 激情视频va一区二区三区| 十八禁网站网址无遮挡| 最新的欧美精品一区二区| 久久久久人妻精品一区果冻| 亚洲精品国产av蜜桃| 国产精品.久久久| 精品久久久久久电影网| 最近的中文字幕免费完整| 免费看不卡的av| 91aial.com中文字幕在线观看| 看免费av毛片| 国产精品麻豆人妻色哟哟久久| 男的添女的下面高潮视频| 欧美国产精品一级二级三级| 亚洲精品中文字幕在线视频| 大话2 男鬼变身卡| 欧美精品av麻豆av| 蜜桃国产av成人99| 国产av精品麻豆| 少妇的丰满在线观看| 国产老妇伦熟女老妇高清| 国产av一区二区精品久久| 最新的欧美精品一区二区| 色视频在线一区二区三区| 三上悠亚av全集在线观看| 亚洲经典国产精华液单| 国产片内射在线| 婷婷成人精品国产| 国产成人精品在线电影| 国产亚洲欧美精品永久| 亚洲精品456在线播放app| 成人免费观看视频高清| 亚洲国产av影院在线观看| 免费日韩欧美在线观看| 久热这里只有精品99| 最新的欧美精品一区二区| 五月开心婷婷网| 一区在线观看完整版| 精品国产国语对白av| 日韩精品免费视频一区二区三区 | 日本猛色少妇xxxxx猛交久久| 久久久久国产精品人妻一区二区| 看免费成人av毛片| 自拍欧美九色日韩亚洲蝌蚪91| 欧美xxⅹ黑人| 中文字幕最新亚洲高清| 亚洲精品456在线播放app| 亚洲人成77777在线视频| 国产精品人妻久久久影院| 曰老女人黄片| 不卡视频在线观看欧美| 少妇的丰满在线观看| 在线免费观看不下载黄p国产| 人妻一区二区av| 国产精品无大码| 一区二区三区乱码不卡18| 久久精品熟女亚洲av麻豆精品| 超色免费av| 少妇猛男粗大的猛烈进出视频| tube8黄色片| 久久99精品国语久久久| 丰满少妇做爰视频| 欧美老熟妇乱子伦牲交| 最近最新中文字幕免费大全7| 日韩 亚洲 欧美在线| 亚洲国产日韩一区二区| 国产亚洲欧美精品永久| 18禁动态无遮挡网站| 久久国产精品大桥未久av| 高清av免费在线| 免费看av在线观看网站| 母亲3免费完整高清在线观看 | 国产1区2区3区精品| 十八禁高潮呻吟视频| 男女啪啪激烈高潮av片| 99九九在线精品视频| 男人添女人高潮全过程视频| av免费观看日本| 国内精品宾馆在线| 亚洲国产日韩一区二区| 久久人人爽人人爽人人片va| 高清毛片免费看| 一级片免费观看大全| 免费观看性生交大片5| 国产高清三级在线| 日韩精品有码人妻一区| 狂野欧美激情性bbbbbb| 国产精品一区二区在线观看99| 有码 亚洲区| 晚上一个人看的免费电影| 九九在线视频观看精品| 亚洲精品av麻豆狂野| av在线老鸭窝| 欧美人与性动交α欧美精品济南到 | 青春草国产在线视频| 性高湖久久久久久久久免费观看| 99久久中文字幕三级久久日本| 热re99久久国产66热| 久久99热6这里只有精品| 丰满饥渴人妻一区二区三| 国产色爽女视频免费观看| 亚洲国产日韩一区二区| 最新的欧美精品一区二区| 国产片内射在线| 51国产日韩欧美| 成年女人在线观看亚洲视频| 亚洲第一区二区三区不卡| 最近最新中文字幕免费大全7| 91在线精品国自产拍蜜月| 99热网站在线观看| 日韩免费高清中文字幕av| 亚洲人与动物交配视频| 赤兔流量卡办理| 亚洲精品自拍成人| 制服人妻中文乱码| 麻豆乱淫一区二区| 午夜福利乱码中文字幕| 人成视频在线观看免费观看| 有码 亚洲区| 亚洲人与动物交配视频| 精品人妻在线不人妻| 久久久亚洲精品成人影院| 国产精品免费大片| 免费黄色在线免费观看| 国产午夜精品一二区理论片| 91午夜精品亚洲一区二区三区| √禁漫天堂资源中文www| 大片免费播放器 马上看| 曰老女人黄片| 男人添女人高潮全过程视频| 国产福利在线免费观看视频| 久久ye,这里只有精品| 韩国精品一区二区三区 | 在线 av 中文字幕| 亚洲成人av在线免费| 丰满迷人的少妇在线观看| 国产高清三级在线| 日韩伦理黄色片| 97精品久久久久久久久久精品| videosex国产| 视频中文字幕在线观看| 久久狼人影院| 极品人妻少妇av视频| 丰满饥渴人妻一区二区三| 亚洲第一区二区三区不卡| 国产成人免费无遮挡视频| 欧美变态另类bdsm刘玥| 中文精品一卡2卡3卡4更新| 99久久人妻综合| 日产精品乱码卡一卡2卡三| 中文字幕精品免费在线观看视频 | 午夜91福利影院| 深夜精品福利| 狂野欧美激情性xxxx在线观看| 乱人伦中国视频| 18在线观看网站| 欧美 亚洲 国产 日韩一| 精品人妻熟女毛片av久久网站| 久久久国产一区二区| 久久人人97超碰香蕉20202| freevideosex欧美| 老司机影院成人| 国产高清不卡午夜福利| 啦啦啦中文免费视频观看日本| 人妻 亚洲 视频| 成人国产av品久久久| 自拍欧美九色日韩亚洲蝌蚪91| 三上悠亚av全集在线观看| 欧美亚洲 丝袜 人妻 在线| 夜夜骑夜夜射夜夜干| 国产在线视频一区二区| 在线观看美女被高潮喷水网站| 久久狼人影院| av又黄又爽大尺度在线免费看| 久久久国产欧美日韩av| 99久久中文字幕三级久久日本| 欧美日韩亚洲高清精品| 69精品国产乱码久久久| 麻豆精品久久久久久蜜桃| 中文字幕人妻丝袜制服| 亚洲精品av麻豆狂野| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 我的女老师完整版在线观看| 老熟女久久久| 人人妻人人澡人人看| 欧美丝袜亚洲另类| 国产黄色免费在线视频| 狂野欧美激情性bbbbbb| 1024视频免费在线观看| 亚洲精品国产av成人精品| 亚洲精品美女久久av网站| 亚洲欧洲精品一区二区精品久久久 | 日本午夜av视频| a 毛片基地| 熟女电影av网| 成人无遮挡网站| 国产毛片在线视频| 搡老乐熟女国产| 亚洲丝袜综合中文字幕| 国产成人91sexporn| 香蕉精品网在线| 一区二区三区精品91| 97人妻天天添夜夜摸| 国产高清不卡午夜福利| 精品卡一卡二卡四卡免费| 不卡视频在线观看欧美| 最近中文字幕高清免费大全6| 国产又色又爽无遮挡免| 精品一区在线观看国产| 亚洲欧美成人精品一区二区| 国国产精品蜜臀av免费| 一区二区日韩欧美中文字幕 | 99热6这里只有精品| 伦理电影大哥的女人| 国产一区有黄有色的免费视频| 欧美+日韩+精品| 欧美bdsm另类| 亚洲av电影在线观看一区二区三区| 国产精品久久久久久精品古装| 亚洲经典国产精华液单| 久久久久视频综合| 最近2019中文字幕mv第一页| 免费看光身美女| 亚洲av男天堂| 97精品久久久久久久久久精品| 波野结衣二区三区在线| 日本猛色少妇xxxxx猛交久久| 蜜桃国产av成人99| 99国产综合亚洲精品| www.熟女人妻精品国产 | 老司机影院毛片| 久久久精品94久久精品| 熟妇人妻不卡中文字幕| 国产福利在线免费观看视频| 两个人看的免费小视频| 乱码一卡2卡4卡精品| 日韩伦理黄色片| 999精品在线视频| 亚洲色图 男人天堂 中文字幕 | 亚洲国产日韩一区二区| 精品久久蜜臀av无| 在线免费观看不下载黄p国产| 热99久久久久精品小说推荐| 成人二区视频| 日本黄色日本黄色录像| av片东京热男人的天堂| 欧美国产精品va在线观看不卡| 欧美xxxx性猛交bbbb| a级毛片黄视频| 亚洲精华国产精华液的使用体验| 69精品国产乱码久久久| 最近手机中文字幕大全| 久久久精品免费免费高清| a级毛片在线看网站| 视频中文字幕在线观看| tube8黄色片| 两性夫妻黄色片 | www日本在线高清视频| 久久精品国产亚洲av涩爱| 日本wwww免费看| 97人妻天天添夜夜摸| 国产白丝娇喘喷水9色精品| 男女国产视频网站| 伊人久久国产一区二区| 18在线观看网站| 日韩免费高清中文字幕av| 97超碰精品成人国产| av免费在线看不卡| 蜜桃国产av成人99| 亚洲欧美精品自产自拍| 看免费av毛片| 亚洲精品久久成人aⅴ小说| 亚洲欧美成人综合另类久久久| av女优亚洲男人天堂| 伦精品一区二区三区| 久久综合国产亚洲精品| 成年人免费黄色播放视频| 国产av国产精品国产| 国产成人精品福利久久| 9191精品国产免费久久| 高清黄色对白视频在线免费看| 亚洲国产精品成人久久小说| 午夜日本视频在线| 国产亚洲一区二区精品| av福利片在线| 亚洲伊人色综图| 日日撸夜夜添| 久久久a久久爽久久v久久| 99精国产麻豆久久婷婷| 亚洲情色 制服丝袜| 国产伦理片在线播放av一区| 亚洲 欧美一区二区三区| 黄色一级大片看看| 一级毛片我不卡| 精品熟女少妇av免费看| 国产精品一区www在线观看| 国产极品天堂在线| 久热久热在线精品观看| 亚洲色图 男人天堂 中文字幕 | 国产免费福利视频在线观看| 欧美国产精品va在线观看不卡| 成人毛片60女人毛片免费| a 毛片基地| 国产黄色免费在线视频| 久久久久久久大尺度免费视频| 国产国语露脸激情在线看| 日日啪夜夜爽| 久久人人爽人人爽人人片va| 国产又色又爽无遮挡免| 久久99热这里只频精品6学生| 看十八女毛片水多多多| 欧美日韩国产mv在线观看视频| 久久久久精品人妻al黑| 少妇猛男粗大的猛烈进出视频| 亚洲成人av在线免费| 国产亚洲精品久久久com| 永久免费av网站大全| 黄色视频在线播放观看不卡| 91国产中文字幕| 成年av动漫网址| 色吧在线观看| 精品一品国产午夜福利视频| 欧美性感艳星| 午夜免费观看性视频| 国产精品一区二区在线不卡| 国产成人一区二区在线| 大片免费播放器 马上看| 中文字幕人妻丝袜制服| 99热6这里只有精品| 亚洲色图 男人天堂 中文字幕 | 亚洲精品视频女| 超碰97精品在线观看| 最新中文字幕久久久久| 国产精品麻豆人妻色哟哟久久| 欧美少妇被猛烈插入视频| 深夜精品福利| 亚洲婷婷狠狠爱综合网| 免费观看在线日韩| 亚洲五月色婷婷综合| 街头女战士在线观看网站| 国产精品久久久久久久久免| 国产成人91sexporn| 精品一品国产午夜福利视频| 人人澡人人妻人| 国产一区二区激情短视频 | 亚洲伊人色综图| 日本vs欧美在线观看视频| 夜夜爽夜夜爽视频| 两个人看的免费小视频| 欧美日韩综合久久久久久| 曰老女人黄片| 69精品国产乱码久久久| 在线观看人妻少妇| 久久久精品94久久精品| 女人久久www免费人成看片| 咕卡用的链子| 精品福利永久在线观看| 热re99久久精品国产66热6| 国产欧美日韩综合在线一区二区| 亚洲欧美色中文字幕在线| 成人18禁高潮啪啪吃奶动态图| 免费看光身美女| 人妻人人澡人人爽人人| 日产精品乱码卡一卡2卡三| 午夜精品国产一区二区电影| 国产精品国产三级国产av玫瑰| 热99久久久久精品小说推荐| 日日摸夜夜添夜夜爱| 精品国产露脸久久av麻豆| 久久久久国产精品人妻一区二区| 国产一区二区在线观看日韩| 欧美精品高潮呻吟av久久| 亚洲国产精品一区三区| 色94色欧美一区二区| 中文乱码字字幕精品一区二区三区| 国产精品偷伦视频观看了| 高清毛片免费看| 高清av免费在线| 欧美日本中文国产一区发布| 欧美人与性动交α欧美软件 | 女人被躁到高潮嗷嗷叫费观| 一本色道久久久久久精品综合| 考比视频在线观看| 精品少妇内射三级| 亚洲一码二码三码区别大吗| 超碰97精品在线观看| 亚洲一级一片aⅴ在线观看| 两个人免费观看高清视频| 人人妻人人添人人爽欧美一区卜| 欧美日韩综合久久久久久| 日韩 亚洲 欧美在线| 看非洲黑人一级黄片| 免费人成在线观看视频色| 黄色怎么调成土黄色| 国产精品久久久久久久电影| 建设人人有责人人尽责人人享有的| 国产精品秋霞免费鲁丝片| 精品一品国产午夜福利视频| 91精品国产国语对白视频| 国产免费一级a男人的天堂| 超碰97精品在线观看| 亚洲伊人久久精品综合| 亚洲国产毛片av蜜桃av| 中文精品一卡2卡3卡4更新| kizo精华| 99九九在线精品视频| 免费观看在线日韩| 国产片特级美女逼逼视频| 亚洲激情五月婷婷啪啪| 熟妇人妻不卡中文字幕| 激情五月婷婷亚洲| 看十八女毛片水多多多| 午夜激情av网站| 亚洲av成人精品一二三区| 午夜福利乱码中文字幕| av卡一久久| 成人毛片a级毛片在线播放| 亚洲av综合色区一区| 亚洲av福利一区| 捣出白浆h1v1| 女性被躁到高潮视频| 婷婷色综合大香蕉| 巨乳人妻的诱惑在线观看| 国精品久久久久久国模美| 国产福利在线免费观看视频| 晚上一个人看的免费电影| 日本猛色少妇xxxxx猛交久久| 岛国毛片在线播放| 黄色视频在线播放观看不卡| 亚洲国产av新网站| 免费看不卡的av| 成人无遮挡网站| 中文欧美无线码| 一级爰片在线观看| 在线观看美女被高潮喷水网站| 满18在线观看网站| 欧美成人精品欧美一级黄| 2018国产大陆天天弄谢| 日韩,欧美,国产一区二区三区| 99久国产av精品国产电影| av免费观看日本| 午夜免费观看性视频| 精品少妇内射三级| 亚洲精品日韩在线中文字幕| 亚洲精品一区蜜桃| av天堂久久9| 久久人妻熟女aⅴ| 国产成人欧美| 免费久久久久久久精品成人欧美视频 | 永久免费av网站大全| 精品99又大又爽又粗少妇毛片| 欧美少妇被猛烈插入视频| 黑丝袜美女国产一区| 久久人人爽人人片av| 日韩中文字幕视频在线看片| 99re6热这里在线精品视频| 一级毛片我不卡| 国产一区二区三区av在线| 日韩一区二区视频免费看|