• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inkjet Printed Metamaterial Loaded Antenna for WLAN/WiMAX Applications

    2022-08-24 03:26:28FarhadBinAshrafTouhidulAlamMdTarikulIslamMandeepJitSinghNorbahiahBintiMisranandMohammadTariqulIslam
    Computers Materials&Continua 2022年5期

    Farhad Bin Ashraf,Touhidul Alam,Md Tarikul Islam,Mandeep Jit Singh,Norbahiah Binti Misran and Mohammad Tariqul Islam

    1Department of Electrical Engineering,Polytechnique Montréal,Montréal,QC H3T 1J4,Canada

    2Space Science Centre(ANGKASA),Institute of Climate Change(IPI),Universiti Kebangsaan Malaysia,Bangi,43600,Selangor,Malaysia

    3Department of Electrical,Electronic and Systems Engineering,F(xiàn)aculty of Engineering and Built Environment,Universiti Kebangsaan Malaysia,Malaysia

    Abstract: In this paper, the design and performance analysis of an Inkjetprinted metamaterial loaded monopole antenna is presented for wireless local area network (WLAN) and worldwide interoperability for microwave access(WiMAX)applications.The proposed metamaterial structure consists of two layers, one is rectangular tuning fork-shaped antenna, and another layer is an inkjet-printed metamaterial superstate.The metamaterial layer is designed using four split-ring resonators (SRR) with an H-shaped inner structure to achieve negative-index metamaterial properties.The metamaterial structure is fabricated on low-cost photo paper substrate material using a conductive inkbased inkjet printing technique,which achieved dual negative refractive index bands of 2.25–4.25 GHz and 4.3–4.6 GHz.The antenna is designed using a rectangular tuning fork structure to operate at WLAN and WiMAX bands.The antenna is printed on 30×39×1.27 mm3 Rogers RO3010 substrate,which shows wide impedance bandwidth of 0.75 GHz (2.2 to 2.95 GHz)with 2 dB realized gain at 2.4 GHz.After integrating metamaterial structure,the impedance bandwidth becomes 1.25 GHz (2.33 to 3.58 GHz) with 2.6 dB realized gain at 2.4 GHz.The antenna bandwidth and gain have been increased using developed quad SRR based metasurface by 500 MHz and 0.6 dBi respectively.Moreover,the proposed quad SRR loaded antenna can be used for 2.4 GHz WLAN bands and 2.5 GHz WiMAX applications.The contribution of this work is to develop a cost-effective inject printed metamaterial to enhance the impedance bandwidth and realized the gain of a WLAN/WiMAX antenna.

    Keywords: Metamaterial; epsilon negative; antenna; split ring resonator;WiMAX;WLAN

    1 Introduction

    The development of modern wireless communication systems requires multi-band antennas for wireless service requirements.Wireless local area network (WLAN) and worldwide interoperability for microwave access(WiMAX)have been widely applied in handheld computers and smartphones.For improved high-speed data connectivity,allowing users mobility and low-cost viable communication, these two technologies have been widely acknowledged.According to IEEE standard 802.11,WLAN standards consist of 2.4 GHz(2.4–2.484 GHz),5.2 GHz(5.15–5.35 GHz)frequency bands.WiMAX standards consist of 2.5,3.5 GHz(3.3–3.6 GHz)and 5.5-GHz(5.25–5.85 GHz)frequency bands as stated in the IEEE standard 802.16d,802.16e.Because of the rapid development,the necessity of designing compact antennas with low cost,ease of integration and multiband operation is in great demand[1–3].The multi-band antennas can reduce the number of required antennas and also improve the electromagnetic compatibility of the wireless systems.Microstrip patch antennas(MPAs)have been playing a very important role in wireless communication technologies as they are lightweight, easy fabrication and integrability to mounting hosts.

    In recent times, several methods have been reported on the development of compact dual-band antennas.However,most of them do not provide the desired bandwidths.Many studies on multiband antennas for wireless communication systems have been reported by using conventional methods such as a monopole antenna [4,5], dipole antenna [6], slot antennas [7,8], the co-planar antenna[9] and fractal antenna [10].Though, they still have a large size corresponding to the wavelength at their operating frequencies and small bandwidth with low gain.To overcome the limitations of the microstrip patch antennas some approaches have been proposed such as changing substrate permittivity and thickness[11],stacked dielectric resonator antenna[12,13],metamaterial embedded microstrip patch antenna[14,15]to improve the gain and bandwidth of the antenna.

    In recent years for improving the performance of antennas, metamaterials have attracted considerable attention [16–18].These metamaterials have been developed with unique electromagnetic properties that cannot be found in nature, such as negative permittivity and negative permeability that lead to negative refractive index.A split-ring resonator (SRR) is the fundamental unit-cell to obtain negative permeability which is absent in normal materials [19].A complementary splitring resonator (CSRR) is another structure to design stopband frequency band characteristics [20].These structures have been widely used to design the miniaturized antenna, gain enhancement and multiband applications [21–24].Metamaterial inspired microstrip patch antennas can be controlled more conveniently because of their electrically small size and subwavelength profile which does not affect other antenna parameters.In [25], a split ring resonator-based metamaterial superstrate has been used to enhance the gain of the patch antenna.Metamaterial loaded two dipole antennas have been presented in [26] to achieve compact size, dual-band functionalities and good gain.The proposed antennas have gain values of up to 1.9 dBi.A uniplanar compact metamaterial inspired dipole antenna has been designed and proposed for WLAN and WiMAX applications[27].Two pairs of complementary capacitively-loaded loops produce antenna gain of about 1.3 to 1.5 dBi in the 2.21 to 2.77 GHz frequency band.In this work, a metamaterial inspired antenna is proposed where an array of unit cells form meta-surface and stacked at the back of the antenna using a spacer.This gives the design freedom and tuneability of the antenna parameters by varying the distance and position of the antenna to the meta-surface.The meta-surface act as a reflector that enhances the electrical length of antenna and impact on bandwidth and gain enhancement.Also,the fabrication procedure is interesting and easy and cost-effective.

    In this paper,a simple inkjet printed quad split-ring resonator(SRR)loaded multiband antenna has been proposed to cover WLAN and WiMAX applications.Firstly,a printed monopole antenna has been designed to operate at desired frequencies.Secondly,four interconnected split-ring resonators have been printed on photo paper substrate using silver nanoparticle ink.After that,the metamaterial slab has been placed at the back of the antenna to drive the resonant modes for achieving wide impedance bandwidth and improved gain.Numerical results show that, compared to the patch antenna, the realized gain of the proposed antenna gets improved by more than 0.6 dBi within the working band and the impedance bandwidth is increased from 0.61 GHz(2.38–2.99 GHz)to 1.25 GHz(2.33–3.58 GHz).The antenna developed in this paper dominates the smaller area and has simpler geometry to realize the required operating bands compared to other designs stated in the literature.

    2 Antenna Design

    The structure of the dual-band patch antenna is designed on Rogers RO3010, substrate with relative permittivity of 10.2 and a loss tangent of 0.0022.Initially, a rectangular-shaped tuning fork structure has been designed based on[28,29].The arm of the tuning fork has been chosen considering quarter wavelength relation with the resonant frequency of 2.4 GHz.The tuning forks on a trapezoid based structure act as a monopole antenna.Besides,the gap between monopole and the partial ground plane has been optimized to adjust input impedance,which can play a significant role to achieve desire frequencies.The configuration of the slotted patch antenna has been schematically shown in Fig.1.The geometrical parameter of the dual-band antenna has been listed in Tab.1.The rectangular slotted patch antenna has been fabricated and shown in Fig.2.

    Table 1:Configuration of the proposed antenna

    3 Metamaterial Design

    The proposed metamaterial unit cell consists of four interconnected split-ring resonators with Hshaped structre as shown in Fig.3.The splits of the structure form capacitance and the rectangularshaped lines act as inductance.The resultant capacitance and inductance form resonant frequency.Moreover,the XY symmetrical structure is designed in such a way that it can reflect waves from every angle.The structure of the proposed metamaterial has been printed on a photo paper substrate with relative permittivity of 3.2 and a thickness of 0.54 mm.The photo paper from Epson has been used as a substrate in many articles for inkjet printing[30].As compared to conventional PCB fabrication,inkjet printing fabrication is more cost-effective and environmentally friendly.A metallic silver nanoparticle ink from AgIC is used as a conductive radiating element.The main feature of this ink is that it dries in a few seconds.The thickness of the metallic ink is 0.0175 mm.A Brother DCP-T310 inkjet printer has been used for printing the structure.The overall dimensions of the structure were 11 mm2×11 mm2.The configuration of the quad SRR has been represented in Tab.2.The final prototype of 4×5 quad SRR is shown in Fig.4.

    Table 2:Design parameters of the quad SRR

    The Finite Integration Technique method-based CST Microwave Studio has been used to extract the reflection coefficient (S11) and transmission coefficient (S21) of the quad SRR.The design structure is segmented into smaller units and the calculation of each unit is done by solving Maxwell’s equation.Perfect electric conductor (PEC) and perfect magnetic conductor (PMC) are set as a boundary condition along x-direction and y-direction and the z-direction is set as open(add space).The effective constitutive parameters of the proposed metamaterial unit cell have been extracted by the transmission-reflection method reflection (TR) method [31–33].Where, the refractive index η,permittivity ε and permeability μ are obtained by

    where k=ω/c is the wave propagation vector,ω is the angular frequency,c is the speed of light and m is an integer that defines the branch index of η.Symbol z represents the impedance and d denotes the thickness of the substrate material.For a continuous refractive index,the fundamental branch index should be zero because the largest dimension of the proposed unit-cell is less than one-sixth of the material wavelength[34].

    A set of waveguides to coaxial adapters are used along with the Agilent N5227A performance network analyzer(PNA)as shown in Fig.5.To ensure the result accuracy,an Agilent N4694-60001 electronic calibration module has also been used to calibrate the PNA.

    The simulated and measured reflection coefficient(S11)and the transmission coefficient(S21)of the metamaterial structure have been illustrated in Fig.6.The simulated results have a much better agreement with the measured results.The structure showed a measured passband of 2.17–2.60 GHz(S11 <-10 dB)and a stopband throughout the whole frequency band.

    The effective constitutive parameters of the proposed metamaterial unit cell have been illustrated in Fig.7.It shows a negative effective permittivity from 2.49 to 4.61 GHz and a negative effective permeability from 2.43 to 2.58 GHz and 4.5 to 6 GHz.The structure has a negative refractive index characteristic bandwidth from 2.25–4.25 GHz and 4.3–4.6 GHz.The parameters are extracted from the simulation results.

    4 Metamaterial Loaded Antenna

    Metamaterials can suppress the surface wave in antenna design that may lead to miniaturization,gain and bandwidth enhancement[35,36].The metamaterial structure is now simply integrating behind the patch antenna at 6 mm as shown in Fig.8.

    To observe the change in bandwidth and realized gain,the metamaterial and the patch antenna with different distance has been investigated.Fig.9 illustrates the outcome for the variation of 2,4,6 and 8 mm.As the distance between antenna and metamaterial increases the impedance bandwidth,realized gain and efficiency also increases.

    The final prototype of the metamaterial loaded antenna has been shown in Fig.10.As the metamaterial has been designed for a lower frequency band(2.17–2.60 GHz),the metamaterial loaded antenna has increased bandwidth and gain for the lower band.The upper band shows stopband characteristics because of that the resonance frequency became weak.The simulated result from Fig.11a shows bandwidth from 2.22 to 3.64 GHz and the measured result shows a slight decrease in bandwidth from 2.33 to 3.58 GHz.After loading the metamaterial, the realized gain is now increased to 2.6 dBi and the efficiency is around 82% as in Figs.11b and 11c.The mechanism of the metamaterial surface can be analyzed in three steps.First,the backward waves from the antenna radiated in the direction of metamaterial reflector.The metamaterial plane reflects the signals inphase such as a perfect magnetic conductor.Second, the reflected waves contribute to the antenna gain.Finally,they add up with the forward waves,as a result,strong radiation has been generated at a specified resonant frequency.A detailed study has been performed in terms of directivity and input impedance of a monopole on top of PEC and PMC reflector at various spacing distances in [29].They showed PEC reflector provides a directive broadside pattern at the cost of high-quality factor and narrow impedance bandwidth while the ideal PMC reflector provides improved bandwidth but lower directivity.A metamaterial act as a high impedance surface(HIS)can combine the advantages of both PEC and PMC reflectors.A metamaterial with negative refractive index can provide improved bandwidth in the PEC case and higher forward directivity in the PMC case.

    The simulated and measured radiation patterns of the metamaterial loaded antenna at the frequencies of 2.4 and have been plotted in Fig.12.Nearly omnidirectional radiation patterns for H-plane and Figure-eight shape radiation patterns in E-plane has been obtained.Moreover, a low cross-polarization level is observed for both E-plane and H-plane.

    Figure 1:Proposed antenna(a)front view and(b)back view

    Figure 2:Photograph of the fabricated prototype

    Figure 3:Proposed quad split-ring resonator

    Figure 4:Photograph of the final printed prototype

    Figure 5:Metamaterial measurement setup

    Figure 6:Simulated and measured S-parameters of quad SRR

    Figure 7:Effective constitutive parameters(a)permittivity,(b)permeability and(c)refractive index

    Figure 8:Antenna loaded with metamaterial

    Figure 9:Antenna performances for different distances(a)reflection coefficient,(b)realized gain and(c)efficiency

    Figure 10:Photograph of metamaterial loaded antenna

    Figure 11:Metamaterial loaded antenna performances(a)reflection coefficient,(b)realized gain and(c)efficiency

    Figure 12:Radiation patterns of the metamaterial loaded antenna at 2.4 GHz

    The performance comparison between the proposed work and other works in the literature is presented in Tab.3.The proposed design has a compact dimension and shows comparatively better performance for both the WLAN and WiMAX bands than the antennas presented in the literature.

    Table 3:Comparison of the proposed with literature

    5 Conclusion

    A simple,low-cost inkjet-printed quad split-ring resonator loaded antenna is proposed for WLAN and WiMAX applications.The metamaterial characteristics have been investigated in both simulation and measurement,where good agreement is found between the two results.Moreover,the presented metamaterial structure can enhance impedance bandwidth as well as realized gain at the resonant frequency.The measured results show that the realized gain of the metamaterial loaded antenna gets improved by more than 0.6 dBi within the operating band and the impedance bandwidth is increased from 0.75 to 1.25 GHz.The proposed metamaterial loaded antenna has good radiation characteristics with an omnidirectional radiation pattern,so it can emerge as an excellent candidate for WLAN/WiMAX wireless communication.

    Funding Statement:This work is supported by Universiti Kebangsaan Malaysia research Grant No:DIP-2020-010.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    在线a可以看的网站| 欧美激情在线99| 国产人妻一区二区三区在| 国产久久久一区二区三区| 在线播放无遮挡| 国产爱豆传媒在线观看| 国产欧美日韩精品亚洲av| 欧美成人一区二区免费高清观看| 尤物成人国产欧美一区二区三区| 黄色日韩在线| 久久精品国产清高在天天线| 亚洲无线在线观看| 免费高清视频大片| 麻豆一二三区av精品| 国产精品乱码一区二三区的特点| 亚洲精品一卡2卡三卡4卡5卡| 搞女人的毛片| 精品一区二区三区av网在线观看| 中文在线观看免费www的网站| 日韩欧美在线二视频| 免费看a级黄色片| 亚洲真实伦在线观看| 成人国产一区最新在线观看| ponron亚洲| av天堂在线播放| 午夜福利18| 国产一区二区三区av在线 | 99riav亚洲国产免费| 日韩亚洲欧美综合| 99riav亚洲国产免费| 在线免费十八禁| 亚洲精品456在线播放app | 国产国拍精品亚洲av在线观看| 综合色av麻豆| 国产麻豆成人av免费视频| 亚洲成人久久爱视频| 我的女老师完整版在线观看| 婷婷六月久久综合丁香| 亚洲精品色激情综合| 色综合站精品国产| 最近中文字幕高清免费大全6 | 很黄的视频免费| av黄色大香蕉| 国内精品久久久久精免费| 可以在线观看毛片的网站| 乱码一卡2卡4卡精品| 中文字幕久久专区| 国产精品99久久久久久久久| 欧美最新免费一区二区三区| 三级国产精品欧美在线观看| 搡老岳熟女国产| 日日撸夜夜添| 欧美性感艳星| 1024手机看黄色片| 97超级碰碰碰精品色视频在线观看| 97超级碰碰碰精品色视频在线观看| 亚洲avbb在线观看| 精品久久久久久成人av| 久久久久久久久久久丰满 | 日本成人三级电影网站| 国内精品美女久久久久久| 999久久久精品免费观看国产| 亚洲 国产 在线| 日本与韩国留学比较| 五月伊人婷婷丁香| 精品一区二区免费观看| АⅤ资源中文在线天堂| 日韩欧美精品免费久久| xxxwww97欧美| 人人妻人人看人人澡| 国产爱豆传媒在线观看| 国产伦人伦偷精品视频| 欧美国产日韩亚洲一区| 999久久久精品免费观看国产| 欧美精品国产亚洲| 日本色播在线视频| 天美传媒精品一区二区| 极品教师在线视频| 亚洲色图av天堂| 热99在线观看视频| 国产精品嫩草影院av在线观看 | 搡女人真爽免费视频火全软件 | 18禁黄网站禁片午夜丰满| 中文字幕高清在线视频| av国产免费在线观看| 国产高清有码在线观看视频| 最近最新中文字幕大全电影3| 中文亚洲av片在线观看爽| 国产精品免费一区二区三区在线| 能在线免费观看的黄片| 国产精品99久久久久久久久| 香蕉av资源在线| 久久九九热精品免费| 亚洲欧美日韩高清在线视频| 12—13女人毛片做爰片一| 亚洲精品粉嫩美女一区| 很黄的视频免费| 亚洲,欧美,日韩| www日本黄色视频网| 天天躁日日操中文字幕| 老师上课跳d突然被开到最大视频| 久久精品91蜜桃| 国产男人的电影天堂91| 免费在线观看成人毛片| 伦精品一区二区三区| 一a级毛片在线观看| 色精品久久人妻99蜜桃| 日日摸夜夜添夜夜添小说| 日日啪夜夜撸| 久久天躁狠狠躁夜夜2o2o| 国产色爽女视频免费观看| 1000部很黄的大片| 亚洲av日韩精品久久久久久密| xxxwww97欧美| 99视频精品全部免费 在线| 美女高潮喷水抽搐中文字幕| 桃色一区二区三区在线观看| 熟女电影av网| 成年女人永久免费观看视频| 日本撒尿小便嘘嘘汇集6| 一个人看视频在线观看www免费| 男女下面进入的视频免费午夜| 成人无遮挡网站| 国产精品一区二区免费欧美| 欧美又色又爽又黄视频| 69av精品久久久久久| 老师上课跳d突然被开到最大视频| 免费在线观看影片大全网站| 一区二区三区四区激情视频 | 99热这里只有精品一区| 悠悠久久av| 亚洲狠狠婷婷综合久久图片| 高清在线国产一区| 精品一区二区三区人妻视频| 一夜夜www| 日本三级黄在线观看| 亚洲国产高清在线一区二区三| 精品久久国产蜜桃| 免费黄网站久久成人精品| 全区人妻精品视频| 久久久久久久久久黄片| 亚洲国产欧美人成| 99视频精品全部免费 在线| 男女啪啪激烈高潮av片| 久久人人爽人人爽人人片va| 高清毛片免费观看视频网站| 午夜精品久久久久久毛片777| 国产久久久一区二区三区| 国产免费男女视频| 日本黄色视频三级网站网址| 日本免费一区二区三区高清不卡| 久久精品久久久久久噜噜老黄 | 国产欧美日韩精品亚洲av| 亚洲aⅴ乱码一区二区在线播放| 国产美女午夜福利| 日本在线视频免费播放| 日日摸夜夜添夜夜添小说| 小说图片视频综合网站| av在线观看视频网站免费| 国产av不卡久久| 精品久久久久久久末码| 亚洲精品456在线播放app | 久久午夜福利片| 大又大粗又爽又黄少妇毛片口| 精品人妻1区二区| 91久久精品国产一区二区成人| 最近最新中文字幕大全电影3| 欧美+亚洲+日韩+国产| 亚洲七黄色美女视频| 观看免费一级毛片| 精华霜和精华液先用哪个| 高清毛片免费观看视频网站| 日韩国内少妇激情av| 国产精品一及| 国产精品伦人一区二区| 日韩人妻高清精品专区| 国产精品久久视频播放| 国产伦一二天堂av在线观看| 国产av不卡久久| 免费看日本二区| 国产亚洲精品久久久久久毛片| 久久精品综合一区二区三区| 老女人水多毛片| 久久欧美精品欧美久久欧美| 国模一区二区三区四区视频| 欧美绝顶高潮抽搐喷水| 少妇的逼好多水| 非洲黑人性xxxx精品又粗又长| 99久久九九国产精品国产免费| 天堂√8在线中文| 老司机午夜福利在线观看视频| 久久精品91蜜桃| 俄罗斯特黄特色一大片| 精品国内亚洲2022精品成人| www.色视频.com| 国产美女午夜福利| 一区二区三区激情视频| 一区二区三区四区激情视频 | 国产在视频线在精品| 日韩人妻高清精品专区| 亚洲va在线va天堂va国产| 亚洲精华国产精华液的使用体验 | 日韩中字成人| 国产麻豆成人av免费视频| 看十八女毛片水多多多| 99九九线精品视频在线观看视频| 中文字幕久久专区| 免费av毛片视频| 国产亚洲精品av在线| 久久欧美精品欧美久久欧美| 亚洲精华国产精华精| 国产伦精品一区二区三区四那| 少妇丰满av| 午夜爱爱视频在线播放| 精品福利观看| 校园人妻丝袜中文字幕| 国产激情偷乱视频一区二区| 99久久中文字幕三级久久日本| 亚洲人成伊人成综合网2020| av在线蜜桃| 久久久久久久精品吃奶| 国产精品不卡视频一区二区| 床上黄色一级片| 亚洲美女搞黄在线观看 | 国产一区二区三区在线臀色熟女| 欧美一级a爱片免费观看看| 久久国产乱子免费精品| 最近在线观看免费完整版| 成人国产综合亚洲| 亚洲性夜色夜夜综合| 真实男女啪啪啪动态图| 99久久精品热视频| 精品午夜福利视频在线观看一区| 一区二区三区高清视频在线| 99riav亚洲国产免费| 特级一级黄色大片| 国产成人福利小说| 亚洲图色成人| 在线观看av片永久免费下载| 99九九线精品视频在线观看视频| 蜜桃久久精品国产亚洲av| 12—13女人毛片做爰片一| 亚洲内射少妇av| 成人鲁丝片一二三区免费| 国产午夜福利久久久久久| 亚洲av熟女| 少妇的逼水好多| 久久中文看片网| 欧美中文日本在线观看视频| 婷婷精品国产亚洲av在线| 桃红色精品国产亚洲av| 亚洲专区国产一区二区| 女人十人毛片免费观看3o分钟| 成人欧美大片| 日日撸夜夜添| 亚洲第一电影网av| 午夜福利欧美成人| 欧美3d第一页| 日日啪夜夜撸| 亚洲成人久久爱视频| 国产精品亚洲一级av第二区| 99久久无色码亚洲精品果冻| 免费看光身美女| 成人特级av手机在线观看| 国产综合懂色| 草草在线视频免费看| 最新在线观看一区二区三区| 嫩草影视91久久| 日本一二三区视频观看| 一级黄色大片毛片| 欧美在线一区亚洲| 亚洲最大成人中文| 俄罗斯特黄特色一大片| 少妇的逼水好多| 亚洲18禁久久av| 内地一区二区视频在线| 黄片wwwwww| 国产中年淑女户外野战色| 午夜福利在线观看免费完整高清在 | 国产爱豆传媒在线观看| 久久午夜亚洲精品久久| 成年女人看的毛片在线观看| 男插女下体视频免费在线播放| 亚洲国产精品合色在线| 狠狠狠狠99中文字幕| 赤兔流量卡办理| 在线免费观看的www视频| 成人亚洲精品av一区二区| 国产男靠女视频免费网站| 别揉我奶头~嗯~啊~动态视频| 久久香蕉精品热| а√天堂www在线а√下载| 亚洲中文日韩欧美视频| 亚洲无线在线观看| 真人做人爱边吃奶动态| 一进一出好大好爽视频| 非洲黑人性xxxx精品又粗又长| 中国美白少妇内射xxxbb| av在线观看视频网站免费| 久久久久久大精品| 简卡轻食公司| 少妇的逼水好多| 精华霜和精华液先用哪个| 97热精品久久久久久| 国产又黄又爽又无遮挡在线| 亚洲经典国产精华液单| 久久久久久久久久黄片| 18禁黄网站禁片午夜丰满| 国产精品99久久久久久久久| 亚洲美女视频黄频| 亚洲四区av| 中国美白少妇内射xxxbb| 国产免费av片在线观看野外av| 国产欧美日韩一区二区精品| 18+在线观看网站| 少妇丰满av| av女优亚洲男人天堂| 伊人久久精品亚洲午夜| 国产精品久久久久久精品电影| 成人性生交大片免费视频hd| 欧美区成人在线视频| 国产精品久久久久久av不卡| 亚洲精华国产精华液的使用体验 | 国产爱豆传媒在线观看| 国产精品,欧美在线| 亚洲最大成人手机在线| 午夜日韩欧美国产| 亚洲av中文av极速乱 | 少妇的逼水好多| 美女大奶头视频| 99riav亚洲国产免费| 日韩,欧美,国产一区二区三区 | 国产乱人伦免费视频| 最近中文字幕高清免费大全6 | 有码 亚洲区| 黄色欧美视频在线观看| 哪里可以看免费的av片| 免费人成在线观看视频色| 国产精品一区二区三区四区久久| 国产色婷婷99| 色哟哟·www| 成人一区二区视频在线观看| 欧美一区二区国产精品久久精品| 真人做人爱边吃奶动态| 最近视频中文字幕2019在线8| 久久久久久久久中文| 欧美一区二区国产精品久久精品| 亚洲精华国产精华液的使用体验 | АⅤ资源中文在线天堂| 99热这里只有是精品50| 国产国拍精品亚洲av在线观看| 久久久精品大字幕| 精品久久久久久久久av| 午夜免费男女啪啪视频观看 | 99热这里只有是精品在线观看| 国产乱人视频| xxxwww97欧美| 97人妻精品一区二区三区麻豆| 女人被狂操c到高潮| 人人妻人人澡欧美一区二区| 欧美中文日本在线观看视频| 久久国产乱子免费精品| 婷婷丁香在线五月| 一区福利在线观看| 别揉我奶头 嗯啊视频| 最新中文字幕久久久久| 精品人妻一区二区三区麻豆 | 精品一区二区免费观看| 久久人妻av系列| 国产精品免费一区二区三区在线| 精品久久久噜噜| 国产成年人精品一区二区| 精品一区二区三区av网在线观看| 精品久久久久久久久av| 日韩在线高清观看一区二区三区 | 啦啦啦韩国在线观看视频| 变态另类丝袜制服| 午夜免费男女啪啪视频观看 | 成人鲁丝片一二三区免费| 自拍偷自拍亚洲精品老妇| aaaaa片日本免费| 97碰自拍视频| 成年免费大片在线观看| 亚洲欧美日韩无卡精品| 人妻久久中文字幕网| 亚洲精品成人久久久久久| 国产v大片淫在线免费观看| 美女免费视频网站| 精品99又大又爽又粗少妇毛片 | 国产精品电影一区二区三区| 久久久久久久午夜电影| 亚洲国产日韩欧美精品在线观看| 我要看日韩黄色一级片| 内射极品少妇av片p| 日本免费a在线| 两性午夜刺激爽爽歪歪视频在线观看| 最近中文字幕高清免费大全6 | 国产精品爽爽va在线观看网站| 中文字幕av在线有码专区| 九九热线精品视视频播放| 少妇的逼水好多| 久久久精品欧美日韩精品| 韩国av一区二区三区四区| 99九九线精品视频在线观看视频| 欧美人与善性xxx| 免费观看人在逋| 一个人看视频在线观看www免费| 狠狠狠狠99中文字幕| 少妇高潮的动态图| 日韩欧美精品免费久久| 色哟哟哟哟哟哟| 亚洲国产色片| 99国产极品粉嫩在线观看| 夜夜夜夜夜久久久久| 亚洲欧美日韩无卡精品| 中文字幕免费在线视频6| 国产高清激情床上av| 久久久久精品国产欧美久久久| 日日撸夜夜添| 亚洲在线观看片| 波多野结衣高清作品| 国产欧美日韩精品一区二区| 亚洲国产欧美人成| 色5月婷婷丁香| 校园人妻丝袜中文字幕| 国产精品1区2区在线观看.| 欧美xxxx黑人xx丫x性爽| 日本成人三级电影网站| 亚洲欧美日韩高清专用| 国产精品久久久久久亚洲av鲁大| 桃色一区二区三区在线观看| 一a级毛片在线观看| 国内久久婷婷六月综合欲色啪| 99热网站在线观看| 99热精品在线国产| 日韩欧美免费精品| 亚洲va日本ⅴa欧美va伊人久久| 免费搜索国产男女视频| 国产午夜福利久久久久久| bbb黄色大片| 精品久久久久久,| 日韩欧美在线二视频| 国产91精品成人一区二区三区| 亚洲三级黄色毛片| 噜噜噜噜噜久久久久久91| 国产探花极品一区二区| 毛片一级片免费看久久久久 | 色播亚洲综合网| 国产精品亚洲一级av第二区| 别揉我奶头~嗯~啊~动态视频| 波多野结衣高清无吗| 久久精品国产99精品国产亚洲性色| 午夜免费成人在线视频| 麻豆成人午夜福利视频| 亚洲中文字幕日韩| 最近最新免费中文字幕在线| 日本黄色视频三级网站网址| 亚洲熟妇中文字幕五十中出| 日韩大尺度精品在线看网址| 国内毛片毛片毛片毛片毛片| h日本视频在线播放| 久久午夜亚洲精品久久| 欧美日本亚洲视频在线播放| 久久久久久久久久久丰满 | 又爽又黄a免费视频| 亚洲熟妇熟女久久| 国产精品亚洲美女久久久| 亚洲黑人精品在线| 永久网站在线| 在线看三级毛片| 午夜a级毛片| 亚洲av成人精品一区久久| 九九热线精品视视频播放| 少妇熟女aⅴ在线视频| 在线观看午夜福利视频| 91久久精品电影网| 99精品久久久久人妻精品| 色哟哟哟哟哟哟| 草草在线视频免费看| 欧美xxxx黑人xx丫x性爽| 久久久久国产精品人妻aⅴ院| 综合色av麻豆| 亚洲在线观看片| 国产真实伦视频高清在线观看 | 欧美日本视频| 亚洲最大成人av| 搡老熟女国产l中国老女人| 噜噜噜噜噜久久久久久91| 国产视频内射| 美女被艹到高潮喷水动态| 日日撸夜夜添| 亚洲图色成人| 久久久成人免费电影| 欧美国产日韩亚洲一区| 男女边吃奶边做爰视频| 欧美日韩瑟瑟在线播放| 在现免费观看毛片| 村上凉子中文字幕在线| 真实男女啪啪啪动态图| 一级毛片久久久久久久久女| 中文亚洲av片在线观看爽| 99热6这里只有精品| 国产一区二区在线观看日韩| 国产探花在线观看一区二区| 精品免费久久久久久久清纯| 国内精品美女久久久久久| 女人被狂操c到高潮| 国产精品,欧美在线| 国产精品不卡视频一区二区| www.www免费av| 欧美又色又爽又黄视频| 亚洲第一电影网av| a级毛片a级免费在线| 亚洲av二区三区四区| 久99久视频精品免费| 一a级毛片在线观看| 99热精品在线国产| 69av精品久久久久久| 成人av一区二区三区在线看| 校园春色视频在线观看| 亚洲国产欧美人成| 亚洲av二区三区四区| 三级毛片av免费| 久久婷婷人人爽人人干人人爱| 日韩一区二区视频免费看| 岛国在线免费视频观看| 午夜福利高清视频| 成熟少妇高潮喷水视频| 九色成人免费人妻av| 国产精品乱码一区二三区的特点| 好男人在线观看高清免费视频| 一级a爱片免费观看的视频| 精品一区二区三区av网在线观看| 搡老妇女老女人老熟妇| 午夜福利在线观看免费完整高清在 | 久久这里只有精品中国| 99久久精品一区二区三区| 99久久无色码亚洲精品果冻| 又粗又爽又猛毛片免费看| 欧美国产日韩亚洲一区| 国产一区二区三区在线臀色熟女| 国产视频一区二区在线看| 国产亚洲欧美98| 国产成年人精品一区二区| 免费看光身美女| 在线免费十八禁| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av中文字字幕乱码综合| 中国美女看黄片| 欧美又色又爽又黄视频| 观看免费一级毛片| 一夜夜www| 99久久久亚洲精品蜜臀av| 精品99又大又爽又粗少妇毛片 | 色综合色国产| 热99re8久久精品国产| 久久久久久伊人网av| av在线亚洲专区| 亚洲最大成人手机在线| 久久精品国产自在天天线| 看片在线看免费视频| 天天躁日日操中文字幕| av在线观看视频网站免费| 久久久久久久亚洲中文字幕| 校园人妻丝袜中文字幕| 成人毛片a级毛片在线播放| 一卡2卡三卡四卡精品乱码亚洲| 久久精品综合一区二区三区| 成人国产综合亚洲| 51国产日韩欧美| 国产蜜桃级精品一区二区三区| 日韩在线高清观看一区二区三区 | 网址你懂的国产日韩在线| bbb黄色大片| 91麻豆精品激情在线观看国产| 欧美+日韩+精品| 国产精品嫩草影院av在线观看 | 久久久国产成人精品二区| 美女高潮喷水抽搐中文字幕| 国产毛片a区久久久久| 美女 人体艺术 gogo| 丰满人妻一区二区三区视频av| 不卡视频在线观看欧美| 国产成人aa在线观看| 久久精品国产清高在天天线| 日韩国内少妇激情av| bbb黄色大片| 丰满人妻一区二区三区视频av| 亚洲va日本ⅴa欧美va伊人久久| 可以在线观看的亚洲视频| 国产免费av片在线观看野外av| 亚洲性久久影院| av女优亚洲男人天堂| 久久久成人免费电影| 特级一级黄色大片| 亚洲成人久久爱视频| 国产精品一及| 亚洲国产精品合色在线| 非洲黑人性xxxx精品又粗又长| 亚洲av免费在线观看| 看十八女毛片水多多多| 色视频www国产| 国产欧美日韩精品亚洲av| .国产精品久久| 男人狂女人下面高潮的视频| 成年女人永久免费观看视频| 成人特级黄色片久久久久久久| 色av中文字幕| 听说在线观看完整版免费高清| 精品一区二区三区人妻视频| 亚洲图色成人| 一个人免费在线观看电影| 大型黄色视频在线免费观看| 日本一本二区三区精品| 久久亚洲真实|