• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Analysis of Laterally Loaded Long Piles in Cohesionless Soil

    2022-08-24 03:26:04AymanAbdElhamedMohamedFathyandKhaledAbdelgaber
    Computers Materials&Continua 2022年5期

    Ayman Abd-Elhamed,Mohamed Fathy and Khaled M.Abdelgaber

    1Physics and Engineering Mathematics Department,F(xiàn)aculty of Engineering-Mattaria,Helwan University,Cairo,11718,Egypt

    2Faculty of Engineering,King Salman International University,South Sinai,Ras Sedr,Egypt

    3Basic and Applied Science Department,College of Engineering and Technology,Arab Academy for Science,Technology and Maritime Transport,Cairo,11799,Egypt

    Abstract: The capability of piles to withstand horizontal loads is a major design issue.The current research work aims to investigate numerically the responses of laterally loaded piles at working load employing the concept of a beam-on-Winkler-foundation model.The governing differential equation for a laterally loaded pile on elastic subgrade is derived.Based on Legendre-Galerkin method and Runge-Kutta formulas of order four and five, the flexural equation of long piles embedded in homogeneous sandy soils with modulus of subgrade reaction linearly variable with depth is solved for both free- and fixed-headed piles.Mathematica, as one of the world’s leading computational software, was employed for the implementation of solutions.The proposed numerical techniques provide the responses for the entire pile length under the applied lateral load.The utilized numerical approaches are validated against experimental and analytical results of previously published works showing a more accurate estimation of the response of laterally loaded piles.Therefore, the proposed approaches can maintain both mathematical simplicity and comparable accuracy with the experimental results.

    Keywords: Numerical solution; laterally loaded pile; cohesionless soil;Legendre-Galerkin;Runge-Kutta

    1 Introduction

    Pile foundations are frequently used, especially in weaker soils, to support various structures subjected to lateral loads such as high-rise buildings, communication towers, wind turbines, earthretaining structures, bridges, tanks and offshore structures.Lateral loads owing to wind, wave,dredging, traffic and seismic events are considered significant on these structures since they are eventually transmitted to the piles [1,2].As a result, the piles have been analyzed by considering a concentrated force and/or moment acting on the top of the pile.Over many decades,several methods have been proposed for designing and analysis of piles subjected to lateral loads including the subgrade reaction approach [3], the p-y approach [4,5], the finite element approach [6], the finite difference approach [7], and the analytical method [8].Of these approaches, elastic solutions based on beamon-Winkler-foundation model,albeit approximate,are probably the most widely used in engineering practice due to their simplicity, as well as they provide satisfactory results.Winkler’s model is a particularly attractive approach used to reliably capture the soil-pile interaction.In this model the pile is simulated as a flexural beam connected to a series of narrowly spaced independent and continuous Winkler springs and dashpots distributed along the pile shaft.To investigate the mechanical behavior of laterally loaded piles in clay, several numerical investigations using the LPILE software were performed by Moayed et al.[9].Moreover,Chang[10]derived an analytic solution to get the responses of laterally loaded long piles in cohesive soil considering constant subgrade reaction modulus.Furthermore, Different techniques have been proposed to analyze the behaviour of piles frequently subjected to lateral loads in sandy soil with different boundary conditions at their ends, including power series solution[11],finite element method[12],and finite difference method[3,13].Further fullscale tests were performed to explore the behavior of laterally loaded piles either in sand[14]or in clay[15].Numerical simulations considering both theoretical predictions and experimental validations are the common powerful tools of analysis in the field of geotechnical engineering particularly complex applications.

    Recently,many researchers used Legendre polynomials in different methods to construct various mathematical models.These methods can solve Lane-Emden type of differential equation [16],differential equation with second and fourth order [17], the equation of Cahn-Hilliard [18], integral equation of Fredholm type [19], Helmholtz equation [20], Volterra integral equations in the second kind[21],integral-differential of Fredholm type in linear form[22]and Abels integral equation[23].Based on Legendre-Galerkin method,the pile flexural equation can be written asAy(η)=f,whereAis a differential operator.The solution of our problem can be approximated in Legendre series asy=By applying the Galerkin method to minimize the residual yieldsPr(η)〉=0.The differential equation is converted into discrete linear system.This system is solved,and the coefficients are determined for our approximate solution of the differential equation.In addition to the above method, the Bogacki–Shampine method [24] is a powerful numerical solution used for solving ordinary differential equations of the investigated problem.It is a Runge–Kutta method of two successive orders, for example 4th and 5th, with multi stages.An adaptive step size is implemented based on the error estimated between the solutions of the two successive orders.Elbashbeshy et al.[25,26]used this method in flow and heat transfer problems of fluid/nanofluid over different stretching surfaces and found that it is accurate by comparing it with methods used to solve the same problems.

    This paper aims to present simple numerical methods to capture the behaviour of single piles under lateral working loads.First,mathematical formulation of the problem and the derivation of the governing differential equations are presented.Thereafter,two techniques are developed for numerical approximations of the derived equations.Then the effect of boundary conditions of the pile head on the behaviors of piles is studied as well.In order to examine the validity of the proposed numerical techniques, the obtained numerical results for deflection and bending moment along the laterally loaded piles are compared with results of previous studies.The proposed numerical techniques in the current study provide a better approach for structural designers to simply solve for the displacement and bending moment responses of laterally loaded piles.Consequently, the techniques can be easily applied in practice as an alternative approach to analyze and design laterally loaded long piles.It is worth noting that,the proposed solutions are applicable only for homogeneous soil with reaction modulus that varies linearly with depth.So,further investigation and analyses are needed for multilayered soil with the modulus of subgrade reaction varies with any functions with the depth.

    2 Mathematical Formulation

    The model under examination consists of a pile that is assumed to be perfectly glued to the surrounding soils suggesting that there is no relative movement between the soil and the pile [27].It is worth noting that the horizontal and vertical loads are rarely coupled.Thereupon,it is common among structural designers to neglect the vertical load effect during handling the laterally loaded pile problem.Accordingly,the pile under consideration is subjected to applied lateral force H0 at distance e above the soil surface, as shown in Fig.1.Furthermore, the thickness of soil strata, L, coincides with the embedment length of pile.The pile elastic modulus and moment of inertia areEpandIp,respectively.The soil is characterized by a subgrade modulus k which linearly increases with the depth as a good approximation for granular soils [28].For a laterally loaded pile on elastic homogeneous foundation,the governing differential equation employing the subgrade reaction theory can be derived by considering the equilibrium of transverse forces over a differential segment of the pile,as shown in Fig.2.

    Figure 1:Illustration of pile–soil system using Winkler model

    Figure 2:Forces acting in differential pile element

    Assuming all forces acting horizontally and applying equilibrium conditions leads to

    According to that,

    Summation of moments about axis at end of element yields

    The relation between bending moment and the shear force is given by

    Differentiating Eq.(4)with respect tozand substituting it into Eq.(2)provide

    The basic moment-curvature relationship of elementary pile can be written as

    The differential equation of a laterally loaded pile can take the form

    wherey(z)is the horizontal pile deflection at depthzandEpIpis the flexural stiffness of pile.

    Assuming a linear variation of soil stiffness with soil depth,kcan be written as follows[29]

    where herenhis the coefficient of subgrade reaction that represents the rate of increase of subgrade reaction modulus with depthz.

    Eqs.(7)and(8)yield

    The solution of Eq.(9) requires an iterative procedure to achieve convergence of the relative stiffness factorTas follows[30]

    Defining a dimensionless variablex=z/Tand introducing it into Eq.(9)yields

    By substituting Eq.(10)into Eq.(11),the governing equation for the soil-pile system is rewritten the form

    3 Boundary Conditions

    As shown in Fig.3,the solution of Eq.(12)requires boundary conditions to balance the number of equations and the number of unknowns.

    Figure 3:Boundary conditions for the pile under consideration

    Boundary conditions of infinitely long piles fixed at the bottom can be written as

    The boundary conditions at the top of the pile depend on the circumstances of the lateral deflection, slope, bending moment and shear force.These are generalized into the following two categories.

    3.1 Free-Head Pile

    The pile head is not restrained against rotation and translation.Therefore,the boundary conditions at the pile head can take the form

    3.2 Fixed-Head Pile

    The pile head is completely restrained against rotation.The boundary conditions at the pile head are given by

    4 Legendre-Galerkin Method

    4.1 Preliminaries

    Orthogonal systems play a vital role in performing mathematical analysis.This can be due to functions belonging to very general classes can be expanded in series of orthogonal functions e.g.,F(xiàn)ourier-Bessel series,F(xiàn)ourier series,etc.Orthogonal polynomials of degreen,Pn(x);n= 0, 1, 2,...,represent an important class of orthogonal systems where many of the special functions encountered in the applications,such as Jacobi,Legendre,Laguerre,Hermite and Chebyshev polynomials,are part of that class.The Legendre polynomial is defined as[31].

    with the orthogonality on the interval[-1, 1],i.e.,

    Lemma[32]:If the arbitrary constantsq,k,mandjare positive integers then

    and

    where

    and

    Theorem:If the arbitrary constantsk,l,qandmare positive integers,then

    whereCq(k,i)andΘm,n(j)are defined in Eqs.(20)and(21),respectively.

    Proof.By using the given lemma and Eq.(17),the theorem is proved.

    4.2 Legendre-Galerkin Method

    To solve Eq.(12),the solution domain of our problem must be changed from the interval[0,L]whereL→∞to the interval[-1,1]using the linear transformation

    So,Eq.(12)could be rewritten as

    subject to the conditions of free-head pile

    Moreover,the conditions of fixed-head pile are:

    The solution of Eq.(25) subject to the conditions given in Eqs.(26) or (27) is written in finite expansion of shifted Legendre function as

    Reducing Eq.(25)is performed by orthogonalizing the residual with respect to the basic functions as follows

    where the inner

    product〈·, ·〉 is defined as

    By substituting Eq.(28)into Eq.(29),a discrete system ofn+1 unknowns is given in the form Ac=b,(31)

    c=[c0c1c3···cn-1cn]TandAll values ofaj,rcould be calculated using the given theorem.The vector b based on the boundary conditions as follows.

    4.2.1 Free-Head Piles

    In this case,the vector b is written as

    The linear system in Eq.(31) is solved using one of the available numerical techniques.By obtaining the coefficients values of{cj}n0,the approximate solution given in Eq.(28)becomes

    By using the inverse linear transformationand,the solutions of the governing differential equation for a laterally loaded pile on elastic subgrade,Eq.(12),are given for deflection and moment as

    and

    4.2.2 Fixed-Head Piles

    In this case,the vector b is written asThe approximate solution given in Eq.(28)becomes

    By using the inverse linear transformationand, the solutions of the governing differential equation for a laterally loaded pile on elastic subgrade,Eq.(12),are given for deflection and moment as

    and

    5 Runge-Kutta Formulas of Order 4 and 5(RKBS45)

    The differential equation of laterally loaded pile,Eq.(12),subjected to the boundary conditions in Eqs.(14)or(15)is converted into a system of linear first-order differential equations as follows

    If the pile top condition is a free-head one, then the system of equations given in Eq.(39) is subjected to the initial conditions

    where the constantss1ands2are unknowns to be evaluated during the process of solution.

    On the other hand,if the pile top condition is a fixed-head one,then the system of equations given in Eq.(39)is subjected to the initial conditions

    where the constantss3ands4are unknowns to be determined as a part of the numerical solution.

    The system of equations Eq.(39)can be rewritten in the vector form as

    where Y(x)=[y(x) y1(x) y2(x) y3(x)]andxmaxis used as an adaptation forx→∞.

    To obtain local error estimates for adaptive step-size control effectively,consider two Runge-Kutta formulas of different orderspand=p+1.A Runge-Kutta process generates a sequence Ynas an approximation of Y(xn)for 0 =x0<x1<···<xn=xmax.In the interval fromxntoxn+1=xn+hn,there are two approximations of Y(xn+1)called Yn+1andforpand=p+1,respectively.Their forms are

    wheresis the number of stages and,

    Consideringp= 4 ands= 7, the coefficientsai,j,bi,andcan be evaluated by Bogacki and Shampine[24]to produce the efficient pair of formulas Yn+1(4thorder formula)and(5thorder formula).

    The solution Y(xmax) = [y(xmax) y1(xmax) y2(xmax) y3(xmax)]is generated based on the unknownss1ands2for free-head pile and the unknownss3ands4for fixed-head pile cases.The values of all these unknowns are determined upon solving the equationsy(xmax) =y1(xmax) =y2(xmax) =y3(xmax) = 0 to satisfy the given boundary conditions given in Eqs.(14)and(15).The value ofxmaxis adapted by gradual increase till the maximum difference between any values ofs1,s2,s3ors4in succession is less than the required accuracyτ=10-6.

    The error between the two numerical solutions Yn+1andis calculated as

    In case ofen+1≤τ,one can use Yn+1oras the final approximate value of Y(xn+1).On the other hand,ifen+1>τ,the erroren+1is used to adapt the step sizehntoas follows

    The adapted step size is used to estimate the new values of Yn+1anduntil achievingen+1≤τ.

    6 Validation of the Proposed Methods

    The performance and capability of the proposed methods to predict the behavior of laterally loaded piles in cohesion1ess soil have been demonstrated by comparing the obtained numerical results and the observed results from field experiments in full-scale lateral load tests reported by Cox.et al.[33].In these tests, the flexible free-head steel tube pipe pile of 0.61 m in diameter, 21 m in length, 9.525 mm in wall thickness and 163000 kN·m2bending rigidity, was embedded in a deposit of submerged sand.The soil profile at the site is composed of a uniformly fine-graded sand with internal angle of friction, φ = 39°and submerged density ofγ=10.4 kN/m3.To investigate the soil properties below the ground surface,the Standard Penetration Test,SPT,was performed by[33]and reported as 18 blows per 30 cm.Accordingly, the recommended value of the horizontal subgrade reaction constantnhfor submerged sand is estimated to be 15 MN/m3,[34].Moreover,an analytical power series solution is also used for comparison, including the solution proposed by Fayun et al.[11],which reported a simplified analytical solution for laterally loaded long piles based on Fourier-Laplace integral.The computed pile head deflections are plotted and compared with both field experiments results and results from Fayun et al.as shown in Fig.4.The figure indicates that the proposed numerical solutions are consistent with both original analytic results and experimental test results,which further validates the proposed numerical solutions.The figure clearly indicates that the presented numerical solutions are more suitable for analyzing the response of laterally loaded long piles in sand layers.

    Figure 4:Comparison between the numerical, analytical and experimental lateral deflections of pile head vs.applied lateral force

    7 Results and Discussion

    The design of pile foundation under lateral loads is extensively bound to study both the pile head deflection and the maximum bending moment.Legendre-Galerkin method and Runge-Kutta formulas of order four and five were employed to solve the flexural equation of long piles embedded in homogeneous cohesionless soil with a modulus of subgrade reaction increases linearly with depth.In the numerical simulation,the pile is subjected to horizontal forceH0=100 kN at distancee=0.305mabove-soil level,as shown in Fig.1.The considered parameters in terms of pile length L,pile bending rigidityEPIPand coefficient of subgrade reactionnh,are set to be 21 m,163000 kN/m2and 15000 kN/m3respectively.In order to ensure that our results produce reliable pile deflection and bending moment not only at the pile head but also for the entire pile length,and the analysis is equally applicable for different pile head conditions,the obtained results are compared with the results of simplified solution proposed by Fayun et al.[11].The responses of free-head pile foundation in terms of lateral deflection and bending moment distributions are shown in Fig.5.In addition, the corresponding responses in the case of fixed-head pile foundation are also presented in Fig.6.

    Figure 5:Pile deflection and bending moment profiles of free-head long pile

    The plotted curves reveal complete overlaps between Legendre-Galerkin solution and Runge-Kutta solution.Furthermore,the comparison charts demonstrate a very good agreement between the numerical results estimated via Legendre-Galerkin and Runge-Kutta and the corresponding procedure introduced by Fayun et al.[11].These observations suggest that the lateral deflection and bending moment profiles can be represented accurately by the proposed method.However, insignificant differences between the location of peak deflection and bending moment from proposed methods and solution proposed by Fayun et al.can also be observed regardless the type of head condition.

    Figure 6:Pile deflection and bending moment profiles of fixed-head long pile

    8 Conclusion

    In the present study, Legendre-Galerkin and Runge-Kutta formulas of order four and five methods have been introduced to obtain simplified numerical approaches for understanding the behaviour of single piles against lateral loads.For the purpose of analysis and design of laterally loaded piles crossing sandy soil,simple expressions for the pile lateral deflection and bending moment can be evaluated.The procedure is programmed with the most computational software program Mathematica, which is considered as the world’s leading computational software.The numerically computed pile responses are compared with the results from the full-scale lateral load tests.The proposed approaches are well validated.Moreover,these proposed approaches provide evidence that high precision can be achieved with a small amount of computational work.It has been found from the study that the Legendre-Galerkin solution almost coincides with the Runge-Kutta solution for both free-head and fixed-head piles.The suggested numerical expressions obtained in this study can be reasonably applied to analyze and design laterally loaded long piles conveniently.In addition,these techniques can also modify to design/analyze laterally loaded long piles in soil with the modulus of subgrade reaction in any functions of the depth.The proposed approaches capture the long pile behaviour.Furthermore, the proposed solutions are aimed at providing an effective and convenient method for engineers to predict the responses of the entire pile length under the applied lateral load.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    婷婷色综合大香蕉| 岛国在线免费视频观看| av在线播放精品| 97超级碰碰碰精品色视频在线观看| 国产 一区 欧美 日韩| 精品少妇黑人巨大在线播放 | 亚洲天堂国产精品一区在线| 国产高清不卡午夜福利| 在线观看一区二区三区| 亚洲欧美日韩卡通动漫| 桃色一区二区三区在线观看| 国产精品不卡视频一区二区| 村上凉子中文字幕在线| 日本免费a在线| 亚洲人与动物交配视频| 91在线观看av| 99国产极品粉嫩在线观看| 黑人高潮一二区| 午夜福利在线观看吧| 欧美成人免费av一区二区三区| 亚洲欧美成人精品一区二区| 欧美日韩在线观看h| 男女边吃奶边做爰视频| 麻豆乱淫一区二区| 欧美激情国产日韩精品一区| 精华霜和精华液先用哪个| 俄罗斯特黄特色一大片| 国产精品伦人一区二区| 国内精品一区二区在线观看| 久久这里只有精品中国| 中国美女看黄片| 亚洲不卡免费看| 在线国产一区二区在线| 亚洲成人精品中文字幕电影| 欧美一区二区亚洲| 国产v大片淫在线免费观看| 中国美白少妇内射xxxbb| 天天躁夜夜躁狠狠久久av| 菩萨蛮人人尽说江南好唐韦庄 | 久久人人爽人人爽人人片va| 97碰自拍视频| 色哟哟哟哟哟哟| 久久精品人妻少妇| 国内揄拍国产精品人妻在线| 禁无遮挡网站| 亚洲三级黄色毛片| 亚洲精品在线观看二区| 亚洲最大成人av| 秋霞在线观看毛片| 伦精品一区二区三区| 国产av在哪里看| 国产精品爽爽va在线观看网站| 欧美xxxx性猛交bbbb| 可以在线观看毛片的网站| 12—13女人毛片做爰片一| АⅤ资源中文在线天堂| 在线免费十八禁| 欧美最黄视频在线播放免费| 日日啪夜夜撸| 超碰av人人做人人爽久久| 桃色一区二区三区在线观看| 少妇熟女aⅴ在线视频| 91av网一区二区| 日韩成人av中文字幕在线观看 | 国产伦精品一区二区三区视频9| 两个人视频免费观看高清| 中出人妻视频一区二区| 亚洲专区国产一区二区| 丰满人妻一区二区三区视频av| 一本久久中文字幕| 一级毛片aaaaaa免费看小| 悠悠久久av| 99在线人妻在线中文字幕| 国产真实乱freesex| 国产欧美日韩精品一区二区| 人人妻,人人澡人人爽秒播| 露出奶头的视频| 在线看三级毛片| 91狼人影院| 国产午夜精品久久久久久一区二区三区 | 激情 狠狠 欧美| 在线看三级毛片| 欧美激情国产日韩精品一区| 3wmmmm亚洲av在线观看| 春色校园在线视频观看| 啦啦啦观看免费观看视频高清| 99久久久亚洲精品蜜臀av| 国产一区二区激情短视频| 欧美xxxx性猛交bbbb| 91在线观看av| 日韩制服骚丝袜av| 国产淫片久久久久久久久| 精品久久久久久久人妻蜜臀av| 男人舔奶头视频| 成人漫画全彩无遮挡| 啦啦啦啦在线视频资源| .国产精品久久| 亚洲av.av天堂| 美女cb高潮喷水在线观看| 午夜精品一区二区三区免费看| 我的老师免费观看完整版| 亚洲国产欧美人成| 又爽又黄无遮挡网站| 亚洲最大成人中文| 97超视频在线观看视频| 韩国av在线不卡| 国产成人freesex在线 | 欧美高清成人免费视频www| 国产av在哪里看| 日本爱情动作片www.在线观看 | 国产黄a三级三级三级人| 韩国av在线不卡| 日韩国内少妇激情av| 男人舔女人下体高潮全视频| 亚洲精品国产av成人精品 | 天美传媒精品一区二区| 国产综合懂色| 亚洲av中文av极速乱| 噜噜噜噜噜久久久久久91| 欧美中文日本在线观看视频| 九九在线视频观看精品| 中文字幕熟女人妻在线| 国内久久婷婷六月综合欲色啪| 国产亚洲精品久久久久久毛片| 亚洲av成人av| 亚洲精品乱码久久久v下载方式| 老师上课跳d突然被开到最大视频| 青春草视频在线免费观看| 欧美日韩国产亚洲二区| av.在线天堂| 色在线成人网| 国产黄a三级三级三级人| 老司机影院成人| 国产久久久一区二区三区| 搡老熟女国产l中国老女人| 日本黄大片高清| 男女下面进入的视频免费午夜| 91久久精品国产一区二区三区| 久久午夜亚洲精品久久| 国产精品久久电影中文字幕| 成人一区二区视频在线观看| 亚洲国产高清在线一区二区三| 3wmmmm亚洲av在线观看| a级毛片a级免费在线| 成人无遮挡网站| 免费在线观看成人毛片| 国产在线精品亚洲第一网站| 不卡视频在线观看欧美| 国产成人a区在线观看| 99热这里只有是精品在线观看| 级片在线观看| 日韩欧美在线乱码| 91午夜精品亚洲一区二区三区| 久久久久久伊人网av| 美女内射精品一级片tv| 高清毛片免费看| 尾随美女入室| 日本免费一区二区三区高清不卡| 国产高潮美女av| 久久精品国产清高在天天线| 我要看日韩黄色一级片| 午夜爱爱视频在线播放| 午夜精品一区二区三区免费看| 国产视频一区二区在线看| 自拍偷自拍亚洲精品老妇| 久久亚洲精品不卡| 亚洲欧美日韩卡通动漫| 亚洲精品国产av成人精品 | 91久久精品电影网| 国产国拍精品亚洲av在线观看| 久久久久九九精品影院| 免费在线观看成人毛片| 97超碰精品成人国产| 国产午夜福利久久久久久| 国产精品一及| 一级毛片我不卡| 国产综合懂色| 插逼视频在线观看| 少妇被粗大猛烈的视频| 成人漫画全彩无遮挡| 可以在线观看的亚洲视频| 在线播放国产精品三级| 中文资源天堂在线| 麻豆久久精品国产亚洲av| 久久99热这里只有精品18| 欧美在线一区亚洲| 国产真实乱freesex| 欧美中文日本在线观看视频| 成人一区二区视频在线观看| 搞女人的毛片| 国产女主播在线喷水免费视频网站 | 99国产极品粉嫩在线观看| 18禁在线无遮挡免费观看视频 | 免费观看人在逋| 精品久久久久久久久久久久久| 成人av一区二区三区在线看| 18禁在线无遮挡免费观看视频 | 91久久精品国产一区二区成人| 最近最新中文字幕大全电影3| 嫩草影视91久久| 精品久久久久久久末码| 特级一级黄色大片| 久久久久久国产a免费观看| 亚洲av电影不卡..在线观看| 12—13女人毛片做爰片一| 一区二区三区四区激情视频 | 悠悠久久av| 两个人视频免费观看高清| 免费观看精品视频网站| 国产精品av视频在线免费观看| 久久久国产成人免费| 日韩国内少妇激情av| 亚洲18禁久久av| 国产单亲对白刺激| 色哟哟哟哟哟哟| 一区二区三区四区激情视频 | 97碰自拍视频| 97热精品久久久久久| 亚洲中文日韩欧美视频| 九九久久精品国产亚洲av麻豆| 午夜爱爱视频在线播放| h日本视频在线播放| 丰满乱子伦码专区| 亚洲不卡免费看| 久久欧美精品欧美久久欧美| 久久久久九九精品影院| 欧美激情国产日韩精品一区| 亚洲无线在线观看| 国产探花在线观看一区二区| 草草在线视频免费看| 亚洲人与动物交配视频| 精品一区二区三区视频在线观看免费| 嫩草影院新地址| 啦啦啦韩国在线观看视频| 国内揄拍国产精品人妻在线| 国产单亲对白刺激| 99国产极品粉嫩在线观看| 亚洲精品国产av成人精品 | 毛片女人毛片| h日本视频在线播放| 综合色av麻豆| 国产aⅴ精品一区二区三区波| 亚洲真实伦在线观看| 春色校园在线视频观看| av福利片在线观看| 欧美zozozo另类| 天堂av国产一区二区熟女人妻| 久久亚洲精品不卡| 亚洲欧美精品综合久久99| 国内少妇人妻偷人精品xxx网站| 一个人观看的视频www高清免费观看| 99热精品在线国产| 99久久中文字幕三级久久日本| 免费黄网站久久成人精品| 12—13女人毛片做爰片一| 性插视频无遮挡在线免费观看| 午夜日韩欧美国产| 亚洲熟妇熟女久久| 国产在线精品亚洲第一网站| 精品国产三级普通话版| aaaaa片日本免费| 精品熟女少妇av免费看| 欧美成人一区二区免费高清观看| 色综合色国产| 搡老妇女老女人老熟妇| 久久久久免费精品人妻一区二区| 成年女人永久免费观看视频| 国产色婷婷99| 久久久久久久久大av| 国产精品久久久久久久久免| 99国产极品粉嫩在线观看| 男人和女人高潮做爰伦理| 网址你懂的国产日韩在线| 俄罗斯特黄特色一大片| 欧美高清成人免费视频www| 国产成年人精品一区二区| 午夜精品国产一区二区电影 | 免费av毛片视频| 欧美丝袜亚洲另类| 国产女主播在线喷水免费视频网站 | 国产伦一二天堂av在线观看| 国产一区二区三区在线臀色熟女| 午夜视频国产福利| 国产一区二区在线av高清观看| 晚上一个人看的免费电影| 日本成人三级电影网站| 男女下面进入的视频免费午夜| 婷婷色综合大香蕉| av卡一久久| 国产欧美日韩精品一区二区| 最好的美女福利视频网| 女人十人毛片免费观看3o分钟| 国产综合懂色| 村上凉子中文字幕在线| 岛国在线免费视频观看| 直男gayav资源| av在线蜜桃| 综合色丁香网| 国内久久婷婷六月综合欲色啪| 寂寞人妻少妇视频99o| 深夜精品福利| 亚洲成人久久爱视频| 久久精品国产99精品国产亚洲性色| 亚洲天堂国产精品一区在线| 欧美一区二区精品小视频在线| 亚洲精品国产成人久久av| 成人性生交大片免费视频hd| 午夜免费男女啪啪视频观看 | 亚洲综合色惰| 欧美性感艳星| 色视频www国产| 麻豆一二三区av精品| 日韩欧美精品v在线| 欧美成人一区二区免费高清观看| 最近最新中文字幕大全电影3| 国产三级中文精品| 日本免费a在线| 亚洲欧美精品综合久久99| 老熟妇乱子伦视频在线观看| 免费av毛片视频| 精品一区二区三区视频在线| 18+在线观看网站| av国产免费在线观看| av视频在线观看入口| 最近最新中文字幕大全电影3| 22中文网久久字幕| 免费观看人在逋| 亚洲国产精品久久男人天堂| 在线天堂最新版资源| 国产高清视频在线观看网站| 最近的中文字幕免费完整| 在线国产一区二区在线| 美女大奶头视频| 免费搜索国产男女视频| av黄色大香蕉| 天天躁夜夜躁狠狠久久av| 狂野欧美激情性xxxx在线观看| 99热这里只有是精品在线观看| 波野结衣二区三区在线| 少妇的逼好多水| 成人鲁丝片一二三区免费| 女同久久另类99精品国产91| 中文字幕熟女人妻在线| 精品99又大又爽又粗少妇毛片| 国产精品一区二区性色av| 最近视频中文字幕2019在线8| 晚上一个人看的免费电影| 国产精品久久久久久久电影| 亚洲精品粉嫩美女一区| 最新在线观看一区二区三区| 国产白丝娇喘喷水9色精品| 国产精品一区二区三区四区久久| 99热6这里只有精品| 亚洲av五月六月丁香网| 亚洲自偷自拍三级| aaaaa片日本免费| 国产精品1区2区在线观看.| 麻豆国产97在线/欧美| 国产黄色视频一区二区在线观看 | 亚洲精品粉嫩美女一区| 亚洲久久久久久中文字幕| 亚洲中文字幕日韩| 一级a爱片免费观看的视频| 日本精品一区二区三区蜜桃| videossex国产| 欧美成人精品欧美一级黄| 国产精品不卡视频一区二区| 亚洲av中文av极速乱| videossex国产| 亚洲久久久久久中文字幕| 国产成人精品久久久久久| 波多野结衣高清作品| 禁无遮挡网站| 国产成人一区二区在线| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品99久久久久久久久| 在线免费观看的www视频| 99久国产av精品国产电影| 久久久久久久久久成人| 波多野结衣高清作品| 精品午夜福利视频在线观看一区| 成人特级黄色片久久久久久久| 国产成人福利小说| 91精品国产九色| 亚洲国产高清在线一区二区三| 国产精品爽爽va在线观看网站| 国产久久久一区二区三区| 日韩精品青青久久久久久| 嫩草影院入口| 国产av麻豆久久久久久久| 久久亚洲精品不卡| 日韩 亚洲 欧美在线| 欧美最新免费一区二区三区| 又爽又黄a免费视频| 男女啪啪激烈高潮av片| 国产成人a∨麻豆精品| 免费一级毛片在线播放高清视频| 久久久久久久久大av| 美女 人体艺术 gogo| 变态另类成人亚洲欧美熟女| 国产亚洲91精品色在线| 麻豆av噜噜一区二区三区| 国产极品精品免费视频能看的| 最近中文字幕高清免费大全6| 精品久久久久久久久久免费视频| 亚洲国产精品sss在线观看| 亚洲四区av| 久久久久国产网址| 久久精品综合一区二区三区| 又爽又黄a免费视频| 午夜福利18| 18禁在线播放成人免费| 最新在线观看一区二区三区| 天堂√8在线中文| 免费观看的影片在线观看| 熟妇人妻久久中文字幕3abv| 长腿黑丝高跟| 人妻久久中文字幕网| 嫩草影视91久久| 插阴视频在线观看视频| 久久亚洲国产成人精品v| 亚州av有码| 极品教师在线视频| 日韩精品青青久久久久久| 男人的好看免费观看在线视频| 成年版毛片免费区| 听说在线观看完整版免费高清| 国产色婷婷99| 国产爱豆传媒在线观看| 午夜精品在线福利| 老熟妇乱子伦视频在线观看| 综合色av麻豆| 久久久久久久亚洲中文字幕| 一级a爱片免费观看的视频| 老司机影院成人| 99视频精品全部免费 在线| 亚洲av第一区精品v没综合| 啦啦啦韩国在线观看视频| 国产伦精品一区二区三区视频9| 干丝袜人妻中文字幕| 精品人妻偷拍中文字幕| 狠狠狠狠99中文字幕| 啦啦啦观看免费观看视频高清| 神马国产精品三级电影在线观看| 狠狠狠狠99中文字幕| 亚洲丝袜综合中文字幕| 国产成人aa在线观看| 欧美日韩国产亚洲二区| 有码 亚洲区| 中文字幕免费在线视频6| 在线a可以看的网站| 国产成人福利小说| aaaaa片日本免费| 国产白丝娇喘喷水9色精品| 国产成年人精品一区二区| 简卡轻食公司| 午夜日韩欧美国产| 色噜噜av男人的天堂激情| 午夜爱爱视频在线播放| 国产白丝娇喘喷水9色精品| 久久精品综合一区二区三区| 别揉我奶头 嗯啊视频| 欧美日韩综合久久久久久| 国产一区二区在线av高清观看| 国产久久久一区二区三区| 成人毛片a级毛片在线播放| 舔av片在线| 国产精品电影一区二区三区| 国产精品一区二区三区四区久久| 99热这里只有是精品50| 亚洲综合色惰| 成年av动漫网址| 精品人妻视频免费看| 最近的中文字幕免费完整| 网址你懂的国产日韩在线| 国产高清有码在线观看视频| 真人做人爱边吃奶动态| 日日撸夜夜添| 校园春色视频在线观看| 亚洲精品成人久久久久久| 韩国av在线不卡| 日韩av不卡免费在线播放| 国产人妻一区二区三区在| 国产精品一区二区性色av| 免费观看的影片在线观看| 国产熟女欧美一区二区| 欧美xxxx黑人xx丫x性爽| 人人妻人人澡人人爽人人夜夜 | 亚洲天堂国产精品一区在线| 日韩强制内射视频| 国产精品1区2区在线观看.| 别揉我奶头~嗯~啊~动态视频| 久久人人精品亚洲av| 久久久久精品国产欧美久久久| 亚洲国产欧美人成| 白带黄色成豆腐渣| 久99久视频精品免费| 亚洲国产精品sss在线观看| 国产aⅴ精品一区二区三区波| 综合色av麻豆| av天堂中文字幕网| 美女 人体艺术 gogo| 成人国产麻豆网| 欧美一级a爱片免费观看看| 成人漫画全彩无遮挡| 成人亚洲欧美一区二区av| av女优亚洲男人天堂| 91av网一区二区| 国产精品一区二区免费欧美| 俄罗斯特黄特色一大片| 夜夜看夜夜爽夜夜摸| 久久人人爽人人片av| 久久精品国产亚洲av香蕉五月| 国产伦精品一区二区三区四那| 国产高清有码在线观看视频| 亚洲成人久久性| 精品午夜福利视频在线观看一区| 国产亚洲91精品色在线| 少妇熟女aⅴ在线视频| 久久午夜亚洲精品久久| 一级a爱片免费观看的视频| 天堂网av新在线| 国产黄色小视频在线观看| 精品不卡国产一区二区三区| 在线看三级毛片| 日日撸夜夜添| 尾随美女入室| 免费观看的影片在线观看| 午夜福利18| 又黄又爽又刺激的免费视频.| 偷拍熟女少妇极品色| 夜夜看夜夜爽夜夜摸| 美女高潮的动态| 久久中文看片网| 久久久久免费精品人妻一区二区| 高清毛片免费观看视频网站| 村上凉子中文字幕在线| 精品一区二区三区av网在线观看| 免费观看人在逋| 不卡一级毛片| 成熟少妇高潮喷水视频| 久久久久久国产a免费观看| 三级经典国产精品| 国产中年淑女户外野战色| 99热网站在线观看| 亚洲性久久影院| 最近手机中文字幕大全| 亚洲国产精品sss在线观看| 午夜精品一区二区三区免费看| 日本a在线网址| 99久久久亚洲精品蜜臀av| 国产91av在线免费观看| 国产一区二区激情短视频| 国产精品1区2区在线观看.| 久久人人爽人人片av| av免费在线看不卡| 国产精品亚洲美女久久久| 亚洲四区av| 精品久久久久久久久亚洲| 国产精品野战在线观看| 中国美女看黄片| 欧美日本亚洲视频在线播放| 成人美女网站在线观看视频| 最近中文字幕高清免费大全6| 99久久久亚洲精品蜜臀av| 九九爱精品视频在线观看| 欧美一区二区国产精品久久精品| 成人亚洲欧美一区二区av| 色视频www国产| 3wmmmm亚洲av在线观看| 欧美一级a爱片免费观看看| 国产高清有码在线观看视频| 欧美一区二区精品小视频在线| 亚洲久久久久久中文字幕| 欧美性猛交黑人性爽| 亚洲精品一卡2卡三卡4卡5卡| 韩国av在线不卡| 精品乱码久久久久久99久播| 看免费成人av毛片| 久久精品夜色国产| 精品乱码久久久久久99久播| 人妻制服诱惑在线中文字幕| 最近2019中文字幕mv第一页| 亚洲av.av天堂| 搡老熟女国产l中国老女人| 高清毛片免费观看视频网站| av国产免费在线观看| 天堂av国产一区二区熟女人妻| 亚洲精品久久国产高清桃花| 国产精品无大码| 免费观看精品视频网站| 美女内射精品一级片tv| 亚洲自拍偷在线| 可以在线观看毛片的网站| 成人无遮挡网站| 日本色播在线视频| 波多野结衣巨乳人妻| 男插女下体视频免费在线播放| 搡老岳熟女国产| 少妇的逼水好多| 男插女下体视频免费在线播放| eeuss影院久久| 免费一级毛片在线播放高清视频| 六月丁香七月| 深夜a级毛片| 联通29元200g的流量卡| 午夜福利在线观看吧| 国产 一区精品| 少妇的逼水好多| 99久国产av精品国产电影| 日本 av在线| 91狼人影院| 亚洲成人久久爱视频| 97超视频在线观看视频| 亚洲色图av天堂|