• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Mathematical Model for Streptococcus suis Infection in Pig-Human Population with Humidity Effect

    2022-08-24 03:28:32InthiraChaiyaKamonchatTrachooKamsingNonlaoponandDinPrathumwan
    Computers Materials&Continua 2022年5期

    Inthira Chaiya,Kamonchat Trachoo,Kamsing Nonlaopon and Din Prathumwan,*

    1Department of Mathematics,F(xiàn)aculty of Science,Mahasarakham University,Mahasarakham,44150,Thailand

    2Department of Mathematics,F(xiàn)aculty of Science,Khon Kaen University,Khon Kaen,40002,Thailand

    Abstract: In this paper, we developed a mathematical model for Streptococcus suis, which is an epidemic by considering the moisture that affects the infection.The disease is caused by Streptococcus suis infection found in pigs which can be transmitted to humans.The patients of Streptococcus suis were generally found in adults males and the elderly who contacted pigs or who ate uncooked pork.In human cases, the infection can cause a severe illness and death.This disease has an impact to the financial losses in the swine industry.In the development of models for this disease,we have divided the population into 7 related groups which are susceptible pig compartment,infected pig compartment,quarantined pig compartment,recovered pig compartment, susceptible human compartment, infected human compartment,and recovered human compartment.After that, we use this model and a quarantine strategy to analyze the spread of the infection.In addition, the basic reproduction number R0 is determined by using the next-generation matrix which can analyze the stability of the model.The numerical simulations of the proposed model are illustrated to confirm the results from theorems.The results showed that there is an effect from moisture to the disease transmission.When the moisture increases the disease infection also increases.

    Keywords: Streptococcus suis; mathematical model; stability analysis;infectious disease;reproduction number

    1 Introduction

    Nowadays,one of the major problems in the world is zoonotic pathogen such as Rift Valley fever,SARS,pandemic influenza H1N1 2009,Yellow fever,Avian Influenza(H5N1)and(H7N9),West Nile virus[1],the Middle East respiratory syndrome coronavirus(MERSCoV)[2],and novel coronavirus(COVID-19) [3].Streptococcus suisis an infectious agent which is widely found in pigs around the world.This pathogen is generally found in the upper respiratory tract,genital,and alimentary tracts of the pigs[4,5].Streptococcus suisis a Gram-positive bacterium and a facultative anaerobic bacterium which is a primary agent of sepsis and meningitis in pigs[6,7].In pig farms,the disease can transmit from pig to pig rapidly.The reported rate of mortality in pigs fromStreptococcus suisis about 20%[8].It can classify at least 35 serotypes,for examples,serotypes 1 to 31,33,and 1/2[9,10].Serotypes 1 to 9 and 14 are most commonly found in pigs around the world[11,12].

    In 1968,the first human who was infected withStreptococcus suiswas found in Denmark[4,5].This situation confirms thatStreptococcus suiscan transmit from pig to human.Serotype 2 is reported that it is frequently found in human infections[13,14],but in some cases,the infections are caused by other serotypes.Kerdsin et al.reported that serotypes 2 and 14 are involved in human cases that found in Thailand[15,16].Dutkiewicz et al.presented that disease found in human caused byS.suisserotypes 2,4,5,14,16,21 and 24[12].S.suisserotype 9 which is the most common found in pigs in Europe was found the first case infection in human in May 2013 locating in northern of Thailand[17].In addition,Hatrongjit et al.reported the first case of serotype 31 in human[18]in the central region of Thailand.The common symptoms of this disease in human are fever,headache,meningitis,septicemia,arthritis,pneumonia,and hearing loss[19].

    To prevent the spread of the disease, the mathematical models become powerful tools for describing the dynamics of the disease.They can forecast the future behaviors of the disease with many assumptions.The solutions of the model can be simulated satisfying the given parameters from the hypothesis.Recently,many mathematical models have been used to describe the behavior of infectious disease[20–24].Rahman et al.proposed the nonlinear SEITR fractional order model of tuberculosis disease by using Atangana-Baleanu derivative which consists of 5 population groups[25].Arfan et al.[26]presented the fractional order model to predict the dynamic of tumor with drug intervention.The nonlinear fractional order mathematical model for predicting the dynamic of COVID-19 was created by Shah et al.[27].Almuqrin et al.proposed the fractional model for forecasting the transmission of Ebola virus in bats population by using Atangana-Baleanu fractional derivative[28].Srivastava et al.improved the mathematical model for studying the dynamic of diabetes patients[29].Alzaid et al.[30] studied the dynamic of HIV-1 infection by using the mathematical model and showed that the mathematical model is efficient.The fractional order model of HIV with source term was proposed by Shah et al.to consider the behavior of CD4+T-cells which depending on the concentration of the viral load[31].The symmetry and asymmetry concepts can be linked to the epidemic model[32–34].

    A number of research studied the disease fromStreptococcus suison epidemiology and medicine.However,a few pieces of the research proposed and studied the mathematical model forStreptococcus suis.Shen et al.[35] proposed the SIQRW model to explore the outbreaks of S.Suis.Giang et al.proposed the stochastic model and SEI model to predict the behavior of the disease and fitted the model parameters with collected data [9].The proposed models consider the transmission on pig population only.However,to our knowledge,no research considering the disease transmission between pigs and humans forStreptococcus suis.

    In this paper,we propose a mathematical model to describe the disease transmission ofStreptococcus suisin humans and pigs.The novelty of this work is the improved mathematical model from one species to two species population.We classify the population of pigs and humans into 4 classes and 3 classes,respectively.This work contains the analysis of the model and numerical simulations to study the dynamic behavior of the disease.We also find the basic reproduction numbers to explain the rapid transmission and study the stability of the solution of the model.

    This paper is constructed as follows; In Section 2, we present the mathematical model which expresses the Streptococcus suis transmission.The analysis of the proposed model is shown in Section 3 which includes a basic reproduction number,equilibrium points,and their stability.The numerical simulations are given in Section 4 and follow by a conclusion in Section 5.

    2 Model Formulation

    In this section, we describe the model formulation ofStreptococcus suisdisease transmission in humans and pigs.Based on the classical epidemiology model,we propose a new generalized model ofStreptococcus suisinfection which is SIQR-SIR model.There are some facts about the environmental factors such as temperature and relative humidity[36–38].So,we consider the effect of the moisture in the air for disease transmission in the pig farm.

    The investigated population is divided into two subpopulations.These are pig population and human population.Then,both subpopulations of pigs and human are separated into four classes and three classes, respectively.These are a pig susceptible class (Sp), pig infectious class (Ip), pig isolated class(Qp),pig recovery class(Rp),human susceptible class(Sh),human infectious class(Ih),and human recovery class(Rp).We assume that the total population at timetisN(t).We have that

    Sp(t)+Ip(t)+Qp(t)+Rp(t)=Np(t),

    Sh(t)+Ih(t)+Rh(t)=Nh(t),

    and

    Sp(t)+Ip(t)+Qp(t)+Rp(t)+Sh(t)+Ih(t)+Rh(t)=Np(t)+Nh(t)=N(t),

    whereNp(t)is the total population of pigs,andNh(t)is the total population of human at timet.

    We can write the dynamic equations forNp(t)andNh(t)as the following.

    The new infection in pigs can be described .whereβ1is the transmission coefficient per unit of time per pig in the susceptible class contact with infectious class[39].The new infection in human can be described byβ2ShIp+β3ShIhwhereβ2is the transmission coefficient per unit of time per person in the susceptible class in contact with pig infectious class,β3is the transmission coefficient per unit of time per person in the susceptible class contact with the infectious class.In our model,we investigate the relative humidity for considering the infection of this disease in pigs.Then,the new infection in pigs can be expressed byβ1MSpIpinstead ofβ1SpIp,whereMis the moisture in the air(relative humidity).In addition,we assume that the disease cannot be transmitted from human to pigs.Throughout this paper,we assume that all parameters are positive constants.

    The model of disease transmission byStreptococcus suiscan be represented by the system of differential equations as follows:

    wherebis the pig removal rate,ais the pig death rate induced by the disease,δis the rate from infectious class to isolated class in pigs,eis the transition rate from isolated class to recovery class,μis the human natural death rate,αis the death rate induced by disease,andγis the transition rate from infectious class to recovery class.The model form is valid only ifa≤bandα≤μ.

    Eq.(1a) expresses the rate of change of the population of susceptible pig.The number of susceptible pigs increases only via birthN1described in the first term on the right-hand side.On the other hand, the population of them decreases due to the removal rate of pig(b), transmission ofStreptococcus suisfrom infected pig to susceptible pig(β1)and moisture effect(M).

    Eq.(1b)expresses the rate of change of the population of the infected pig.On the right-hand side,the first term represents the number of infected pigs increases due to susceptible pig becoming infected pig with the rateβ1Mfollowed by the negative effects of disease death rate(a),removal rate(b),and isolated rate(δ).

    Eq.(1c)expresses the rate of change of the population of the isolated pig.On the right-hand side,the first term represents the increase in the population of isolated pig due to the isolation of infected pig with the rate Δ followed by the negative effects of disease death rate(a), removal rate(b), and recovered rate(∈).

    Eq.(1d) expresses the rate of change of the population of the recovered pig.On the right-hand side,the first term represents the increase in the population of the recovered pig due to treatment with the rate∈,and the last term represents the removal rate(b)of pigs.

    Eq.(1e) expresses the rate of change of the population of susceptible human.The number of susceptible pigs increases only via birthN2described in the first term on the right-hand side.On the other hand,the population of them decreases due to the transmission ofStreptococcus suisfrom infected pig to susceptible human(β2)and infected human to susceptible human(β3).The last term represents the natural death rate(μ)of human.

    Eq.(1f) expresses the rate of change of the population of the infected human.On the righthand side, the first term and second term represent the number of the infected human increases due to susceptible human becoming infected human by contact with the infected pigs(β2) and the infected human(β3), respectively.The remaining terms are the negative effects of disease death rate(α),recovered rate(γ),and natural death rate(μ).

    Eq.(1g) expresses the rate of change of the population of recovered human.On the right-hand side,the first term represents the increase in the population of recovered human due to treatment with the rate(γ),and the last term represents the natural death rate(μ)of human

    LetSp(0) =Sp0,Ip(0) =Ip0,Qp(0) =Qp0,Rp(0) =Rp0,Sh(0) =Sh0,Ih(0) =Ih0,Rh(0) =Rh0.A flowchart of the SIQR-SIR model of pigs and human which describe by the system(1)is shown in Fig 1.

    Figure 1:Flowchart of SIQR-SIR(Susceptible-Infectious-Isolation-Recovery-Susceptible-Infectious-Recovery)model for human and pigs

    The values of population classesSp(t),Ip(t),Qp(t),Rp(t),Sh(t),Ih(t),Rh(t) at timetis nonnegative numbers.

    Therefore,the positive invariant of the system(1)is

    3 Model Analysis

    3.1 Equilibria

    The equilibria are obtained by setting all equations of the system(1)to be zero.

    By solving the system(4),We get three equilibrium points:

    i) Disease-free equilibrium

    ii) Pig disease free equilibrium

    whereA≡α+γ+μ.

    Note that,E2exists ifβ3N2-μA >0.

    iii)The endemic equilibrium

    where

    withX≡β3N2-A(β2I*p+μ)andB≡a+b+δ.

    Note that,E*exists ifβ1MN1-bB >0.

    3.2 Basic Reproduction Number

    The basic reproduction number is the expected number of secondary cases produced by a single infection in a completely susceptible population.To compute the basic reproduction number and to study the local stability of the equilibrium,we use the next generation matrix method[40,41].We define x′=f(x)-v(x),where x = [Ip,Qp,Ih]Twheref(x)is the matrix of new infection terms,andv(x)is the matrix of transfer terms into compartment and out of compartment as:

    The corresponding Jacobian matrices are

    Then,we obtain

    We obtain three eigenvalues ofFV-1as:

    Hence,the spectral radii are,and

    3.3 The Stability of Disease-Free Equilibrium(E1)

    Theorem 1.The disease-free equilibrium point(E1)is locally asymptotically stable if R01<1 andR02<1.

    Proof.The model system(1)has the Jacobian matrix at the pointE1as:

    The corresponding eigenvalues ofJ(E1)are

    Note thatλ6is negative ifR02<1 andλ7is negative ifR01<1.

    Therefore,the disease-free equilibrium(E1)of the model system(1)is locally asymptotically stable due to all negative real part eigenvalues ifR01<1 andR02<1.□

    3.4 The Stability of Pig Disease Free Equilibrium(E2)

    Theorem 2.The pig disease free equilibrium(E2) is locally asymptotically stable ifR01>1 andR02<1.

    Proof.The pig disease-free equilibrium

    exists and is positive ifR01>1.

    The model system(1)has the Jacobian matrix at the pointE2as:

    The corresponding eigenvalues ofJ(E2)are

    Note thatλ5is negative ifR02<1 whileλ6andλ7have negative real part ifR01>1.

    Therefore,the pig disease free equilibrium(E2)of the system(1)is locally asymptotically stable ifR01>1 andR02<1.□

    3.5 The Stability of Endemic Equilibrium(E*)

    Theorem 3.The endemic equilibrium(E*)is locally asymptotically stable if R01<1 andR02>1.

    Proof.The endemic equilibrium

    exists and is positive ifR02>1.

    The model system(1)has the Jacobian matrix at the pointE*as:

    where

    The corresponding eigenvalues ofJ(E*)are

    where

    and

    Next,we consider

    and

    We obtain thatλ4andλ5has negative real part ifR02>1.

    Then,let us consider

    Then,we get

    IfR01<1,I*pandI*hare positive i.e.,R02>1,then we obtain

    Thus,the eigenvaluesλ5andλ6have a negative real part ifR01<1 andR02>1.

    Therefore,the endemic equilibrium(E*)of the model system(1)is locally asymptotically stable ifR01<1 andR02>1.□

    We can draw the bifurcation diagram to describe the basic reproduction numbers and stability as shown in Fig.2.

    Figure 2:The bifurcation region

    4 Numerical Examples and Discussion

    The numerical results of the system (1) are computed by using MATLAB with the given initial values:

    Sp(0)=4057,Ip(0)=1000,Qp(0)=0,Rp(0)=0,Sh(0)=50000,Ih(0)=1000,Rh(0)=0.

    The numerical results of the system(1)with the parameter values as shown in Tab.1.Note that the parameters and initial values are obtained from data in[35]and[42].

    Table 1:Parameter values of the system(1)

    The solution trajectories tend to the disease-free equilibrium(E1)which satisfy Theorem 1 with the remaining parameter valuesμ=0.9,α=0.9,γ=0.9,M=0.9,a=0.9,β2=0.1,and Δ =0.9 as shown in Fig.3.The calculated reproduction numbers of this case areR01= 0.9568<1 andR02=0.5625<1.

    Figure 3:The simulation results of the system(1),(a)The plots of asymptotic population density of pig susceptible population(Sp),pig infectious population(Ip),pig isolated population(Qp),and pig recovery population (Rp) with respect to time t tends to the equilibrium (E1), and (b) The plots of asymptotic population density of human susceptible population (Sh), human infectious population(Ih),and human recovery population(Rh)with respect to time t tends to the equilibrium(E1)

    The results showed that the number of pig infectious cases dramatically decreased in the first quarter.After that, the decreasing of pig infectious cases slowly decreased.Then, it tended to the equilibrium value.Fig.3a, the number of pig susceptible population increased after infectious cases were recovered.In addition, the isolated population increased when the number of infectious cases increased to control the spread of the disease.Then, it decreased after the number of infectious cases decreased.In human case (Fig.3b), the number of infectious populations increased in the first quarter,then the number increased and approached to the equilibrium number.Therefore,the parameters of this case provided that the disease died out.

    The solution trajectories tend to the disease-free equilibrium(E2)which satisfy Theorem 2 with the remaining parameter valuesμ= 0.6,α= 0.5,γ= 0.4,M= 0.3,a= 0.7,β2= 0.1,and Δ = 0.8 as shown in Fig.4.The calculated reproduction numbers of this case areR01= 2.5833>1andR02=0.2125<1.

    The results showed that the number of pig infectious cases dramatically decreased in the first quarter.After that, the decreasing of pig infectious cases slowly decreased.Then, it tended to the equilibrium value.The number of pig susceptible population increased after infectious cases decreased.In human case (Fig.4b), the number of infectious populations dramatically increased in the first quarter, then it decreased and approached to the equilibrium number.Therefore, the result of this case indicated that the disease in pig died out while it still appeared in human.

    Figure 4:The simulation results of the system(1),(a)The plots of asymptotic population density of pig susceptible population (Sp),pig infectious population (Ip), pig isolated population (Qp), and pig recovery population (Rp)with respect to time t tends to the equilibrium (E2), and (b) The plots of asymptotic population density of human susceptible population (Sh), human infectious population(Ih),and human recovery population(Rh)with respect to time t tends to the equilibrium(E2)

    The numerical results of the system(1)with the remaining parameter valuesμ=0.5,α=0.6,γ=0.1,M= 0.9,a= 0.3,β2= 0.01,and Δ = 0.1 withR01= 0.9568<1 andR02= 1.2473>1.The solution trajectories tend to the endemic equilibrium(E*) which satisfy Theorem 3 as shown in Fig.5.The number of pig susceptible population decreased in the first five quarters then it increased and approached to the equilibrium.The number of pig infectious population increase in the first quarter then it tends to equilibrium after five quarters.In human case,the number of human infectious population increased sharply in the first two quarters.After that,it decreased and tend to equilibrium value.The number of recovery population increased in the first quarter then it decreased and approached to equilibrium value.The result of this case showed that the disease still appeared in both human and pigs.

    To consider the effect of moisture, the numerical results of the system (1) with the remaining parameter valuesμ= 0.5,α= 0.6,γ= 0.1,a= 0.01,β2= 0.01, and Δ = 0.01.The solutions trajectories are computed with various values of relative humidityMas 0.1, 0.3, 0.5, 0.7,and 0.9 is shown in Fig.6.

    In Fig.6, the result indicates that when the relative humidity(M) increases the pig infectious population density also increases.Particularly, the trajectories of pig infectious population decrease and approach to constant values whenM= 0.1, 0.3,and 0.5.On the other hand,the number of pig infectious population increase and go to equilibrium value whenM= 0.7 and 0.9.Moreover,whenM=0.1 and 0.3 the trajectories approach zero.This means that the disease will die out when there is less moisture in the air.Therefore,the result confirms that there is an effect of the moisture in the air to the infection of Streptococcussuisas mentioned in the literature.

    Figure 5:The simulation results of the system(1),(a)The plots of asymptotic population density of pig susceptible population(Sp),pig infectious population(Ip),pig isolated population(Qp),and pig recovery population (Rp) with respect to time t tends to the equilibrium (E*), and (b) The plots of asymptotic population density of human susceptible population (Sh), human infectious population(Ih),and human recovery population(Rh)with respect to time t tends to the equilibrium(E*)

    Figure 6:The simulation results of the pig infectious population (Ip) for various values of relative humidity M with respect to time t

    5 Conclusions

    We have proposed the mathematical model for predicting the disease transmission ofStreptococcus suisbetween pigs and humans,which is developed from the SIQR model that considered only in the pig population.The pigs-human epidemiology model ofStreptococcus suistransmission which is SIQR-SIR model is investigated.The model combined with susceptible(Sp),infection(Ip),isolation(Qp),and recovery(Rp)for pig population and susceptible(Sh),infectious(Ih),and recovery(Rh)for human population.Moreover, we studied the effect of moisture in the air on disease transmission.The equilibria of the model were analyzed.Then, the next-generation matrix was used to find the basic reproduction numbersR01,andR02.We obtained the conditions of the equilibrium pointsE1,E2,andE*which are locally asymptotically stable in Theorem 1,Theorem 2,and Theorem 3,respectively.The results show that ifR01<1 andR02<1,the equilibrium pointsE1is locally asymptotically stable whileE2is locally asymptotically stable ifR01>1 andR02<1.Finally,the endemic equilibrium(E*)is locally asymptotically stable ifR01<1 andR02>1.The bifurcation diagram is also presented.The numerical examples confirmed the results of Theorems.The results indicated that moisture affects disease transmission.When the air has higher moisture the transmission of the pathogen is also high.Moreover,the model can be improved by considering infection of newborn pigs from infectious adult female pigs.

    Acknowledgement:This research was financially supported by the young researcher development project of Khon Kaen University.Appreciation is extended to Faculty of Science, Khon Kaen University,Khon Kaen,Thailand.

    Funding Statement:This research was financially supported by the young researcher development project of Khon Kaen University.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产精品 国内视频| 啦啦啦 在线观看视频| 黑人巨大精品欧美一区二区蜜桃| xxx96com| 91成年电影在线观看| 亚洲成人免费电影在线观看| 亚洲精品一卡2卡三卡4卡5卡| 一级作爱视频免费观看| 婷婷六月久久综合丁香| 欧美日韩精品网址| 日日夜夜操网爽| 亚洲精华国产精华精| 天天躁狠狠躁夜夜躁狠狠躁| bbb黄色大片| 色综合站精品国产| 欧美日韩瑟瑟在线播放| 成年女人毛片免费观看观看9| 欧美色视频一区免费| 亚洲久久久国产精品| 欧美日韩瑟瑟在线播放| 国产av一区在线观看免费| 国产欧美日韩综合在线一区二区| 两个人免费观看高清视频| 亚洲一区中文字幕在线| 高清在线国产一区| 亚洲成av人片免费观看| 久久婷婷人人爽人人干人人爱 | 亚洲美女黄片视频| 91精品国产国语对白视频| 国产成人欧美在线观看| 午夜免费激情av| 在线观看免费视频网站a站| 亚洲午夜精品一区,二区,三区| 黑人巨大精品欧美一区二区mp4| 日韩一卡2卡3卡4卡2021年| 国产精品,欧美在线| 男女午夜视频在线观看| 成人永久免费在线观看视频| 国产麻豆成人av免费视频| 在线观看午夜福利视频| 久久精品影院6| 成人特级黄色片久久久久久久| 国产成人av激情在线播放| 国产精品久久电影中文字幕| 香蕉丝袜av| 亚洲精品一区av在线观看| 久久婷婷成人综合色麻豆| 精品一区二区三区av网在线观看| 午夜福利在线观看吧| 最近最新中文字幕大全免费视频| 国产又爽黄色视频| 99国产精品一区二区三区| 看片在线看免费视频| 女人被狂操c到高潮| 国产精品自产拍在线观看55亚洲| 亚洲第一青青草原| 亚洲专区中文字幕在线| 免费观看精品视频网站| x7x7x7水蜜桃| 男人操女人黄网站| 长腿黑丝高跟| 久久久国产欧美日韩av| 老司机靠b影院| 黄片播放在线免费| 成人18禁在线播放| 日韩有码中文字幕| 国产精品九九99| 亚洲精品国产精品久久久不卡| 嫩草影视91久久| 成人精品一区二区免费| 久久青草综合色| 国内精品久久久久久久电影| 91成年电影在线观看| 宅男免费午夜| 日本五十路高清| 韩国av一区二区三区四区| 黄色丝袜av网址大全| 首页视频小说图片口味搜索| 极品教师在线免费播放| 国产精品久久久av美女十八| 涩涩av久久男人的天堂| 欧美乱码精品一区二区三区| 国产单亲对白刺激| 亚洲第一欧美日韩一区二区三区| 亚洲九九香蕉| 国产一区在线观看成人免费| 成人国产一区最新在线观看| 无限看片的www在线观看| 99久久精品国产亚洲精品| 真人一进一出gif抽搐免费| 亚洲精品中文字幕一二三四区| 国产真人三级小视频在线观看| 国产精品98久久久久久宅男小说| 手机成人av网站| 国产精品永久免费网站| 在线观看免费日韩欧美大片| 国产精品久久久久久人妻精品电影| 亚洲精品在线观看二区| 中文字幕久久专区| 欧洲精品卡2卡3卡4卡5卡区| 国内精品久久久久久久电影| 精品免费久久久久久久清纯| 90打野战视频偷拍视频| 欧美午夜高清在线| 国产99白浆流出| 亚洲成人免费电影在线观看| 亚洲国产日韩欧美精品在线观看 | 国产91精品成人一区二区三区| 精品少妇一区二区三区视频日本电影| 欧美一级a爱片免费观看看 | 免费少妇av软件| 亚洲欧美日韩另类电影网站| av福利片在线| 视频在线观看一区二区三区| 神马国产精品三级电影在线观看 | 一夜夜www| 国产亚洲精品久久久久5区| 一级a爱片免费观看的视频| 亚洲人成网站在线播放欧美日韩| 国产视频一区二区在线看| 50天的宝宝边吃奶边哭怎么回事| 成年女人毛片免费观看观看9| 日韩一卡2卡3卡4卡2021年| 大型av网站在线播放| 中文字幕人妻丝袜一区二区| 久久中文看片网| 国产精品影院久久| 夜夜看夜夜爽夜夜摸| 亚洲五月色婷婷综合| 中文字幕久久专区| 成人欧美大片| 欧美日韩亚洲国产一区二区在线观看| 禁无遮挡网站| 大香蕉久久成人网| 亚洲狠狠婷婷综合久久图片| 欧美黑人精品巨大| 亚洲熟妇熟女久久| 久久国产乱子伦精品免费另类| 国产乱人伦免费视频| 九色亚洲精品在线播放| 国产精品电影一区二区三区| 怎么达到女性高潮| 亚洲av电影不卡..在线观看| 午夜福利视频1000在线观看 | 淫妇啪啪啪对白视频| svipshipincom国产片| 女人精品久久久久毛片| 一边摸一边抽搐一进一小说| 免费搜索国产男女视频| 国产精品爽爽va在线观看网站 | 欧美日韩精品网址| 亚洲一区二区三区不卡视频| 久久久久精品国产欧美久久久| 欧美大码av| 美女 人体艺术 gogo| 一级片免费观看大全| tocl精华| 亚洲aⅴ乱码一区二区在线播放 | 亚洲一区二区三区不卡视频| 国产精品一区二区免费欧美| 欧美中文日本在线观看视频| 国产激情久久老熟女| 午夜免费激情av| 男女之事视频高清在线观看| 成年人黄色毛片网站| а√天堂www在线а√下载| 久久久久久久精品吃奶| 国产精品九九99| 欧美黑人欧美精品刺激| 国产精品九九99| 国产蜜桃级精品一区二区三区| 国产精品一区二区三区四区久久 | 国产1区2区3区精品| 亚洲情色 制服丝袜| svipshipincom国产片| 亚洲人成伊人成综合网2020| 人妻久久中文字幕网| 国产麻豆成人av免费视频| 成年人黄色毛片网站| 免费观看人在逋| 精品国产一区二区三区四区第35| 国产精品一区二区三区四区久久 | 免费观看精品视频网站| 欧美国产精品va在线观看不卡| 国产激情欧美一区二区| 亚洲午夜理论影院| 国产精品一区二区免费欧美| 欧美另类亚洲清纯唯美| 国产99久久九九免费精品| www国产在线视频色| 免费在线观看黄色视频的| 国产精品美女特级片免费视频播放器 | 免费在线观看影片大全网站| www日本在线高清视频| 在线av久久热| 女警被强在线播放| 国产一区二区在线av高清观看| 给我免费播放毛片高清在线观看| 久久久久国产一级毛片高清牌| 亚洲av电影不卡..在线观看| 欧美色欧美亚洲另类二区 | 97人妻天天添夜夜摸| 999久久久精品免费观看国产| 亚洲国产精品合色在线| 亚洲午夜精品一区,二区,三区| 国产精品乱码一区二三区的特点 | 亚洲,欧美精品.| 亚洲第一青青草原| 女生性感内裤真人,穿戴方法视频| 1024香蕉在线观看| 免费看美女性在线毛片视频| 女性生殖器流出的白浆| 亚洲国产精品成人综合色| 制服丝袜大香蕉在线| 亚洲无线在线观看| 久久亚洲真实| 大型av网站在线播放| 国内精品久久久久久久电影| 欧美日韩福利视频一区二区| 正在播放国产对白刺激| 中文字幕色久视频| 中文字幕色久视频| 色av中文字幕| 在线播放国产精品三级| 黄色a级毛片大全视频| 国产在线精品亚洲第一网站| 国产精品乱码一区二三区的特点 | 国产午夜精品久久久久久| 国产一区二区在线av高清观看| 日本a在线网址| 香蕉丝袜av| 精品国产一区二区久久| 99在线视频只有这里精品首页| 级片在线观看| 国产精品 欧美亚洲| 亚洲一区中文字幕在线| 超碰成人久久| 成人国产一区最新在线观看| 精品电影一区二区在线| 精品人妻在线不人妻| 美女午夜性视频免费| 亚洲激情在线av| 宅男免费午夜| 天堂√8在线中文| 欧美日韩乱码在线| 亚洲七黄色美女视频| 久99久视频精品免费| 亚洲一卡2卡3卡4卡5卡精品中文| 久久热在线av| 九色国产91popny在线| 久热爱精品视频在线9| 侵犯人妻中文字幕一二三四区| 亚洲第一av免费看| 国产一区在线观看成人免费| 91av网站免费观看| 亚洲精品中文字幕一二三四区| 女警被强在线播放| 日韩有码中文字幕| svipshipincom国产片| 日本在线视频免费播放| 国产精品电影一区二区三区| 久久 成人 亚洲| 国产精品野战在线观看| 国产精品国产高清国产av| 国产精品一区二区精品视频观看| 久久人人精品亚洲av| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩亚洲综合一区二区三区_| 俄罗斯特黄特色一大片| 免费在线观看亚洲国产| 在线av久久热| 欧美日本视频| 亚洲国产精品合色在线| 亚洲欧美日韩无卡精品| 久久婷婷人人爽人人干人人爱 | 中文字幕人妻丝袜一区二区| 丝袜美腿诱惑在线| 日韩av在线大香蕉| 18禁黄网站禁片午夜丰满| 免费不卡黄色视频| 人人澡人人妻人| 久久久久久久久中文| 少妇 在线观看| 亚洲一区二区三区色噜噜| 欧美在线黄色| 精品人妻在线不人妻| 高清黄色对白视频在线免费看| 亚洲aⅴ乱码一区二区在线播放 | 亚洲一区二区三区色噜噜| 午夜精品国产一区二区电影| 免费高清视频大片| 美女高潮到喷水免费观看| tocl精华| 美女 人体艺术 gogo| 精品卡一卡二卡四卡免费| 欧美激情久久久久久爽电影 | 亚洲精品中文字幕一二三四区| 在线观看免费日韩欧美大片| 国产成人av教育| 亚洲天堂国产精品一区在线| 亚洲欧美激情在线| 国产精品日韩av在线免费观看 | 亚洲 国产 在线| 成人亚洲精品一区在线观看| 日韩欧美免费精品| 欧美色欧美亚洲另类二区 | 久久国产乱子伦精品免费另类| 国产主播在线观看一区二区| 久久中文字幕一级| 青草久久国产| 亚洲成国产人片在线观看| 91老司机精品| 欧美乱色亚洲激情| 免费无遮挡裸体视频| 婷婷精品国产亚洲av在线| 欧美午夜高清在线| 99国产综合亚洲精品| 久久性视频一级片| 97超级碰碰碰精品色视频在线观看| 国产高清videossex| 可以在线观看毛片的网站| 欧美国产精品va在线观看不卡| 动漫黄色视频在线观看| 日韩欧美国产一区二区入口| 18禁国产床啪视频网站| 极品教师在线免费播放| 欧美成狂野欧美在线观看| 色综合欧美亚洲国产小说| 免费观看精品视频网站| 国产亚洲精品av在线| 亚洲精品一卡2卡三卡4卡5卡| 男人舔女人的私密视频| 久久婷婷人人爽人人干人人爱 | 色尼玛亚洲综合影院| 手机成人av网站| 日韩免费av在线播放| 琪琪午夜伦伦电影理论片6080| 久久久久久久精品吃奶| 欧美大码av| 好看av亚洲va欧美ⅴa在| 在线视频色国产色| 十八禁网站免费在线| 一区二区三区精品91| 成人国语在线视频| 成人精品一区二区免费| 亚洲中文字幕日韩| 国产在线观看jvid| 淫秽高清视频在线观看| a在线观看视频网站| 精品欧美一区二区三区在线| 免费观看精品视频网站| 每晚都被弄得嗷嗷叫到高潮| 美女午夜性视频免费| 国产精华一区二区三区| 国产亚洲欧美98| 一本综合久久免费| 每晚都被弄得嗷嗷叫到高潮| 男女床上黄色一级片免费看| 国产成人精品无人区| 国产精品秋霞免费鲁丝片| 啦啦啦观看免费观看视频高清 | 桃红色精品国产亚洲av| www国产在线视频色| 精品不卡国产一区二区三区| 男女午夜视频在线观看| 久久中文字幕人妻熟女| 在线观看免费午夜福利视频| 日本三级黄在线观看| 美国免费a级毛片| 12—13女人毛片做爰片一| 亚洲第一青青草原| 人成视频在线观看免费观看| www.精华液| 精品国产国语对白av| 免费少妇av软件| 午夜福利免费观看在线| 午夜福利成人在线免费观看| 亚洲国产欧美网| 伊人久久大香线蕉亚洲五| 亚洲精品美女久久av网站| 中国美女看黄片| 欧美国产日韩亚洲一区| 国产伦一二天堂av在线观看| av视频免费观看在线观看| 国产亚洲精品久久久久5区| 欧美国产日韩亚洲一区| 岛国在线观看网站| 午夜影院日韩av| 久久中文字幕人妻熟女| bbb黄色大片| 91字幕亚洲| 亚洲狠狠婷婷综合久久图片| 好男人在线观看高清免费视频 | 欧美日韩精品网址| 最好的美女福利视频网| 国产一区二区三区在线臀色熟女| 制服诱惑二区| av天堂久久9| 精品一区二区三区视频在线观看免费| 一区二区日韩欧美中文字幕| 成年人黄色毛片网站| av天堂久久9| 天天躁夜夜躁狠狠躁躁| 亚洲av成人av| 给我免费播放毛片高清在线观看| 欧美大码av| 一级a爱视频在线免费观看| 国产蜜桃级精品一区二区三区| 大型av网站在线播放| 国产激情欧美一区二区| 久久婷婷成人综合色麻豆| 免费在线观看完整版高清| 成人手机av| 久久国产精品人妻蜜桃| 在线视频色国产色| 中文字幕另类日韩欧美亚洲嫩草| 午夜福利成人在线免费观看| 亚洲一区中文字幕在线| 巨乳人妻的诱惑在线观看| 大型av网站在线播放| 久久青草综合色| 国产又爽黄色视频| 国产亚洲欧美98| 亚洲电影在线观看av| av欧美777| 久久久久国内视频| 国产人伦9x9x在线观看| 99国产极品粉嫩在线观看| 美女高潮到喷水免费观看| 热99re8久久精品国产| 黄色a级毛片大全视频| 国产一区二区三区视频了| 国产精品 国内视频| 欧洲精品卡2卡3卡4卡5卡区| 国产亚洲av高清不卡| 欧美日韩亚洲综合一区二区三区_| 性少妇av在线| 国产精品99久久99久久久不卡| 少妇被粗大的猛进出69影院| 久久精品成人免费网站| 免费在线观看视频国产中文字幕亚洲| 亚洲国产精品999在线| 亚洲av熟女| 欧美日韩瑟瑟在线播放| 久久国产乱子伦精品免费另类| 一边摸一边抽搐一进一小说| 成人18禁高潮啪啪吃奶动态图| 久久欧美精品欧美久久欧美| 久久人妻福利社区极品人妻图片| 中文字幕色久视频| 久久婷婷成人综合色麻豆| 亚洲精品粉嫩美女一区| 老司机午夜福利在线观看视频| 精品福利观看| 在线永久观看黄色视频| 人妻久久中文字幕网| 九色亚洲精品在线播放| 久久中文看片网| 日本撒尿小便嘘嘘汇集6| 欧美 亚洲 国产 日韩一| 十八禁网站免费在线| 国产成人一区二区三区免费视频网站| 黑人操中国人逼视频| 欧美激情 高清一区二区三区| 麻豆国产av国片精品| 亚洲专区字幕在线| 在线永久观看黄色视频| 真人一进一出gif抽搐免费| 黄色成人免费大全| 色综合亚洲欧美另类图片| 男人的好看免费观看在线视频 | 中文字幕人妻丝袜一区二区| 可以在线观看的亚洲视频| 欧美精品啪啪一区二区三区| 免费av毛片视频| 后天国语完整版免费观看| 亚洲欧美日韩另类电影网站| 天堂动漫精品| av片东京热男人的天堂| 亚洲色图av天堂| 欧美黄色片欧美黄色片| 色综合欧美亚洲国产小说| 妹子高潮喷水视频| 一个人免费在线观看的高清视频| 免费在线观看日本一区| 波多野结衣av一区二区av| 99国产精品一区二区蜜桃av| 色综合婷婷激情| 亚洲国产看品久久| 高清毛片免费观看视频网站| 成人国产综合亚洲| 男女床上黄色一级片免费看| 99久久精品国产亚洲精品| 久久国产精品影院| 亚洲熟妇熟女久久| 9色porny在线观看| 亚洲少妇的诱惑av| 1024视频免费在线观看| 在线十欧美十亚洲十日本专区| 在线永久观看黄色视频| 一进一出抽搐动态| 在线观看66精品国产| 亚洲中文av在线| 国产人伦9x9x在线观看| 亚洲精品一区av在线观看| 亚洲精华国产精华精| 欧美国产精品va在线观看不卡| 99热只有精品国产| 亚洲免费av在线视频| 男人舔女人的私密视频| 亚洲黑人精品在线| 免费一级毛片在线播放高清视频 | 亚洲欧美激情综合另类| 一级a爱视频在线免费观看| cao死你这个sao货| 欧美最黄视频在线播放免费| 99re在线观看精品视频| 自拍欧美九色日韩亚洲蝌蚪91| 午夜免费激情av| 久久久久久久久中文| 国产精品二区激情视频| 欧美一级毛片孕妇| 午夜精品国产一区二区电影| www.www免费av| netflix在线观看网站| 国产一卡二卡三卡精品| 亚洲欧美精品综合久久99| 999久久久精品免费观看国产| 亚洲黑人精品在线| 精品国产国语对白av| 亚洲第一青青草原| 国产精品 欧美亚洲| 久久人人精品亚洲av| 午夜精品在线福利| 97人妻天天添夜夜摸| 极品教师在线免费播放| 精品久久久久久久久久免费视频| 少妇被粗大的猛进出69影院| 国产精品亚洲av一区麻豆| 亚洲精品中文字幕在线视频| 色精品久久人妻99蜜桃| 一本综合久久免费| 国产欧美日韩精品亚洲av| 两个人看的免费小视频| 一a级毛片在线观看| 很黄的视频免费| 国产高清视频在线播放一区| 这个男人来自地球电影免费观看| 一本综合久久免费| 久久精品人人爽人人爽视色| 夜夜躁狠狠躁天天躁| 精品人妻在线不人妻| 女人被狂操c到高潮| 一区二区三区高清视频在线| 最近最新免费中文字幕在线| 欧美国产精品va在线观看不卡| 午夜福利免费观看在线| 黄片播放在线免费| av视频免费观看在线观看| 精品日产1卡2卡| 午夜免费成人在线视频| 好男人在线观看高清免费视频 | 色哟哟哟哟哟哟| 久99久视频精品免费| www.自偷自拍.com| 久久久精品国产亚洲av高清涩受| 不卡一级毛片| 这个男人来自地球电影免费观看| 欧美日韩瑟瑟在线播放| 18禁美女被吸乳视频| 午夜日韩欧美国产| АⅤ资源中文在线天堂| 色综合婷婷激情| 天堂√8在线中文| 国产日韩一区二区三区精品不卡| 国产免费av片在线观看野外av| 亚洲欧美精品综合久久99| av中文乱码字幕在线| bbb黄色大片| 男人舔女人的私密视频| 波多野结衣一区麻豆| 成人特级黄色片久久久久久久| 午夜精品在线福利| 亚洲三区欧美一区| 久久久久国内视频| 日本黄色视频三级网站网址| 高清毛片免费观看视频网站| 九色亚洲精品在线播放| 大型av网站在线播放| 亚洲欧美精品综合一区二区三区| 狠狠狠狠99中文字幕| 欧美绝顶高潮抽搐喷水| 高清黄色对白视频在线免费看| 欧美绝顶高潮抽搐喷水| 日韩欧美免费精品| 女人爽到高潮嗷嗷叫在线视频| 国产精品av久久久久免费| 国产亚洲精品综合一区在线观看 | 最近最新中文字幕大全电影3 | 女性被躁到高潮视频| 色精品久久人妻99蜜桃| 国产精品98久久久久久宅男小说| cao死你这个sao货| 免费无遮挡裸体视频| 国产成人影院久久av| 亚洲欧美日韩另类电影网站| 午夜福利在线观看吧| 在线观看www视频免费| 十八禁人妻一区二区| 久热爱精品视频在线9| 一边摸一边抽搐一进一小说| 亚洲电影在线观看av| 两性夫妻黄色片| 亚洲精品中文字幕在线视频| 国产国语露脸激情在线看|