• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Forecasting of Appliances House in a Low-Energy Depend on Grey Wolf Optimizer

    2022-08-24 03:26:32HatimZaini
    Computers Materials&Continua 2022年5期

    Hatim G.Zaini

    Computer Engineering Department,College of Computer and Information Technology,Taif University,Al Huwaya,Taif 26571,Saudi Arabia

    Abstract: This paper gives and analyses data-driven prediction models for the energy usage of appliances.Data utilized include readings of temperature and humidity sensors from a wireless network.The building envelope is meant to minimize energy demand or the energy required to power the house independent of the appliance and mechanical system efficiency.Approximating a mapping function between the input variables and the continuous output variable is the work of regression.The paper discusses the forecasting framework FOPF (Feature Optimization Prediction Framework), which includes feature selection optimization:by removing non-predictive parameters to choose the best-selected feature hybrid optimization technique has been approached.k-nearest neighbors (KNN) Ensemble Prediction Models for the data of the energy use of appliances have been tested against some bases machine learning algorithms.The comparison study showed the powerful,best accuracy and lowest error of KNN with RMSE = 0.0078.Finally, the suggested ensemble model’s performance is assessed using a one-way analysis of variance (ANOVA) test and the Wilcoxon Signed Rank Test.(Two-tailed P-value:0.0001).

    Keywords: Prediction; optimization; appliances; energy; feature selection

    1 Introduction

    Many research studies have been introduced to understand the energy appliances which use in buildings.The appliances represent a significant portion (between 20% and 30%) of the electrical energy demand appliances, such as televisions and consumer electronics operating in standby,attributed to a 10.2% increase in electricity consumption.Many Regression models for energy can be used to comprehend the connections between different factors and evaluate their effect [1].

    Prediction models of electrical vitality utilization in structures can be helpful for various applications.For example, it is used to decide sufficient estimating of photovoltaics and vitality stockpiling.In addition, lessen power flow into the grid, model predictive control applications where the heaps are required for demand-side management (DSM) and demand-side response(DSR).Furthermore, it uses to evaluate building performance simulation analysis [2].

    The power utilization in residential structures is clarified by two primary factors:the sort and number of electrical apparatuses and the utilization of the machines by the inhabitants.In addition, the structure in various areas could likewise decide the utilization of the devices.

    In the indoor condition close to the region of the apparatus, for example, the temperature,mugginess, vibrations, light, and commotion.Typically, the two components are interrelated [3].

    The no-free lunch NFL theorem and attempts to address existing flaws inspired us to create the suggested optimization method.Unfortunately, there is no one-size-fits-all meta-heuristic that can solve all optimization issues.It explains why some meta-heuristics are better at solving certain optimization problems than others.As a result, additional optimizations continue to be offered.Slow convergence, the balance between exploration and exploitation, and stagnation into local optima are some of the shortcomings of existing optimization methods addressed by our suggested optimization algorithm [4].

    The main goal of this paper is to understand the relationships between appliances’energy consumption and different predictors.And introduce prediction models can deal with appliances energy dataset.The outline of this paper is proposed our framework (Feature Optimization Prediction framework) FOPF discuss its performance compared with different models (linear regression,Artificial Neural Network, and Random Forest) to predict energy consumption.

    2 Literature Review

    Many research discusses electricity load prediction to identify the parameters.Typically studies have used models such as multiple regression, neural networks, support vector machines, etc., for forecasting the electricity demand.The models ordinarily have considered parameters such as wind speed, open-air temperature, end of the week, occasions, worldwide sun-powered radiation, and hour of the day [5].

    Most paper in this topic highlights the following points [6]:

    ·The vitality utilization of appliances to a significant portion of the collected power request

    ·The vitality utilization of appliances might be separated into different commitments and here and there may incorporate HVAC (heating, ventilation, and air conditioning)

    ·Is the weather agent enough to improve the apparatuses’vitality utilization expectation?

    ·Could the temperature and dampness estimations from a remote system help in the vitality expectation?

    ·Which parameters are the most significant in vitality expectation?

    Meta-heuristic optimization algorithms have grown in popularity due to their ease of use and flexibility compared to traditional and precise optimization methods such as Greedy Search and Local Search.Furthermore, those meta-heuristic optimization algorithms are versatile because they may be used in various domains and applications without requiring significant design and implementation adjustments.Likewise, owing to their stochastic character, they can avoid local optima by exploring the search space extensively and avoiding stagnation in local optima [7].

    On various optimization issues, such as temperature prediction, battery storage optimization,and leukemia detection [8], optimization algorithms have improved performance [9–11].Electronics [12], informatics [13], energy [14–16], health [17], and many more disciplines of business [18–21]and research are among the numerous real-world applications [22–27].

    3 The Proposed FOPF

    The point of regression analysis is to anticipate a result dependent on verifiable information.However, in some genuine relapse issues, one regularly experiences uncertain information, including non-useful highlights, which significantly expands the blunder of the calculations.To beat this issue, we propose FOPF, which comprises two stages:First Phase:Feature Selection Optimization,Second Phase:Training Ensemble Model.As shown in Fig.1.

    3.1 First Phase:Feature Selection Optimization

    Feature analysis is usually recommended before regression analysis.

    Dataset

    “The data set is at 10 min for about 4.5 months.The house temperature and humidity conditions were monitored with a ZigBee wireless sensor network.”

    Removal of Null Values

    We removed rows that contain null values or contains any missing data.

    Feature Scaling(between 0–1)

    As shown in the equation for scaling, we used Min-Max-Scalar to bring the attribute’s value between 0 and 1.

    Figure 1:Propose FOPF first phase:Feature selection optimization

    Information gain

    IG ranks each feature according to its entropy and selects the most important features according to the prespecified threshold to complete feature selection for the preprocessed dataset hybrid optimization technique has been approached by equipping it with three powerful algorithms.The first set of rules is PSO, in which individuals are shifting influenced with the aid of their local best positions and by the high-quality global position.The 2d optimizer in our proposed hybrid approach is Grey Wolf Optimizer.GWO is a swarm-primarily based meta-heuristic optimizer that mimics the social hierarchy and the foraging conduct of the grey wolves.Individuals in GWO circulate influenced utilizing the three leader’s alpha, beta, and delta areas.The third is a genetic algorithm that accrues convergence with decorating the position of a selected solution around randomly selected leaders called Mutation operator random modifications one or more additives of the offspring.

    Particle Swarm Optimization

    Velocity is the position Change of a particle.During this time, the position of the particle is changed.At the flight, the particle’s velocity is randomly accelerated toward its previous best position and a neighborhood best solution

    Grey Wolf Optimizer

    GWO is originated from mathematically formulating the hunting behavior used by the grey wolves hunting technique as shown in Fig.2.

    Figure 2:Search agents’positions updating in GWO

    The position of each wolf is updated using the following equations:

    where t refers to the current iteration,andare coefficient vectors,is the preposition, andis the position of the gray wolf.The vectors are calculated using the following equation:

    Mutation

    The random modification of portions of a solution, which enhances population diversity and provides a means for escape from a local optimum, is presented.The addition of new traits to the population pool may be beneficial, in which case the mutated person has a high fitness value and is likely to be selected many times, or it may be detrimental, in which case the individual is removed from the population pool.Mutation operator involves creating three indices randomly in range over [1, n] where n is the population size.

    Crossover

    In chromosomes or solution representations, they are swapping portions of the solution with another.The basic function is to offer mixing and convergence of solutions in a subspace.Crossover between the new mutant solution vector Vi and the original solution vector Xi according.

    Elitism

    Elitism or fittest’s survival is defined as the use of high-fit solutions to pass on to future generations, which is generally done in the form of some sort of best-solution selection.

    3.2 Second Phase:Training Ensemble Model

    In addition to feature selection Optimization, we have divided the dataset into two parts:training data (75%) and testing data (25%).The original dataset contains 19737 records.The training data comprises 14804 records, and the testing data contains 4933 records.The training data is used to train (linear regression, Artificial Neural Network, and Random Forest) used to calculate the error, and the accuracy of each then compared the results with our proposed KNN ensemble.

    Linear regression

    Linear regression constitutes the relation between two variables by fitting a linear equation to the observed data.One variable is regarded as an explanatory variable, while the other is viewed as a dependent variable.A modeler may, for example, use a linear regression model to connect people’s weights to their heights.Linear regression is used to model the linear relationship between a based variable and one or more dependent variables.The linear regression model was able to predict the value with RMSE = 0.0131.

    Artificial Neural Network(ANN)

    An artificial neural network is made up of three or more linked layers.Input neurons make up the first layer.These neurons send input to deeper layers, then deliver the final output data to the output layer.Inner layers are concealed and are produced by units that use a series of transformations to adjust the information received from layer to layer.Multi-Layer perceptron(MLP) is a type of feedforward neural network with one or more hidden layers among the input and output layers.MLP layers are entirely connected, meaning that a neuron in one layer is hooked up to all neurons within the following layer.Each connection has a distinctive weight value.MLP is educated with a backpropagation algorithm.The network was able to predict the value with RMSE = 0.0944.

    Random Forest Algorithm

    Because it uses both bagging and feature randomness to generate an uncorrelated forest of decision trees, the random forest technique extends the bagging method.Feature bagging is another term for feature randomness.Assures minimal correlation among decision trees by generating a random selection of features.A fundamental distinction between decision trees and random forests is this.Random forests only evaluate a subset of the available feature splits,whereas decision trees consider all.The random forest algorithm comprises a group of decision trees, each of which is made up of a bootstrap sample selected from a training set.Combines a couple of decision trees to enhance the generalizability and the robustness over an unmarried choice tree.The Random Forest was able to predict the value with RMSE = 0.0123.

    3.3 Proposed KNN Ensemble

    Ensemble approaches, which combine several regressors, have received much interest in the recent two decades as potential strategies for improving the regression performance of weak learners.In many real-world applications, these approaches reduce regression error significantly and, in general, are more resistant to non-informative data characteristics than individual models.However, using an ensemble to improve KNN performance is a difficult challenge.Because KNN is already a stable regressor, the “traditional” ensemble approaches of bagging and boosting do not work with it.The component regressors must be correct to improve performance using an ensemble.

    The ensemble method is combining the output of algorithms by giving each weight.Ensemble techniques turn out to be one of all the good-sized techniques in improving the foreseeing potential of standard models as shown in Fig.3.

    Figure 3:KNN ensemble

    The output value of K training records became chosen as the nearest friends are used to predict the output cost of the unknown testing statistics.KNN regression use the subsequent formula

    KNN Ensemble was able to predict the value of the lowest error in comparison with others by RMSE = 0.0078.

    4 Results and Discussion

    KNN gives the lowest error compared to the three-based model.KNN can control overfitting and handle missing values.This method seeks the understanding of crowds in predicting KNN regression.RMSE, MAE Results was shown in Tab.1.KNN Ensemble Real Predicted Values shown in Fig.4.Also, a positive correlation between appliances’consumption and weather conditions was found.shown in Fig.5

    Table 1:RMSE results

    Figure 4:KNN ensemble real predicted values

    In statistics, estimation refers to many techniques for calculating the value of a population’s property based on observations from a sample selected from the population.

    Figure 5:Conditions correlation

    We will need evidence to back our strategy in order to make a confident and trustworthy conclusion.This is where the ANOVA idea comes in handy as in Tab.2.

    Table 2:ANOVA test

    The Q-Q plot, also known as a quantile-quantile plot, is a graphical tool that may be used to determine if a collection of data is likely to have come from a theoretical distribution such as a Normal or exponential distribution, which is shown in Fig.6.Tab.3 illustrated the Wilcoxon Signed Rank Test.

    Internally, histograms are used to summarize data and offer size estimates for searches, as shown in Fig.7.Because these histograms are not offered to consumers or exhibited physically, a larger range of possibilities for their creation are accessible.

    Compression with Optimization algorithms

    The compression methods introduce many optimization algorithms such as genetic algorithm GA and practical swarm optimization PSO and grey wolf optimization GWO, which appear to be a strong the proposed framework FOPF quality and reducing the limitations of cost and superiority as results show in Tab.4 and Fig.8.

    Figure 6:The Q-Q plot

    Table 3:Wilcoxon signed rank test

    Figure 7:Histogram of RMSE

    Table 4:RMSE results for FOPF against optimization algorithms

    Figure 8:FOPF against optimization algorithms

    5 Conclusions

    Appliance energy consumption was ranked first in significance for energy forecasting:feature ranking and data filtering to eliminate non-predictive factors.Although FOPF has high performance in the feature Selection case, it depends on a hybrid optimization technique.Therefore, using various machine learning techniques, there is a need to control energy consumption by employing various optimization techniques and forecasting demand.Nevertheless, the comparative results show the performance.Furthermore, they can be justified because the KNN Ensemble is appropriate for dealing with appliances’energy forecasting and a positive correlation between appliances’consumption and weather conditions.

    Funding Statement:This work was supported by the Taif University Researchers Supporting Project Number (TURSP-2020/345), Taif University, Taif, Saudi Arabia.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    日本一二三区视频观看| 欧美日本视频| 亚洲精品自拍成人| 又粗又硬又长又爽又黄的视频 | 国产色婷婷99| 国产免费一级a男人的天堂| www日本黄色视频网| 激情 狠狠 欧美| 国产淫片久久久久久久久| 别揉我奶头 嗯啊视频| 国产伦理片在线播放av一区 | 欧美zozozo另类| a级毛色黄片| 精品国内亚洲2022精品成人| 日韩欧美 国产精品| 日韩欧美一区二区三区在线观看| 男女视频在线观看网站免费| 晚上一个人看的免费电影| 日韩在线高清观看一区二区三区| 国产亚洲5aaaaa淫片| 国产精品永久免费网站| 三级男女做爰猛烈吃奶摸视频| 97人妻精品一区二区三区麻豆| 淫秽高清视频在线观看| 男人和女人高潮做爰伦理| 国产av一区在线观看免费| 亚洲最大成人中文| 村上凉子中文字幕在线| av在线天堂中文字幕| 国产淫片久久久久久久久| 99热这里只有是精品50| 中文亚洲av片在线观看爽| 成人国产麻豆网| 最近中文字幕高清免费大全6| 午夜精品在线福利| 国产一级毛片在线| 国产探花极品一区二区| 自拍偷自拍亚洲精品老妇| 国产一区二区三区在线臀色熟女| 久久精品久久久久久久性| 成人午夜精彩视频在线观看| 91午夜精品亚洲一区二区三区| 波多野结衣高清作品| 99久国产av精品国产电影| 老师上课跳d突然被开到最大视频| 国语自产精品视频在线第100页| 亚洲成人中文字幕在线播放| 亚洲aⅴ乱码一区二区在线播放| 国产单亲对白刺激| 亚洲性久久影院| 亚洲精品亚洲一区二区| 国产一区二区激情短视频| 久久久色成人| 99久久精品一区二区三区| 人妻夜夜爽99麻豆av| 深夜精品福利| 国产亚洲精品久久久com| 国产大屁股一区二区在线视频| 国语自产精品视频在线第100页| 精品国产三级普通话版| 亚洲欧美清纯卡通| 国产精品一二三区在线看| 亚洲成av人片在线播放无| 少妇高潮的动态图| avwww免费| 午夜亚洲福利在线播放| 男插女下体视频免费在线播放| 日韩 亚洲 欧美在线| 特大巨黑吊av在线直播| 午夜精品一区二区三区免费看| 亚洲图色成人| 麻豆av噜噜一区二区三区| 直男gayav资源| 草草在线视频免费看| 精品不卡国产一区二区三区| 亚洲人成网站高清观看| 黄色视频,在线免费观看| 日韩欧美一区二区三区在线观看| 少妇被粗大猛烈的视频| 国产私拍福利视频在线观看| 99九九线精品视频在线观看视频| 18禁在线无遮挡免费观看视频| 少妇熟女欧美另类| 老女人水多毛片| 少妇高潮的动态图| av天堂在线播放| 久久中文看片网| 亚洲av成人av| 亚洲婷婷狠狠爱综合网| 国产亚洲av嫩草精品影院| 99热全是精品| 国产久久久一区二区三区| 亚洲在线自拍视频| 高清午夜精品一区二区三区 | 一边摸一边抽搐一进一小说| 午夜激情欧美在线| 直男gayav资源| 18+在线观看网站| 美女脱内裤让男人舔精品视频 | 欧美性猛交╳xxx乱大交人| 亚洲国产色片| 精品人妻一区二区三区麻豆| 国产午夜精品一二区理论片| 老熟妇乱子伦视频在线观看| 男人舔奶头视频| 亚洲欧洲国产日韩| 中国美女看黄片| 国产大屁股一区二区在线视频| 成年女人看的毛片在线观看| or卡值多少钱| 99热这里只有精品一区| 欧美最新免费一区二区三区| 久久久久久久久久黄片| 青春草国产在线视频 | 在线观看av片永久免费下载| 最近视频中文字幕2019在线8| 美女高潮的动态| 国产精品一区二区三区四区免费观看| 男人狂女人下面高潮的视频| 成年版毛片免费区| 国产国拍精品亚洲av在线观看| 可以在线观看的亚洲视频| 日韩成人伦理影院| 日韩中字成人| 毛片女人毛片| 亚洲性久久影院| 国产精品福利在线免费观看| 成人午夜高清在线视频| 久久久久久久亚洲中文字幕| 人人妻人人澡欧美一区二区| av视频在线观看入口| 国产精品久久电影中文字幕| 不卡一级毛片| 在线观看美女被高潮喷水网站| 亚洲欧美精品综合久久99| 国语自产精品视频在线第100页| 亚州av有码| 人妻少妇偷人精品九色| 人妻制服诱惑在线中文字幕| 深夜精品福利| 晚上一个人看的免费电影| 国产老妇女一区| 国产成人福利小说| 亚洲av电影不卡..在线观看| 成人毛片60女人毛片免费| 亚洲18禁久久av| 51国产日韩欧美| 欧美激情国产日韩精品一区| 国产成年人精品一区二区| 日韩 亚洲 欧美在线| 日韩国内少妇激情av| 久久99热这里只有精品18| 午夜精品在线福利| 国产精品国产高清国产av| 久久久久久伊人网av| 麻豆国产av国片精品| 欧美高清成人免费视频www| 日本色播在线视频| 亚洲精品国产av成人精品| 国产精品野战在线观看| 久久精品夜夜夜夜夜久久蜜豆| 午夜福利在线观看吧| 亚洲在线观看片| 亚洲av中文av极速乱| 日日干狠狠操夜夜爽| 一本精品99久久精品77| 三级经典国产精品| 午夜福利在线观看免费完整高清在 | 亚洲国产欧美人成| 国产精品,欧美在线| 91久久精品国产一区二区成人| 国产精华一区二区三区| 精品人妻偷拍中文字幕| 国内精品美女久久久久久| 欧美日本亚洲视频在线播放| 国国产精品蜜臀av免费| 18禁裸乳无遮挡免费网站照片| 久久久国产成人精品二区| 天堂网av新在线| 在线观看免费视频日本深夜| 最好的美女福利视频网| 国产视频首页在线观看| 精品一区二区三区视频在线| 国产综合懂色| 免费av观看视频| 中文字幕av成人在线电影| 哪里可以看免费的av片| 性插视频无遮挡在线免费观看| 久久久久久久亚洲中文字幕| 婷婷色综合大香蕉| 亚洲精品影视一区二区三区av| 国产色婷婷99| 午夜a级毛片| 国产亚洲精品久久久com| 中国美白少妇内射xxxbb| 99热网站在线观看| 又爽又黄无遮挡网站| 99视频精品全部免费 在线| 精品久久久久久久久av| 晚上一个人看的免费电影| 身体一侧抽搐| 欧美成人a在线观看| 亚洲av中文字字幕乱码综合| 成人国产麻豆网| 精品一区二区三区视频在线| 国产老妇女一区| 噜噜噜噜噜久久久久久91| 亚洲美女搞黄在线观看| 只有这里有精品99| 老司机影院成人| 特级一级黄色大片| 九色成人免费人妻av| 国产一级毛片在线| 日本黄大片高清| 午夜亚洲福利在线播放| 国产在线男女| 波多野结衣高清作品| 精品日产1卡2卡| 1000部很黄的大片| 69人妻影院| 联通29元200g的流量卡| 最好的美女福利视频网| 麻豆国产97在线/欧美| 老司机福利观看| 午夜福利高清视频| 给我免费播放毛片高清在线观看| 亚洲经典国产精华液单| 久久久精品94久久精品| 十八禁国产超污无遮挡网站| 中文欧美无线码| 毛片女人毛片| 一级黄色大片毛片| 综合色丁香网| 老师上课跳d突然被开到最大视频| 在线观看66精品国产| 在线免费观看的www视频| 99热这里只有是精品在线观看| 在线观看免费视频日本深夜| 色播亚洲综合网| 国产成人午夜福利电影在线观看| 亚洲av免费在线观看| 国产精品伦人一区二区| 天天躁夜夜躁狠狠久久av| 色哟哟·www| 日韩 亚洲 欧美在线| 亚洲婷婷狠狠爱综合网| 成人一区二区视频在线观看| 男女下面进入的视频免费午夜| 国产精品久久久久久精品电影小说 | 国产色婷婷99| eeuss影院久久| 国产人妻一区二区三区在| 欧美不卡视频在线免费观看| 免费大片18禁| 中文字幕av在线有码专区| 色综合亚洲欧美另类图片| 久久精品国产亚洲网站| 日本免费一区二区三区高清不卡| 亚洲欧美清纯卡通| 欧美日韩综合久久久久久| 国产精品女同一区二区软件| 成人午夜精彩视频在线观看| 哪里可以看免费的av片| 又爽又黄a免费视频| 人人妻人人澡欧美一区二区| 美女 人体艺术 gogo| 亚洲国产高清在线一区二区三| 狠狠狠狠99中文字幕| 精品久久久久久久人妻蜜臀av| 久久久成人免费电影| 日本黄色片子视频| 蜜臀久久99精品久久宅男| 在现免费观看毛片| 国产亚洲精品久久久久久毛片| 日韩成人av中文字幕在线观看| 天堂av国产一区二区熟女人妻| 国内揄拍国产精品人妻在线| 日韩高清综合在线| 欧美3d第一页| 天天躁日日操中文字幕| 欧美3d第一页| 国产伦在线观看视频一区| 少妇人妻一区二区三区视频| 久久6这里有精品| 欧洲精品卡2卡3卡4卡5卡区| 一级黄色大片毛片| av又黄又爽大尺度在线免费看 | 哪里可以看免费的av片| 国产精品一二三区在线看| 成年版毛片免费区| 国产精品人妻久久久影院| 国产精品久久久久久精品电影小说 | 国内精品宾馆在线| 欧美一级a爱片免费观看看| 国产亚洲av片在线观看秒播厂 | 国产免费男女视频| 婷婷色综合大香蕉| 男女视频在线观看网站免费| 99热这里只有是精品50| 黄片无遮挡物在线观看| 久久午夜福利片| 午夜久久久久精精品| 国产一级毛片七仙女欲春2| 精品久久久久久久久av| 干丝袜人妻中文字幕| 伦理电影大哥的女人| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 97热精品久久久久久| 国产日韩欧美在线精品| 国产精品一及| 亚洲精品乱码久久久v下载方式| 日本五十路高清| 好男人在线观看高清免费视频| 老熟妇乱子伦视频在线观看| 99国产精品一区二区蜜桃av| 日韩,欧美,国产一区二区三区 | 日本黄色片子视频| 国产三级在线视频| 成人鲁丝片一二三区免费| 精品人妻偷拍中文字幕| 最近的中文字幕免费完整| 永久网站在线| 春色校园在线视频观看| 九九在线视频观看精品| 免费观看的影片在线观看| 一个人看的www免费观看视频| 天美传媒精品一区二区| 日韩,欧美,国产一区二区三区 | 欧美成人免费av一区二区三区| 99国产极品粉嫩在线观看| 最近2019中文字幕mv第一页| 久久热精品热| 99热6这里只有精品| 男的添女的下面高潮视频| 午夜福利视频1000在线观看| 熟女电影av网| 国内精品宾馆在线| 12—13女人毛片做爰片一| 亚洲四区av| 在线观看免费视频日本深夜| 男插女下体视频免费在线播放| 欧美日韩综合久久久久久| 六月丁香七月| .国产精品久久| av视频在线观看入口| 内射极品少妇av片p| 我要看日韩黄色一级片| 欧美+日韩+精品| 一级毛片久久久久久久久女| 日本熟妇午夜| 两个人视频免费观看高清| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av熟女| 岛国毛片在线播放| 免费搜索国产男女视频| 国产精品1区2区在线观看.| 男女视频在线观看网站免费| 国产高清不卡午夜福利| 一级毛片我不卡| 国产精品一区二区在线观看99 | 久久精品国产自在天天线| 啦啦啦啦在线视频资源| 3wmmmm亚洲av在线观看| 欧美极品一区二区三区四区| 久久久成人免费电影| 九九爱精品视频在线观看| 3wmmmm亚洲av在线观看| 国产91av在线免费观看| 久久这里只有精品中国| 久久精品国产亚洲av天美| 日韩制服骚丝袜av| 日本一本二区三区精品| 亚洲内射少妇av| 亚洲三级黄色毛片| 91久久精品国产一区二区三区| 久久这里有精品视频免费| 久久久久久国产a免费观看| 国产在线男女| 超碰av人人做人人爽久久| 欧美日本视频| 91在线精品国自产拍蜜月| 一个人看视频在线观看www免费| 精品免费久久久久久久清纯| 九草在线视频观看| 性插视频无遮挡在线免费观看| 夫妻性生交免费视频一级片| 给我免费播放毛片高清在线观看| 全区人妻精品视频| 亚洲欧美中文字幕日韩二区| av天堂在线播放| 欧美3d第一页| 最新中文字幕久久久久| 亚洲国产精品国产精品| 精品午夜福利在线看| 国产日韩欧美在线精品| 久久久精品94久久精品| 熟妇人妻久久中文字幕3abv| 国产成人a∨麻豆精品| 国产高清不卡午夜福利| 日韩亚洲欧美综合| 身体一侧抽搐| 国产成人影院久久av| 国产精品1区2区在线观看.| 亚洲精品国产成人久久av| av黄色大香蕉| 日本色播在线视频| 日韩 亚洲 欧美在线| 小说图片视频综合网站| 国产精品日韩av在线免费观看| 日本五十路高清| 国产淫片久久久久久久久| 亚洲av二区三区四区| 在线观看美女被高潮喷水网站| 国产精品野战在线观看| av免费在线看不卡| 亚洲人成网站在线播| 中文欧美无线码| 亚洲成人久久爱视频| 日本-黄色视频高清免费观看| 欧美zozozo另类| 亚洲在久久综合| 嫩草影院新地址| 伊人久久精品亚洲午夜| 久久久精品欧美日韩精品| kizo精华| 99在线人妻在线中文字幕| 精品日产1卡2卡| 久久精品人妻少妇| 插阴视频在线观看视频| 国内精品美女久久久久久| 最近2019中文字幕mv第一页| 黄片无遮挡物在线观看| 亚洲精品乱码久久久v下载方式| 99久久中文字幕三级久久日本| 日韩大尺度精品在线看网址| 91久久精品国产一区二区三区| 亚洲,欧美,日韩| 欧美一区二区亚洲| 国产成人午夜福利电影在线观看| ponron亚洲| 国产高潮美女av| av在线播放精品| 久久久精品大字幕| 久久精品夜夜夜夜夜久久蜜豆| 国产亚洲欧美98| 日韩欧美 国产精品| 春色校园在线视频观看| 老熟妇乱子伦视频在线观看| 美女xxoo啪啪120秒动态图| 青春草视频在线免费观看| 免费电影在线观看免费观看| 亚洲久久久久久中文字幕| 少妇人妻一区二区三区视频| 熟女人妻精品中文字幕| 老熟妇乱子伦视频在线观看| 国产精品女同一区二区软件| 天堂av国产一区二区熟女人妻| 免费电影在线观看免费观看| 亚洲av中文av极速乱| 国产成人a∨麻豆精品| 特级一级黄色大片| 国产一区二区激情短视频| 国产成人精品一,二区 | 老司机影院成人| 亚洲国产高清在线一区二区三| 好男人视频免费观看在线| 白带黄色成豆腐渣| 我要搜黄色片| 看黄色毛片网站| АⅤ资源中文在线天堂| 观看免费一级毛片| 男人舔女人下体高潮全视频| 婷婷色av中文字幕| 国产亚洲5aaaaa淫片| 热99re8久久精品国产| 1000部很黄的大片| 日本欧美国产在线视频| 欧美区成人在线视频| 国产精品久久久久久av不卡| 少妇高潮的动态图| 91在线精品国自产拍蜜月| 亚洲无线观看免费| 日本爱情动作片www.在线观看| 在线观看免费视频日本深夜| 中文字幕精品亚洲无线码一区| 九色成人免费人妻av| 看片在线看免费视频| 91在线精品国自产拍蜜月| 全区人妻精品视频| 欧美色欧美亚洲另类二区| 精华霜和精华液先用哪个| 真实男女啪啪啪动态图| av在线天堂中文字幕| 国产黄片美女视频| 禁无遮挡网站| 国产一级毛片七仙女欲春2| 男女边吃奶边做爰视频| 中文字幕熟女人妻在线| 精品人妻一区二区三区麻豆| 美女大奶头视频| 亚洲精品456在线播放app| 亚洲精品日韩av片在线观看| 精品日产1卡2卡| 99久久精品热视频| 校园春色视频在线观看| 婷婷色综合大香蕉| 亚洲久久久久久中文字幕| 男人舔女人下体高潮全视频| 日本三级黄在线观看| 亚洲av免费在线观看| 亚洲av中文字字幕乱码综合| 一级二级三级毛片免费看| 国产探花极品一区二区| 91久久精品国产一区二区成人| 欧美人与善性xxx| 最近视频中文字幕2019在线8| 日本一本二区三区精品| 国产精品日韩av在线免费观看| 91狼人影院| 免费大片18禁| 97在线视频观看| 黑人高潮一二区| 真实男女啪啪啪动态图| 黑人高潮一二区| 久久久精品大字幕| 综合色av麻豆| 欧美人与善性xxx| 男女视频在线观看网站免费| 日本黄色视频三级网站网址| 欧美色视频一区免费| 国产成人精品久久久久久| 国产片特级美女逼逼视频| 欧美精品一区二区大全| 欧美丝袜亚洲另类| 精品人妻视频免费看| 99热这里只有精品一区| 国产精品一及| 日韩一区二区视频免费看| 激情 狠狠 欧美| 欧美+日韩+精品| 97热精品久久久久久| 亚洲成人久久性| 非洲黑人性xxxx精品又粗又长| 国产精品综合久久久久久久免费| 成人无遮挡网站| 国产精品一区二区在线观看99 | 一本久久中文字幕| 国产午夜福利久久久久久| 国产精品嫩草影院av在线观看| 国产午夜精品论理片| 超碰av人人做人人爽久久| 亚洲最大成人中文| av卡一久久| 国产精品久久久久久久电影| 免费观看的影片在线观看| 日韩欧美 国产精品| 麻豆乱淫一区二区| 五月伊人婷婷丁香| 精品久久久久久久久久久久久| 深夜精品福利| 赤兔流量卡办理| 超碰av人人做人人爽久久| 婷婷亚洲欧美| 亚洲欧美清纯卡通| 精品人妻偷拍中文字幕| 国产69精品久久久久777片| avwww免费| 国产色爽女视频免费观看| 麻豆国产97在线/欧美| 日韩在线高清观看一区二区三区| 一区二区三区四区激情视频 | 性色avwww在线观看| 91久久精品电影网| 秋霞在线观看毛片| 哪个播放器可以免费观看大片| 国产大屁股一区二区在线视频| 国产一区二区激情短视频| 不卡视频在线观看欧美| 男女视频在线观看网站免费| 插逼视频在线观看| 亚洲国产精品成人久久小说 | 国产久久久一区二区三区| 国产一区二区在线av高清观看| 国产精品99久久久久久久久| 一本久久中文字幕| 最好的美女福利视频网| 日韩欧美国产在线观看| 欧美性猛交黑人性爽| 亚洲色图av天堂| 熟女人妻精品中文字幕| 欧美bdsm另类| 免费人成在线观看视频色| 一个人免费在线观看电影| 夜夜看夜夜爽夜夜摸| 日本黄色片子视频| 亚洲一级一片aⅴ在线观看| 久久亚洲国产成人精品v| 午夜老司机福利剧场| 亚洲精品乱码久久久久久按摩| 人妻系列 视频| 黄片无遮挡物在线观看| 国产精品伦人一区二区| 亚洲精品成人久久久久久| av黄色大香蕉| 亚洲精品粉嫩美女一区| 国产伦在线观看视频一区| 国产精品久久久久久av不卡| 身体一侧抽搐| 欧美3d第一页| 日韩欧美一区二区三区在线观看| 99热精品在线国产| 综合色丁香网| 九九在线视频观看精品| 美女 人体艺术 gogo| 国内揄拍国产精品人妻在线|