• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Analysis of Laterally Loaded Long Piles in Cohesionless Soil

    2022-08-24 03:26:04AymanAbdElhamedMohamedFathyandKhaledAbdelgaber
    Computers Materials&Continua 2022年5期

    Ayman Abd-Elhamed,Mohamed Fathy and Khaled M.Abdelgaber

    1Physics and Engineering Mathematics Department,F(xiàn)aculty of Engineering-Mattaria,Helwan University,Cairo,11718,Egypt

    2Faculty of Engineering,King Salman International University,South Sinai,Ras Sedr,Egypt

    3Basic and Applied Science Department,College of Engineering and Technology,Arab Academy for Science,Technology and Maritime Transport,Cairo,11799,Egypt

    Abstract: The capability of piles to withstand horizontal loads is a major design issue.The current research work aims to investigate numerically the responses of laterally loaded piles at working load employing the concept of a beam-on-Winkler-foundation model.The governing differential equation for a laterally loaded pile on elastic subgrade is derived.Based on Legendre-Galerkin method and Runge-Kutta formulas of order four and five, the flexural equation of long piles embedded in homogeneous sandy soils with modulus of subgrade reaction linearly variable with depth is solved for both free- and fixed-headed piles.Mathematica, as one of the world’s leading computational software, was employed for the implementation of solutions.The proposed numerical techniques provide the responses for the entire pile length under the applied lateral load.The utilized numerical approaches are validated against experimental and analytical results of previously published works showing a more accurate estimation of the response of laterally loaded piles.Therefore, the proposed approaches can maintain both mathematical simplicity and comparable accuracy with the experimental results.

    Keywords: Numerical solution; laterally loaded pile; cohesionless soil;Legendre-Galerkin;Runge-Kutta

    1 Introduction

    Pile foundations are frequently used, especially in weaker soils, to support various structures subjected to lateral loads such as high-rise buildings, communication towers, wind turbines, earthretaining structures, bridges, tanks and offshore structures.Lateral loads owing to wind, wave,dredging, traffic and seismic events are considered significant on these structures since they are eventually transmitted to the piles [1,2].As a result, the piles have been analyzed by considering a concentrated force and/or moment acting on the top of the pile.Over many decades,several methods have been proposed for designing and analysis of piles subjected to lateral loads including the subgrade reaction approach [3], the p-y approach [4,5], the finite element approach [6], the finite difference approach [7], and the analytical method [8].Of these approaches, elastic solutions based on beamon-Winkler-foundation model,albeit approximate,are probably the most widely used in engineering practice due to their simplicity, as well as they provide satisfactory results.Winkler’s model is a particularly attractive approach used to reliably capture the soil-pile interaction.In this model the pile is simulated as a flexural beam connected to a series of narrowly spaced independent and continuous Winkler springs and dashpots distributed along the pile shaft.To investigate the mechanical behavior of laterally loaded piles in clay, several numerical investigations using the LPILE software were performed by Moayed et al.[9].Moreover,Chang[10]derived an analytic solution to get the responses of laterally loaded long piles in cohesive soil considering constant subgrade reaction modulus.Furthermore, Different techniques have been proposed to analyze the behaviour of piles frequently subjected to lateral loads in sandy soil with different boundary conditions at their ends, including power series solution[11],finite element method[12],and finite difference method[3,13].Further fullscale tests were performed to explore the behavior of laterally loaded piles either in sand[14]or in clay[15].Numerical simulations considering both theoretical predictions and experimental validations are the common powerful tools of analysis in the field of geotechnical engineering particularly complex applications.

    Recently,many researchers used Legendre polynomials in different methods to construct various mathematical models.These methods can solve Lane-Emden type of differential equation [16],differential equation with second and fourth order [17], the equation of Cahn-Hilliard [18], integral equation of Fredholm type [19], Helmholtz equation [20], Volterra integral equations in the second kind[21],integral-differential of Fredholm type in linear form[22]and Abels integral equation[23].Based on Legendre-Galerkin method,the pile flexural equation can be written asAy(η)=f,whereAis a differential operator.The solution of our problem can be approximated in Legendre series asy=By applying the Galerkin method to minimize the residual yieldsPr(η)〉=0.The differential equation is converted into discrete linear system.This system is solved,and the coefficients are determined for our approximate solution of the differential equation.In addition to the above method, the Bogacki–Shampine method [24] is a powerful numerical solution used for solving ordinary differential equations of the investigated problem.It is a Runge–Kutta method of two successive orders, for example 4th and 5th, with multi stages.An adaptive step size is implemented based on the error estimated between the solutions of the two successive orders.Elbashbeshy et al.[25,26]used this method in flow and heat transfer problems of fluid/nanofluid over different stretching surfaces and found that it is accurate by comparing it with methods used to solve the same problems.

    This paper aims to present simple numerical methods to capture the behaviour of single piles under lateral working loads.First,mathematical formulation of the problem and the derivation of the governing differential equations are presented.Thereafter,two techniques are developed for numerical approximations of the derived equations.Then the effect of boundary conditions of the pile head on the behaviors of piles is studied as well.In order to examine the validity of the proposed numerical techniques, the obtained numerical results for deflection and bending moment along the laterally loaded piles are compared with results of previous studies.The proposed numerical techniques in the current study provide a better approach for structural designers to simply solve for the displacement and bending moment responses of laterally loaded piles.Consequently, the techniques can be easily applied in practice as an alternative approach to analyze and design laterally loaded long piles.It is worth noting that,the proposed solutions are applicable only for homogeneous soil with reaction modulus that varies linearly with depth.So,further investigation and analyses are needed for multilayered soil with the modulus of subgrade reaction varies with any functions with the depth.

    2 Mathematical Formulation

    The model under examination consists of a pile that is assumed to be perfectly glued to the surrounding soils suggesting that there is no relative movement between the soil and the pile [27].It is worth noting that the horizontal and vertical loads are rarely coupled.Thereupon,it is common among structural designers to neglect the vertical load effect during handling the laterally loaded pile problem.Accordingly,the pile under consideration is subjected to applied lateral force H0 at distance e above the soil surface, as shown in Fig.1.Furthermore, the thickness of soil strata, L, coincides with the embedment length of pile.The pile elastic modulus and moment of inertia areEpandIp,respectively.The soil is characterized by a subgrade modulus k which linearly increases with the depth as a good approximation for granular soils [28].For a laterally loaded pile on elastic homogeneous foundation,the governing differential equation employing the subgrade reaction theory can be derived by considering the equilibrium of transverse forces over a differential segment of the pile,as shown in Fig.2.

    Figure 1:Illustration of pile–soil system using Winkler model

    Figure 2:Forces acting in differential pile element

    Assuming all forces acting horizontally and applying equilibrium conditions leads to

    According to that,

    Summation of moments about axis at end of element yields

    The relation between bending moment and the shear force is given by

    Differentiating Eq.(4)with respect tozand substituting it into Eq.(2)provide

    The basic moment-curvature relationship of elementary pile can be written as

    The differential equation of a laterally loaded pile can take the form

    wherey(z)is the horizontal pile deflection at depthzandEpIpis the flexural stiffness of pile.

    Assuming a linear variation of soil stiffness with soil depth,kcan be written as follows[29]

    where herenhis the coefficient of subgrade reaction that represents the rate of increase of subgrade reaction modulus with depthz.

    Eqs.(7)and(8)yield

    The solution of Eq.(9) requires an iterative procedure to achieve convergence of the relative stiffness factorTas follows[30]

    Defining a dimensionless variablex=z/Tand introducing it into Eq.(9)yields

    By substituting Eq.(10)into Eq.(11),the governing equation for the soil-pile system is rewritten the form

    3 Boundary Conditions

    As shown in Fig.3,the solution of Eq.(12)requires boundary conditions to balance the number of equations and the number of unknowns.

    Figure 3:Boundary conditions for the pile under consideration

    Boundary conditions of infinitely long piles fixed at the bottom can be written as

    The boundary conditions at the top of the pile depend on the circumstances of the lateral deflection, slope, bending moment and shear force.These are generalized into the following two categories.

    3.1 Free-Head Pile

    The pile head is not restrained against rotation and translation.Therefore,the boundary conditions at the pile head can take the form

    3.2 Fixed-Head Pile

    The pile head is completely restrained against rotation.The boundary conditions at the pile head are given by

    4 Legendre-Galerkin Method

    4.1 Preliminaries

    Orthogonal systems play a vital role in performing mathematical analysis.This can be due to functions belonging to very general classes can be expanded in series of orthogonal functions e.g.,F(xiàn)ourier-Bessel series,F(xiàn)ourier series,etc.Orthogonal polynomials of degreen,Pn(x);n= 0, 1, 2,...,represent an important class of orthogonal systems where many of the special functions encountered in the applications,such as Jacobi,Legendre,Laguerre,Hermite and Chebyshev polynomials,are part of that class.The Legendre polynomial is defined as[31].

    with the orthogonality on the interval[-1, 1],i.e.,

    Lemma[32]:If the arbitrary constantsq,k,mandjare positive integers then

    and

    where

    and

    Theorem:If the arbitrary constantsk,l,qandmare positive integers,then

    whereCq(k,i)andΘm,n(j)are defined in Eqs.(20)and(21),respectively.

    Proof.By using the given lemma and Eq.(17),the theorem is proved.

    4.2 Legendre-Galerkin Method

    To solve Eq.(12),the solution domain of our problem must be changed from the interval[0,L]whereL→∞to the interval[-1,1]using the linear transformation

    So,Eq.(12)could be rewritten as

    subject to the conditions of free-head pile

    Moreover,the conditions of fixed-head pile are:

    The solution of Eq.(25) subject to the conditions given in Eqs.(26) or (27) is written in finite expansion of shifted Legendre function as

    Reducing Eq.(25)is performed by orthogonalizing the residual with respect to the basic functions as follows

    where the inner

    product〈·, ·〉 is defined as

    By substituting Eq.(28)into Eq.(29),a discrete system ofn+1 unknowns is given in the form Ac=b,(31)

    c=[c0c1c3···cn-1cn]TandAll values ofaj,rcould be calculated using the given theorem.The vector b based on the boundary conditions as follows.

    4.2.1 Free-Head Piles

    In this case,the vector b is written as

    The linear system in Eq.(31) is solved using one of the available numerical techniques.By obtaining the coefficients values of{cj}n0,the approximate solution given in Eq.(28)becomes

    By using the inverse linear transformationand,the solutions of the governing differential equation for a laterally loaded pile on elastic subgrade,Eq.(12),are given for deflection and moment as

    and

    4.2.2 Fixed-Head Piles

    In this case,the vector b is written asThe approximate solution given in Eq.(28)becomes

    By using the inverse linear transformationand, the solutions of the governing differential equation for a laterally loaded pile on elastic subgrade,Eq.(12),are given for deflection and moment as

    and

    5 Runge-Kutta Formulas of Order 4 and 5(RKBS45)

    The differential equation of laterally loaded pile,Eq.(12),subjected to the boundary conditions in Eqs.(14)or(15)is converted into a system of linear first-order differential equations as follows

    If the pile top condition is a free-head one, then the system of equations given in Eq.(39) is subjected to the initial conditions

    where the constantss1ands2are unknowns to be evaluated during the process of solution.

    On the other hand,if the pile top condition is a fixed-head one,then the system of equations given in Eq.(39)is subjected to the initial conditions

    where the constantss3ands4are unknowns to be determined as a part of the numerical solution.

    The system of equations Eq.(39)can be rewritten in the vector form as

    where Y(x)=[y(x) y1(x) y2(x) y3(x)]andxmaxis used as an adaptation forx→∞.

    To obtain local error estimates for adaptive step-size control effectively,consider two Runge-Kutta formulas of different orderspand=p+1.A Runge-Kutta process generates a sequence Ynas an approximation of Y(xn)for 0 =x0<x1<···<xn=xmax.In the interval fromxntoxn+1=xn+hn,there are two approximations of Y(xn+1)called Yn+1andforpand=p+1,respectively.Their forms are

    wheresis the number of stages and,

    Consideringp= 4 ands= 7, the coefficientsai,j,bi,andcan be evaluated by Bogacki and Shampine[24]to produce the efficient pair of formulas Yn+1(4thorder formula)and(5thorder formula).

    The solution Y(xmax) = [y(xmax) y1(xmax) y2(xmax) y3(xmax)]is generated based on the unknownss1ands2for free-head pile and the unknownss3ands4for fixed-head pile cases.The values of all these unknowns are determined upon solving the equationsy(xmax) =y1(xmax) =y2(xmax) =y3(xmax) = 0 to satisfy the given boundary conditions given in Eqs.(14)and(15).The value ofxmaxis adapted by gradual increase till the maximum difference between any values ofs1,s2,s3ors4in succession is less than the required accuracyτ=10-6.

    The error between the two numerical solutions Yn+1andis calculated as

    In case ofen+1≤τ,one can use Yn+1oras the final approximate value of Y(xn+1).On the other hand,ifen+1>τ,the erroren+1is used to adapt the step sizehntoas follows

    The adapted step size is used to estimate the new values of Yn+1anduntil achievingen+1≤τ.

    6 Validation of the Proposed Methods

    The performance and capability of the proposed methods to predict the behavior of laterally loaded piles in cohesion1ess soil have been demonstrated by comparing the obtained numerical results and the observed results from field experiments in full-scale lateral load tests reported by Cox.et al.[33].In these tests, the flexible free-head steel tube pipe pile of 0.61 m in diameter, 21 m in length, 9.525 mm in wall thickness and 163000 kN·m2bending rigidity, was embedded in a deposit of submerged sand.The soil profile at the site is composed of a uniformly fine-graded sand with internal angle of friction, φ = 39°and submerged density ofγ=10.4 kN/m3.To investigate the soil properties below the ground surface,the Standard Penetration Test,SPT,was performed by[33]and reported as 18 blows per 30 cm.Accordingly, the recommended value of the horizontal subgrade reaction constantnhfor submerged sand is estimated to be 15 MN/m3,[34].Moreover,an analytical power series solution is also used for comparison, including the solution proposed by Fayun et al.[11],which reported a simplified analytical solution for laterally loaded long piles based on Fourier-Laplace integral.The computed pile head deflections are plotted and compared with both field experiments results and results from Fayun et al.as shown in Fig.4.The figure indicates that the proposed numerical solutions are consistent with both original analytic results and experimental test results,which further validates the proposed numerical solutions.The figure clearly indicates that the presented numerical solutions are more suitable for analyzing the response of laterally loaded long piles in sand layers.

    Figure 4:Comparison between the numerical, analytical and experimental lateral deflections of pile head vs.applied lateral force

    7 Results and Discussion

    The design of pile foundation under lateral loads is extensively bound to study both the pile head deflection and the maximum bending moment.Legendre-Galerkin method and Runge-Kutta formulas of order four and five were employed to solve the flexural equation of long piles embedded in homogeneous cohesionless soil with a modulus of subgrade reaction increases linearly with depth.In the numerical simulation,the pile is subjected to horizontal forceH0=100 kN at distancee=0.305mabove-soil level,as shown in Fig.1.The considered parameters in terms of pile length L,pile bending rigidityEPIPand coefficient of subgrade reactionnh,are set to be 21 m,163000 kN/m2and 15000 kN/m3respectively.In order to ensure that our results produce reliable pile deflection and bending moment not only at the pile head but also for the entire pile length,and the analysis is equally applicable for different pile head conditions,the obtained results are compared with the results of simplified solution proposed by Fayun et al.[11].The responses of free-head pile foundation in terms of lateral deflection and bending moment distributions are shown in Fig.5.In addition, the corresponding responses in the case of fixed-head pile foundation are also presented in Fig.6.

    Figure 5:Pile deflection and bending moment profiles of free-head long pile

    The plotted curves reveal complete overlaps between Legendre-Galerkin solution and Runge-Kutta solution.Furthermore,the comparison charts demonstrate a very good agreement between the numerical results estimated via Legendre-Galerkin and Runge-Kutta and the corresponding procedure introduced by Fayun et al.[11].These observations suggest that the lateral deflection and bending moment profiles can be represented accurately by the proposed method.However, insignificant differences between the location of peak deflection and bending moment from proposed methods and solution proposed by Fayun et al.can also be observed regardless the type of head condition.

    Figure 6:Pile deflection and bending moment profiles of fixed-head long pile

    8 Conclusion

    In the present study, Legendre-Galerkin and Runge-Kutta formulas of order four and five methods have been introduced to obtain simplified numerical approaches for understanding the behaviour of single piles against lateral loads.For the purpose of analysis and design of laterally loaded piles crossing sandy soil,simple expressions for the pile lateral deflection and bending moment can be evaluated.The procedure is programmed with the most computational software program Mathematica, which is considered as the world’s leading computational software.The numerically computed pile responses are compared with the results from the full-scale lateral load tests.The proposed approaches are well validated.Moreover,these proposed approaches provide evidence that high precision can be achieved with a small amount of computational work.It has been found from the study that the Legendre-Galerkin solution almost coincides with the Runge-Kutta solution for both free-head and fixed-head piles.The suggested numerical expressions obtained in this study can be reasonably applied to analyze and design laterally loaded long piles conveniently.In addition,these techniques can also modify to design/analyze laterally loaded long piles in soil with the modulus of subgrade reaction in any functions of the depth.The proposed approaches capture the long pile behaviour.Furthermore, the proposed solutions are aimed at providing an effective and convenient method for engineers to predict the responses of the entire pile length under the applied lateral load.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    高清不卡的av网站| 亚洲成人手机| 国产精品久久久久成人av| 建设人人有责人人尽责人人享有的| 亚洲精品乱码久久久v下载方式| 国产又色又爽无遮挡免| 国产成人精品久久久久久| 欧美日韩精品成人综合77777| 搡老乐熟女国产| 2021少妇久久久久久久久久久| 九九爱精品视频在线观看| 国产伦理片在线播放av一区| 亚洲av欧美aⅴ国产| 一级毛片 在线播放| 毛片一级片免费看久久久久| 久久ye,这里只有精品| 日韩熟女老妇一区二区性免费视频| 成人毛片a级毛片在线播放| 国产成人免费观看mmmm| 一二三四中文在线观看免费高清| 啦啦啦啦在线视频资源| 国产精品不卡视频一区二区| 亚洲精品,欧美精品| 夫妻午夜视频| 久久人人爽人人片av| 人体艺术视频欧美日本| 国产精品久久久久久久电影| 女人久久www免费人成看片| 国产亚洲av片在线观看秒播厂| 亚洲精品国产av蜜桃| 少妇人妻精品综合一区二区| 春色校园在线视频观看| 亚洲一区二区三区欧美精品| 欧美另类一区| 青青草视频在线视频观看| 一级片'在线观看视频| 亚洲精品乱久久久久久| 日本午夜av视频| 精品国产乱码久久久久久小说| 少妇人妻久久综合中文| 亚洲国产欧美在线一区| 欧美另类一区| 丰满迷人的少妇在线观看| 夫妻午夜视频| 成人18禁高潮啪啪吃奶动态图 | 寂寞人妻少妇视频99o| 欧美日韩综合久久久久久| 久久女婷五月综合色啪小说| 久久女婷五月综合色啪小说| 九草在线视频观看| 成人毛片a级毛片在线播放| 午夜老司机福利剧场| 亚洲欧洲精品一区二区精品久久久 | 国产成人aa在线观看| 2021少妇久久久久久久久久久| 午夜91福利影院| 精品少妇久久久久久888优播| √禁漫天堂资源中文www| 精品一区二区免费观看| 久久影院123| 看非洲黑人一级黄片| 欧美日韩成人在线一区二区| 亚洲精品亚洲一区二区| 午夜日本视频在线| 我的老师免费观看完整版| 免费大片黄手机在线观看| 热99久久久久精品小说推荐| 久久精品熟女亚洲av麻豆精品| 久久精品国产a三级三级三级| 国产无遮挡羞羞视频在线观看| 欧美精品亚洲一区二区| 高清欧美精品videossex| 免费观看无遮挡的男女| 制服人妻中文乱码| 国产高清国产精品国产三级| 国产无遮挡羞羞视频在线观看| 国产亚洲精品久久久com| 亚洲国产精品一区三区| 十分钟在线观看高清视频www| 精品国产乱码久久久久久小说| 五月伊人婷婷丁香| 国产av精品麻豆| 九九在线视频观看精品| 亚洲人成77777在线视频| 日韩视频在线欧美| 久久久久久人妻| 美女内射精品一级片tv| 久久影院123| 日韩三级伦理在线观看| 国产精品国产三级专区第一集| 18在线观看网站| av有码第一页| 亚洲中文av在线| 午夜福利,免费看| 欧美激情国产日韩精品一区| 久久鲁丝午夜福利片| 久久这里有精品视频免费| 欧美丝袜亚洲另类| 一级毛片我不卡| 亚洲欧洲日产国产| 国产熟女午夜一区二区三区 | 人妻制服诱惑在线中文字幕| 亚洲少妇的诱惑av| 欧美97在线视频| 亚洲三级黄色毛片| 亚洲少妇的诱惑av| 亚洲三级黄色毛片| 蜜桃久久精品国产亚洲av| 亚洲少妇的诱惑av| 大香蕉久久网| 男女啪啪激烈高潮av片| 五月伊人婷婷丁香| 最新的欧美精品一区二区| 亚洲色图 男人天堂 中文字幕 | 在线观看免费日韩欧美大片 | 欧美丝袜亚洲另类| 亚洲精品乱码久久久v下载方式| 麻豆成人av视频| 久久国产精品大桥未久av| 精品国产一区二区三区久久久樱花| 欧美日韩成人在线一区二区| 菩萨蛮人人尽说江南好唐韦庄| 精品久久久久久电影网| 国产亚洲欧美精品永久| 久久青草综合色| 欧美日韩视频精品一区| 91午夜精品亚洲一区二区三区| 天天躁夜夜躁狠狠久久av| av福利片在线| 97超视频在线观看视频| 国产国拍精品亚洲av在线观看| 黄色怎么调成土黄色| 免费观看的影片在线观看| 三级国产精品片| 亚洲精品日本国产第一区| 欧美3d第一页| av在线老鸭窝| 国产精品不卡视频一区二区| 久久久久久久久久人人人人人人| 久久99一区二区三区| av在线观看视频网站免费| 亚洲精品日韩av片在线观看| 美女国产视频在线观看| 免费久久久久久久精品成人欧美视频 | 午夜激情av网站| 男女边摸边吃奶| 超碰97精品在线观看| 亚洲人成网站在线播| 亚洲少妇的诱惑av| h视频一区二区三区| 国产欧美亚洲国产| 最新的欧美精品一区二区| 国产伦精品一区二区三区视频9| 亚洲精品国产色婷婷电影| 久久久久久久精品精品| 亚洲四区av| 性色av一级| 午夜福利视频在线观看免费| 高清视频免费观看一区二区| 国产精品 国内视频| 午夜福利在线观看免费完整高清在| 欧美精品一区二区免费开放| 国产片内射在线| 黑人欧美特级aaaaaa片| 国产在视频线精品| a级毛片黄视频| 中文字幕制服av| h视频一区二区三区| 国产成人精品福利久久| 天天躁夜夜躁狠狠久久av| 婷婷色综合大香蕉| 各种免费的搞黄视频| 精品久久国产蜜桃| 伦理电影免费视频| 久热这里只有精品99| 国产精品久久久久久av不卡| 嫩草影院入口| 亚洲国产精品成人久久小说| 欧美丝袜亚洲另类| 欧美成人午夜免费资源| 一区二区日韩欧美中文字幕 | 少妇人妻精品综合一区二区| 2021少妇久久久久久久久久久| 欧美3d第一页| 精品人妻一区二区三区麻豆| 免费黄频网站在线观看国产| 日韩精品免费视频一区二区三区 | 日日摸夜夜添夜夜爱| 午夜福利影视在线免费观看| 韩国av在线不卡| 欧美精品高潮呻吟av久久| 熟女av电影| 永久免费av网站大全| 少妇丰满av| 一区二区三区精品91| 3wmmmm亚洲av在线观看| 免费观看a级毛片全部| 99视频精品全部免费 在线| 亚洲成人av在线免费| 天天躁夜夜躁狠狠久久av| 亚洲怡红院男人天堂| 夫妻午夜视频| 久久韩国三级中文字幕| 午夜91福利影院| 精品一区二区三区视频在线| 另类精品久久| 乱人伦中国视频| 两个人免费观看高清视频| av不卡在线播放| a 毛片基地| 国产高清有码在线观看视频| 十分钟在线观看高清视频www| 多毛熟女@视频| 综合色丁香网| 婷婷色综合www| 国产精品久久久久久精品电影小说| 最近的中文字幕免费完整| 亚洲av不卡在线观看| 国产在线视频一区二区| 国产免费福利视频在线观看| 在线看a的网站| av网站免费在线观看视频| www.色视频.com| 有码 亚洲区| 久久人人爽av亚洲精品天堂| 国产高清有码在线观看视频| 满18在线观看网站| 亚洲激情五月婷婷啪啪| 久久精品国产自在天天线| 国产亚洲欧美精品永久| 毛片一级片免费看久久久久| 狂野欧美激情性bbbbbb| 国产深夜福利视频在线观看| 国产精品蜜桃在线观看| 久久久精品区二区三区| 国产精品久久久久成人av| 桃花免费在线播放| 少妇人妻久久综合中文| 精品人妻在线不人妻| 亚洲国产最新在线播放| 国产 一区精品| 久久人妻熟女aⅴ| 看免费成人av毛片| 久久久久久久久久成人| 午夜日本视频在线| 大片电影免费在线观看免费| a级毛色黄片| 久久女婷五月综合色啪小说| 精品少妇黑人巨大在线播放| 免费大片黄手机在线观看| 亚洲第一区二区三区不卡| 伊人亚洲综合成人网| 亚洲精品,欧美精品| 久久久久精品久久久久真实原创| 亚洲综合色惰| 午夜激情久久久久久久| 亚洲内射少妇av| av天堂久久9| 国精品久久久久久国模美| 亚洲欧美清纯卡通| 麻豆乱淫一区二区| 国产深夜福利视频在线观看| 在线免费观看不下载黄p国产| 亚洲av电影在线观看一区二区三区| 人妻人人澡人人爽人人| 午夜激情av网站| 九九爱精品视频在线观看| 青春草视频在线免费观看| 国产午夜精品一二区理论片| 少妇高潮的动态图| 日本黄大片高清| 日韩伦理黄色片| 成人影院久久| 人妻人人澡人人爽人人| 秋霞伦理黄片| 成人综合一区亚洲| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲精品美女久久av网站| 亚洲欧美一区二区三区黑人 | 日韩一区二区三区影片| 日本色播在线视频| 亚洲精品久久成人aⅴ小说 | 久久99一区二区三区| 少妇丰满av| 国产亚洲午夜精品一区二区久久| 午夜激情久久久久久久| 中国三级夫妇交换| 国产成人av激情在线播放 | 国产一级毛片在线| 在线观看一区二区三区激情| 亚洲国产精品999| 狠狠婷婷综合久久久久久88av| 国产一区二区在线观看日韩| a级毛片免费高清观看在线播放| 婷婷色综合www| 97在线人人人人妻| a级毛片在线看网站| 久久久久久伊人网av| xxxhd国产人妻xxx| 久久人人爽人人片av| 一级爰片在线观看| 伦理电影大哥的女人| 亚洲精品aⅴ在线观看| 日韩精品有码人妻一区| 久久人人爽av亚洲精品天堂| 下体分泌物呈黄色| 免费少妇av软件| 亚洲人成77777在线视频| 免费观看在线日韩| 草草在线视频免费看| 一级a做视频免费观看| 国产乱来视频区| 尾随美女入室| 欧美三级亚洲精品| 亚洲欧洲国产日韩| 观看美女的网站| 日韩熟女老妇一区二区性免费视频| 亚洲高清免费不卡视频| 老司机影院成人| 久久精品国产鲁丝片午夜精品| 国产午夜精品一二区理论片| 亚洲成人av在线免费| 国产精品秋霞免费鲁丝片| 日韩成人av中文字幕在线观看| 性色av一级| 尾随美女入室| 日韩av不卡免费在线播放| av又黄又爽大尺度在线免费看| 嫩草影院入口| 国产欧美日韩一区二区三区在线 | 国产精品一国产av| 9色porny在线观看| 性色av一级| 人妻一区二区av| 一级,二级,三级黄色视频| 自拍欧美九色日韩亚洲蝌蚪91| 午夜91福利影院| 亚洲精品乱码久久久v下载方式| 久久鲁丝午夜福利片| 哪个播放器可以免费观看大片| 视频中文字幕在线观看| 妹子高潮喷水视频| 97超碰精品成人国产| 三级国产精品欧美在线观看| 七月丁香在线播放| 最后的刺客免费高清国语| 国产乱来视频区| 99re6热这里在线精品视频| 能在线免费看毛片的网站| 搡女人真爽免费视频火全软件| 校园人妻丝袜中文字幕| 国产精品国产三级国产专区5o| 秋霞伦理黄片| 久久热精品热| 中文字幕最新亚洲高清| 九色亚洲精品在线播放| 国产免费又黄又爽又色| 日韩熟女老妇一区二区性免费视频| 18在线观看网站| 午夜久久久在线观看| 国产精品一区www在线观看| tube8黄色片| 插逼视频在线观看| 在线观看三级黄色| 黄片播放在线免费| 亚洲国产欧美日韩在线播放| 日韩欧美一区视频在线观看| 人成视频在线观看免费观看| 成人漫画全彩无遮挡| 十八禁高潮呻吟视频| av播播在线观看一区| 亚洲欧美清纯卡通| 丁香六月天网| 久久鲁丝午夜福利片| 日本与韩国留学比较| 黑人猛操日本美女一级片| av国产久精品久网站免费入址| 自线自在国产av| 人人妻人人澡人人爽人人夜夜| 欧美人与性动交α欧美精品济南到 | 亚洲av电影在线观看一区二区三区| 人妻夜夜爽99麻豆av| 国产成人免费观看mmmm| 亚洲国产最新在线播放| 国产乱人偷精品视频| 波野结衣二区三区在线| 国产一区二区在线观看日韩| 最近中文字幕高清免费大全6| 成人二区视频| 中国美白少妇内射xxxbb| 最新的欧美精品一区二区| 日韩强制内射视频| 简卡轻食公司| 久久精品熟女亚洲av麻豆精品| 肉色欧美久久久久久久蜜桃| 日韩av不卡免费在线播放| 免费人妻精品一区二区三区视频| 男女高潮啪啪啪动态图| 国产无遮挡羞羞视频在线观看| 色94色欧美一区二区| 免费不卡的大黄色大毛片视频在线观看| 能在线免费看毛片的网站| 天天影视国产精品| 母亲3免费完整高清在线观看 | 夜夜骑夜夜射夜夜干| av在线老鸭窝| 亚洲精品色激情综合| 国产精品嫩草影院av在线观看| 精品视频人人做人人爽| 汤姆久久久久久久影院中文字幕| 亚洲色图综合在线观看| 久久久a久久爽久久v久久| 两个人的视频大全免费| 欧美日韩视频高清一区二区三区二| 如何舔出高潮| 免费观看av网站的网址| 人成视频在线观看免费观看| 免费av中文字幕在线| 亚洲精品中文字幕在线视频| 免费av不卡在线播放| 中文精品一卡2卡3卡4更新| 久久久精品区二区三区| 免费观看在线日韩| 亚洲精品国产色婷婷电影| 热re99久久精品国产66热6| 免费av不卡在线播放| 免费久久久久久久精品成人欧美视频 | a级片在线免费高清观看视频| 亚洲熟女精品中文字幕| 王馨瑶露胸无遮挡在线观看| 性色av一级| 看免费成人av毛片| 亚洲精品色激情综合| 欧美亚洲日本最大视频资源| videosex国产| 久久久国产一区二区| 国产亚洲一区二区精品| 亚洲av二区三区四区| 亚洲国产欧美在线一区| 黄色视频在线播放观看不卡| 麻豆成人av视频| 日本vs欧美在线观看视频| 欧美日韩av久久| www.av在线官网国产| 亚洲一级一片aⅴ在线观看| 狂野欧美激情性bbbbbb| 国产伦理片在线播放av一区| 少妇人妻 视频| a 毛片基地| 免费av中文字幕在线| 久久久午夜欧美精品| videossex国产| 久久 成人 亚洲| 中文乱码字字幕精品一区二区三区| 蜜桃久久精品国产亚洲av| 久久久精品免费免费高清| 国产在线免费精品| 午夜av观看不卡| 国产亚洲最大av| 亚洲av不卡在线观看| 永久网站在线| 18禁在线播放成人免费| 久久久久久久久久久丰满| 一个人免费看片子| 大话2 男鬼变身卡| 色哟哟·www| 亚洲精品456在线播放app| 人体艺术视频欧美日本| a级毛片免费高清观看在线播放| 飞空精品影院首页| 亚洲人成77777在线视频| 2018国产大陆天天弄谢| 美女视频免费永久观看网站| 成人亚洲欧美一区二区av| 国产精品欧美亚洲77777| 欧美日韩亚洲高清精品| 人体艺术视频欧美日本| 国产日韩一区二区三区精品不卡 | 丝瓜视频免费看黄片| 男女免费视频国产| 亚洲不卡免费看| 国产精品99久久99久久久不卡 | 精品亚洲成a人片在线观看| 我的老师免费观看完整版| 久久久久人妻精品一区果冻| 亚洲精品乱码久久久v下载方式| 久久久久久久久久久久大奶| 啦啦啦中文免费视频观看日本| 蜜桃久久精品国产亚洲av| 国产精品一区二区在线观看99| 亚洲av中文av极速乱| 日韩精品免费视频一区二区三区 | 午夜影院在线不卡| 国产爽快片一区二区三区| 中文字幕人妻丝袜制服| 亚洲欧洲日产国产| 热re99久久精品国产66热6| 91精品一卡2卡3卡4卡| 日日摸夜夜添夜夜添av毛片| 亚洲综合色惰| 人妻系列 视频| 午夜福利在线观看免费完整高清在| 9色porny在线观看| 在线观看一区二区三区激情| 欧美精品一区二区免费开放| 欧美 亚洲 国产 日韩一| 国产成人a∨麻豆精品| 中文字幕久久专区| 久久久久精品久久久久真实原创| 老司机影院成人| www.av在线官网国产| 欧美另类一区| 国产亚洲精品第一综合不卡 | 色94色欧美一区二区| 在线观看国产h片| av黄色大香蕉| 欧美日韩在线观看h| 人妻少妇偷人精品九色| 免费av不卡在线播放| 欧美性感艳星| 国产免费又黄又爽又色| 又大又黄又爽视频免费| 亚洲欧美一区二区三区国产| 熟女电影av网| 日韩欧美精品免费久久| 久久久久久久久久久免费av| 18禁裸乳无遮挡动漫免费视频| 丝袜在线中文字幕| 日本午夜av视频| 99久久中文字幕三级久久日本| 99热全是精品| 成年美女黄网站色视频大全免费 | 一区二区日韩欧美中文字幕 | 精品酒店卫生间| 青春草亚洲视频在线观看| 国产高清三级在线| 亚洲国产av新网站| 性色av一级| 亚洲精品视频女| 男人爽女人下面视频在线观看| 大陆偷拍与自拍| 国产免费视频播放在线视频| 国产探花极品一区二区| 久久影院123| 人妻 亚洲 视频| 免费久久久久久久精品成人欧美视频 | 母亲3免费完整高清在线观看 | 成人综合一区亚洲| 欧美日韩视频精品一区| 欧美性感艳星| 赤兔流量卡办理| 日本猛色少妇xxxxx猛交久久| 国产色爽女视频免费观看| 国产一区二区在线观看av| 中文字幕制服av| 欧美人与性动交α欧美精品济南到 | 婷婷色综合www| 老司机影院毛片| 亚洲高清免费不卡视频| 全区人妻精品视频| 男女国产视频网站| h视频一区二区三区| 欧美精品国产亚洲| 亚洲av成人精品一区久久| 少妇人妻久久综合中文| 婷婷色av中文字幕| 欧美日韩在线观看h| 建设人人有责人人尽责人人享有的| 一级,二级,三级黄色视频| 最近2019中文字幕mv第一页| 天天躁夜夜躁狠狠久久av| 国产精品一区www在线观看| 亚洲av日韩在线播放| 春色校园在线视频观看| 成人亚洲欧美一区二区av| 精品国产国语对白av| 国产熟女欧美一区二区| 午夜91福利影院| 最近中文字幕2019免费版| 99久久综合免费| 亚洲人成77777在线视频| 亚洲高清免费不卡视频| 国产熟女欧美一区二区| 日韩免费高清中文字幕av| 亚洲成人av在线免费| 精品国产国语对白av| 国产av精品麻豆| 精品久久久精品久久久| 精品国产一区二区三区久久久樱花| 99九九在线精品视频| 黑人欧美特级aaaaaa片| a级毛片免费高清观看在线播放| 欧美97在线视频| 国产一区亚洲一区在线观看| 中文字幕人妻熟人妻熟丝袜美| 久久久久精品久久久久真实原创| 18禁动态无遮挡网站| 看非洲黑人一级黄片| 亚洲人成网站在线播| 免费观看a级毛片全部| 香蕉精品网在线| 午夜av观看不卡| 纯流量卡能插随身wifi吗| 精品久久久久久久久亚洲| 嘟嘟电影网在线观看| 欧美bdsm另类| 亚洲图色成人| 女人精品久久久久毛片| av黄色大香蕉| 久久久久视频综合| 国产免费又黄又爽又色| 国产国拍精品亚洲av在线观看| 亚洲丝袜综合中文字幕| 亚洲精品国产色婷婷电影| 国产不卡av网站在线观看|