• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Artificial Intelligence Based Prostate Cancer Classification Model Using Biomedical Images

    2022-08-24 07:02:38AreejMalibariReemAlshahraniFahdAlWesabiSiwarBenHajHassineMimounaAbdullahAlkhonainiandAnwerMustafaHilal
    Computers Materials&Continua 2022年8期

    Areej A.Malibari,Reem Alshahrani,Fahd N.Al-Wesabi,Siwar Ben Haj Hassine,Mimouna Abdullah Alkhonaini and Anwer Mustafa Hilal

    1Department of Computer Science,Faculty of Computing and Information Technology,King Abdulaziz University,Jeddah,21589,Saudi Arabia

    2Department of Computer Science,College of Computers and Information Technology,Taif University,Taif,21944,Saudi Arabia

    3Department of Computer Science,College of Science&Art at Mahayil,King Khalid University,Saudi Arabia

    4Department of Computer Science,College of Computer and Information Sciences,Prince Sultan University,Saudi Arabia

    5Department of Computer and Self Development,Preparatory Year Deanship,Prince Sattam bin Abdulaziz University,AlKharj,Saudi Arabia

    Abstract: Medical image processing becomes a hot research topic in healthcare sector for effective decision making and diagnoses of diseases.Magnetic resonance imaging (MRI) is a widely utilized tool for the classification and detection of prostate cancer.Since the manual screening process of prostate cancer is difficult,automated diagnostic methods become essential.This study develops a novel Deep Learning based Prostate Cancer Classification(DTL-PSCC)model using MRI images.The presented DTL-PSCC technique encompasses EfficientNet based feature extractor for the generation of a set of feature vectors.In addition,the fuzzy k-nearest neighbour(FKNN)model is utilized for classification process where the class labels are allotted to the input MRI images.Moreover,the membership value of the FKNN model can be optimally tuned by the use of krill herd algorithm(KHA)which results in improved classification performance.In order to demonstrate the good classification outcome of the DTL-PSCC technique,a wide range of simulations take place on benchmark MRI datasets.The extensive comparative results ensured the betterment of the DTL-PSCC technique over the recent methods with the maximum accuracy of 85.09%.

    Keywords: MRI images;prostate cancer;deep learning;medical image processing;metaheuristics;krill herd algorithm

    1 Introduction

    Prostate cancer is one of the common forms of cancer that is accountable for 26% of cancer diagnoses for American men[1].So far,prostate cancer is detected by systematic biopsies that contain millions of specimens taken from the prostate through a core needle.A systematic biopsy is invasive and has lower sensitivity;furthermore,it creates a possibility of bleeding,infection,and sepsis[2].A non-invasive imaging technique to diagnose prostate cancer at an earlier stage might enhance prostate cancer treatment and diagnosis.For a new ultrasound technique,the Contrast Enhanced Ultrasound(CEUS) could offer suitable modality to visualize the dynamic pattern of the blood flows,allowing clinical experts to diagnose angiogenesis for cancer detection[3,4].Until now,numerous studies of the CEUS based prostate cancer diagnosis are accomplished by measuring distinct parameters of the time intensity curve(TIC).Machine learning(ML)is a subdivision of artificial intelligence(AI)which is depending on the concept of the system learning patterns from a largescale dataset through statistical and probabilistic mechanisms and also make predictions or decisions on the new information [5].In medical imaging sector,computer-aided diagnosis and detection (CAD),that is an integration of ML classification and imaging feature engineering,has shown promising results in supporting radiotherapists for precise diagnoses,reducing the time and cost of diagnosis[6].

    Conventional feature engineering approaches are depending on quantitative imaging feature extraction[7]like intensity,texture,volume,shape,and different statistical features from imaging data as well as ML classifiers like Decision Tree (DT),Support Vector Machines (SVM),and Adaboost.The deep learning(DL)method has shown effective results in different kinds of computer vision(CV)tasks like object-detection,segmentation,and classification.Nonetheless,in order to attain effective implementation,a precise fine-tuning of hyperparameter and optimum structures and combinations of the layer are needed.This remains one of the key challenges of DL-based approaches while employed in distinct sectors like medical imaging[8-10].With convolutional neural network(CNN)promising result in the fields of computer vision(CV),medical imaging researchers have changed their interest towards DL-based approaches to design CAD systems for the diagnosis of cancer.

    This study develops a novel Deep Transfer Learning based Prostate Cancer Classification(DTLPSCC) model using MRI images.The presented DTL-PSCC technique encompasses EfficientNet based feature extractor for the generation of a set of feature vectors.In addition,the fuzzy k-nearest neighbour(FKNN)model is utilized for classification process where the class labels are allotted to the input MRI images.Moreover,the membership value of the FKNN model can be optimally tuned by the use of krill herd algorithm(KHA)which results in improved classification performance.In order to demonstrate the enhanced classification outcome of the DTL-PSCC technique,a wide range of simulations take place on benchmark MRI datasets.

    The rest of the study is organized as follows.Section 2 offers the related works,Section 3 discusses the proposed model and Section 4 provides the experimental validation.Lastly,Section 5 draws the conclusion.

    2 Literature Review

    Zhang et al.[11]integrated a GrowCut and Zernik feature extraction and extreme learning machine (ELM) approaches for lesion segmentation in MRI and prostate cancer diagnosis.They utilize GrowCut approach for the segmentation of the suspicious cancer region and the integration of ML models in ensemble learning to diagnose prostate cancer.De Vente et al.[12]developed a neural network(NN)system that grades and detects cancer tissue in end-to-end manner simultaneously.It is medically applicable when compared to the classifier goals of the ProstateX-2 challenge.They utilized the data set for testing and training.Also,employed a two-dimensional U-Net with MRI as input and lesion segmentation map which encodes the Gleason Grade Group (GGG),a measurement for the aggressiveness of cancer,as output.

    Ye [13]designed an AI-based method (called AI-biopsy) for the earlier diagnoses of prostate cancer through MRI labelled with histopathology data.The DL method is designed to differentiate 1) higher-risk tumors from lower-risk tumors and 2) benign from cancerous tumors.Alkadi et al.[14]trained a deep convolution encoder-decoder framework for segmenting the malignant lesions,the prostate,and anatomical structure.To integrate the 3D contextual spatial data given by the MRI,we present a three-dimensional sliding window model that preserves two-dimensional domain difficulty when utilizing three-dimensional data.

    Feng et al.[15]introduced a DL architecture for diagnosing prostate cancer in the CEUS image.The presented approach extracts feature uniformly from temporal and spatial dimensions by carrying out 3D convolutional operation that captures dynamic data of the perfusion encoded in many adjacent frames.The DL model was validated and trained against expert’s delineation through the CEUS image recorded by 2 kinds of contrast agents.In [16],a strong DL based convolutional neural network(DL-CNN)approach is applied by means of transfer learning(TL)method.The outcomes are compared to several ML approaches.Cancer MRI databases are employed for training ML classifiers and GoogleNet,different features like Entropy based,Morphological,Texture,Elliptic Fourier Descriptors,and Scale Invariant Feature Transform(SIFT)is extracted.

    3 The Proposed Model

    In this study,an effective DTL-PSCC technique has been developed to classify prostate cancer using MRI images.The proposed DTL-PSCC technique involves several subprocesses namely preprocessing,EfficientNet based feature extraction,FKNN based classification,and KHA based parameter tuning.The membership value of the FKNN model can be optimally tuned by the use of KHA which results in improved classification performance.

    3.1 Pre-processing

    The ground truth given by PROSTATEx-2 challenge is coordinate point at centre of lesion[17].The region of interest(ROI)of size 65×65 nearby the ground truth has cropped in T2W image and ROI of size 21×21 are collected to remove 2D GLCM features.The size of ROI has been selected then a manual inspection so that the maximum tumor amongst the provided data set is suitable inside the ROI.The Lloyd-max quantization was executed on ROI with the amount of gray level fixed to baseline parameter 32 that minimized mean square error(MSE)to provide the amount of quantization levels.

    3.2 Feature Extraction:EfficientNet Model

    CNN is a typical DL approach which could produce cutting-edge results for almost all the classification problems [18].CNN achieved good results on image classification,however,it could yield better accuracy on text data.CNN is Mainly utilized for automatically extracting the feature from the input data set,in addition ML method,where the user requirements to elect the feature 2D,and 3D CNN is employed for video and image data,correspondingly,while 1D CNN is applied to text classification.The CNN framework employs a sequence of convolution layers for extracting features from the input data set.Max pooling layer afterward every convolution layer and the dimension of extracted feature is decreased.In the convolution layer,the size of the kernel performs an important role in feature extraction.The model’s hyperparameter represents the kernel size and number of filters.

    This layer translates the word into a vector space module based on how frequently words appear closer to another word.The embedding layers use random weight to learn embedding for each term in the trained data set.The softmax layer is utilized as the classification layer that could achieve better results for the multi-class problems.The softmax function contains N units,in which the N represents the amount of units.All the units are connected fully with preceding layer and compute the likelihood of every class on N as follows

    WMindicates the weight matrix which connects themthunit to the preceding layer,xdenotes the final output,andbmsignifies themthunit bias.DL is a type of CNN and is extremely utilized in images.In recent times,DL was extremely utilized in analysis of several medicinal diseases.Likewise,a few analyses are developed to analysis of skin disease utilizing DL.The DL has several connected layers utilizing numerous weight as well as activation functions.A fundamental DL comprises a convolution layer,pooling,and connected layers.Many activation functions are utilized for adjusting the weight.The activation function generates a feature map which is input as to succeeding layer.

    The pooling as well as convolution layers were utilized to remove the feature.These layers were utilized to remove the visual feature and recognize the difficult nature of image.But,the nature of skin cancer lesions has highly complex,and increasing an automated analysis model utilizing DL was stimulating.For alleviating this issue,TL was employed.Fig.1 illustrates the structure of EfficientNet technique.During the current study,EfficientNetB3 was utilized for skin cancer recognition.An EfficientNetB3 is a recent,cost-efficient,and robust method established by scaling 3 parameters like depth,width,and resolution [19].An EfficientNetB3 method with noisy-student weight has been utilized from scenarios I and III to TL method,but“isicall_eff3_weights”weights were utilized as pretraining to scenarios II and IV.The amount of parameters are decreased.Besides,the rectified linear unit(RELU)activation function was employed with 3 dense and 2 dropout layers.The resultant layer has several outcome units to multiclass classifier utilizing the softmax activation function.

    Figure 1:Framework of EfficientNet

    3.3 Optimal Fuzzy KNN Based Classification

    In this section,the FKNN classifier to detect and classify different classes of prostate cancer is applied.In the FKNN model,the fuzzy membership values of the instances are allocated to distinct class labels as given below[20].

    whilei=1,2,...C,j=1,2,...,K,Cdenotes the class count andKrepresents the nearest neighboring count.The fuzzy parameter (m) can be utilized for determining the weighted distance upon determining every neighbor’s influence on the membership values.m∈(1,∞).‖x-xj‖ is commonly chosen as themvalue.Besides,Euclidean distance amongxand its jth nearest neighborsxj,are chosen as the distance measure.Moreover,uijindicates the degree of membershipxjfrom the trained data to classiamongst the k-nearest neighbor(KNN)ofx.Here,the limited fuzzy membership model is used where the KNN of every training data is computed and the membership ofxkin every class gets allocated using Eq.(3):

    wherenjdepicts the neighboring count underjthclass.The membership values need to fulfill the succeeding equations.

    j=1,2,···,n,Cis the number of classes(4)

    Once the membership values are calculated,it gets allocated to the classes with maximum degree of membership,i.e.,

    For tuning the parameters involved in the FKNN model,the KHA is applied.Antarctic krill is the main animal species on Earth.The capability to procedure huge swarm is most important feature of this species.An individual krill gets out from the herd once predators namely whales seals attack the krill.This attack decreases the density of krill herd(KH).The restructuring of KH then predation was influenced by several parameters.An essential purpose of herding performance of the krill individuals was improving krill density and attaining the food.The KH technique utilizes this multiobjective herding to resolve global optimized issues.Thus,the outcome,the krill individual transfers near an optimum solution once its searches for maximum density of herd as well as food.This performance generates the KH nearby the global minimal of optimized issue.

    The time-dependent place of individual krill from 2Dsurfaces has been led by the subsequent 3 important performances[21].

    1.Effort induced by another krill individual;

    2.Foraging motion

    3.Physical or random diffusion

    The subsequent Lagrangian method was generalizing to n-dimension decision space:

    WhileNirefers the motion caused by another krill individual;Fiimplies the foraging motion;andDirepresents the physical diffusion ofithkrill individual.

    The effort of all krill individuals is determined as:

    whereNmaksstands for the maximal induced speed,and based on the measured value,it could be obtained as 0.01(m/s).ωnrefers the inertia weight of motion induced from the range zero and one.αlocalirefers the local effects offered by neighbors,target is the destination way outcome given by an optimum krill individual andNiolddenotes the final motion-induced.ωndefines the inertia weight as equivalent to 0.9 at start of optimization.Afterward,it can be linearly reduced to 0.1.Fig.2 demonstrates the flowchart of KH technique.The outcome of neighbors is considered an attractive or repulsive tendency amongst the individuals to local searches.αtargetidenotes the target way outcome given by an optimum krill individuals are determined as:

    whereCbestimplies the coefficient of impacts and determined as under.

    where rand stands for the arbitrarily created number amongst zero and one,Irefers the actual iteration number andImaksimplies the maximal amount of iterations.

    Figure 2:Flowchart of KH

    4 Results and Discussion

    The performance validation of the DTL-PSCC technique takes place using the PROSTATEx-2 Challenge dataset [22],which holds a set of 162 MRI images with 5 class labels namely transaxial T2W,sagittal T2W,ADC,DW,and Ktrans.In this study,the five classes are represented by targets.The results are examined under varying ratios of training and testing data.A few sample images are demonstrated in Fig.3.

    Figure 3:Sample images

    Tab.1 and Fig.4 offer a brief prostate cancer classification result analysis of the DTL-PSCC technique under the training/testing dataset of 80:20.The results show that the DTL-PSCC technique has obtained effective performance.For instance,the DTL-PSCC technique has classified the images into target 1 withprecn,recal,accuy,Fscore,and kappa of 84.55%,86%,85.09%,85.58%,and 84.45%respectively.

    Table 1:Result analysis of DTL-PSCC technique with different measures on training/testing(80:20)

    Moreover,the DTL-PSCC technique has categorized the images into target 3 withprecn,recal,accuy,Fscore,and kappa of 85.27%,86.14%,85.03%,84.55%,and 84.41% respectively.Furthermore,the DTL-PSCC technique has identified the images into target 5 withprecn,recal,accuy,Fscore,and kappa of 85.06%,85.38%,84.75%,85.03%,and 85.50%respectively.

    Fig.5 demonstrates the average prostate cancer detection results of the DTL-PSCC technique under the training/testing dataset of 80:20.The figure reported that the DTL-PSCC technique has accomplished improved classification performance with the averageprecn,recal,accuy,Fscore,and kappa of 85%,85.82%,85.09%,85.02%,and 84.94%respectively.

    Figure 4:Result analysis of DTL-PSCC technique on training/testing(80:20)

    Figure 5:Average analysis of DTL-PSCC technique on training/testing(80:20)

    Fig.6 illustrates the accuracy analysis of the DTL-PSCC methodology on training and testing(80:20) dataset.The outcomes exhibited that the DTL-PSCC approach has accomplished increased efficiency with higher training and validation accuracy.It can be demonstrated that the DTL-PSCC manner has reached increased validation accuracy over the training accuracy.

    Fig.7 showcases the loss analysis of the DTL-PSCC methodology on training and testing(80:20)dataset.The results established that the DTL-PSCC approach has resulted in a proficient outcome with the decreased training and validation loss.It can be stated that the DTL-PSCC technique has lower validation loss over the training loss.

    Figure 6:Accuracy analysis of DTL-PSCC technique on training/testing(80:20)

    Figure 7:Loss analysis of DTL-PSCC technique on training/testing(80:20)

    Tab.2 and Fig.8 provide a detailed prostate cancer classification result analysis of the DTL-PSCC approach under the training/testing dataset of 70:30.The outcomes outperformed that the DTL-PSCC method has obtained effective performance.For instance,the DTL-PSCC algorithm has classified the images into target 1 with theprecn,recal,accuy,Fscore,and kappa of 84.95%,85.14%,84.77%,84.81%,and 84.76%respectively.Moreover,the DTL-PSCC method has categorized the images into target 3 with theprecn,recal,accuy,Fscore,and kappa of 84.87%,85.26%,85.24%,84.32%,and 85.58%correspondingly.Also,the DTL-PSCC methodology has identified the images into target 5 with theprecn,recal,accuy,Fscore,and kappa of 84.63%,85.34%,85.22%,85.03%,and 84.51%correspondingly.

    Table 2:Result analysis of DTL-PSCC technique with different measures on training/testing(70:30)

    Figure 8:Result analysis of DTL-PSCC technique on training/testing(70:30)

    Fig.9 depicts the average prostate cancer detection outcomes of the DTL-PSCC methodology under the training/testing dataset of 70:30.The figure stated that the DTL-PSCC technique has accomplished increased classification performance with averageprecn,recal,accuy,Fscore,and kappa of 84.64%,85.51%,84.87%,85%,and 84.88%correspondingly.

    Fig.10 portrays the accuracy analysis of the DTL-PSCC approach on training and testing(70:30)dataset.The results proved that the DTL-PSCC methodology has achieved improved results with increased training and validation accuracy.It is noticed that the DTL-PSCC technique has gained improved validation accuracy over the training accuracy.

    Figure 9:Average analysis of DTL-PSCC technique on training/testing(70:30)

    Figure 10:Accuracy analysis of DTL-PSCC technique on training/testing(70:30)

    Fig.11 depicts the loss analysis of the DTL-PSCC algorithm on training and testing (70:30)dataset.The outcomes established that the DTL-PSCC system has resulted in a proficient outcome with the decreased training and validation loss.It can be stated that the DTL-PSCC methodology has obtainable minimal validation loss over the training loss.

    Figure 11:Accuracy analysis of DTL-PSCC technique on training/testing(70:30)

    Lastly,a detailed comparative analysis of the DTL-PSCC technique with recent methods is offered in Tab.3 and Fig.12.The results demonstrated that the LL-support vector machine (SVM),LLlogistic regression with L1 penalty(LLR)(LLR),and HL-SMC methods have obtained least prostate classification performance withaccuyof 33.92%,28.57%,and 47.30% respectively.Meanwhile,the decision tree(DT)and random forest(RF)models have obtained moderate outcomes withaccuyof 72.81%and 75.24%respectively.However,the DTL-PSCC technique has shown supreme performance withprecn,recal,accuy,Fscore,and kappa of 85%,85.82%,85.09%,85.02%,and 84.94% respectively.Therefore,it is ensured that the DTL-PSCC technique has gained maximum prostate classification performance over the other compared methods.

    Table 3:Comparative analysis of DTL-PSCC technique with existing approaches

    Figure 12:Comparative analysis of DTL-PSCC technique with existing approaches

    5 Conclusion

    In this study,an effective DTL-PSCC technique has been developed to classify prostate cancer using MRI images.The proposed DTL-PSCC technique involves several subprocesses namely preprocessing,EfficientNet based feature extraction,FKNN based classification,and KHA based parameter tuning.The membership value of the FKNN model can be optimally tuned by the use of KHA which results in improved classification performance.In order to demonstrate the enhanced classification outcome of the DTL-PSCC system,a wide range of simulations takes place on benchmark MRI datasets.The extensive comparative results ensured the advancement of the DTL-PSCC system over the recent methods with the higher accuracy of 85.09%.Hence,the DTL-PSCC technique has appeared as a proficient approach for prostate cancer classification and detection.In future,deep learning based segmentation techniques can be derived to improve the efficiency of the DTL-PSCC technique

    Acknowledgement:The authors would like to acknowledge the support of Prince Sultan University for paying the Article Processing Charges(APC)of this publication.

    Funding Statement:The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under grant number (RGP 2/25/43).Taif University Researchers Supporting Project Number(TURSP-2020/346),Taif University,Taif,Saudi Arabia.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    午夜视频国产福利| 边亲边吃奶的免费视频| 亚洲精品视频女| 日韩大片免费观看网站| 啦啦啦中文免费视频观看日本| 日韩,欧美,国产一区二区三区| 国产高清不卡午夜福利| 一级av片app| 久久97久久精品| xxx大片免费视频| av在线播放精品| 欧美3d第一页| 免费看光身美女| 2021天堂中文幕一二区在线观| 国产亚洲午夜精品一区二区久久 | 欧美成人a在线观看| 亚洲精品456在线播放app| 18+在线观看网站| 国产免费一级a男人的天堂| 日韩伦理黄色片| 偷拍熟女少妇极品色| 欧美xxxx性猛交bbbb| 精品一区二区三卡| 国产免费福利视频在线观看| 九色成人免费人妻av| 亚洲精品国产av成人精品| 久久精品国产亚洲av天美| 精品酒店卫生间| 亚洲精品成人久久久久久| 超碰av人人做人人爽久久| 免费黄色在线免费观看| 人人妻人人看人人澡| ponron亚洲| 床上黄色一级片| 五月天丁香电影| 国产一区有黄有色的免费视频 | 国产黄色小视频在线观看| 日韩一区二区三区影片| 国产精品99久久久久久久久| 日韩不卡一区二区三区视频在线| 欧美成人a在线观看| 高清毛片免费看| 在线观看人妻少妇| 亚洲天堂国产精品一区在线| 春色校园在线视频观看| 成人漫画全彩无遮挡| 日本wwww免费看| 寂寞人妻少妇视频99o| av在线亚洲专区| 三级国产精品欧美在线观看| 九色成人免费人妻av| 好男人在线观看高清免费视频| 丝袜喷水一区| 久久热精品热| 18禁在线播放成人免费| 久久久久久久大尺度免费视频| 熟妇人妻久久中文字幕3abv| 日韩精品有码人妻一区| 好男人视频免费观看在线| 欧美成人午夜免费资源| 亚洲人与动物交配视频| 黑人高潮一二区| 国产高清不卡午夜福利| 午夜日本视频在线| 亚洲av成人av| 在线观看免费高清a一片| 国产精品一区www在线观看| 欧美xxxx性猛交bbbb| 久久久久性生活片| 国产精品一区www在线观看| 国产精品蜜桃在线观看| 中文资源天堂在线| 日韩人妻高清精品专区| 欧美另类一区| a级毛色黄片| 日日摸夜夜添夜夜添av毛片| 日产精品乱码卡一卡2卡三| 我要看日韩黄色一级片| 国产精品久久久久久久久免| 网址你懂的国产日韩在线| 亚洲av成人精品一二三区| 大片免费播放器 马上看| 久久精品国产亚洲av天美| 最近中文字幕2019免费版| 亚洲精品乱久久久久久| 午夜爱爱视频在线播放| 伦精品一区二区三区| 日日啪夜夜撸| 丝袜美腿在线中文| 真实男女啪啪啪动态图| 亚洲av中文av极速乱| 超碰av人人做人人爽久久| 欧美成人精品欧美一级黄| 国产成人精品福利久久| xxx大片免费视频| 国产精品一区www在线观看| 免费av观看视频| 天天躁夜夜躁狠狠久久av| 国产免费一级a男人的天堂| 偷拍熟女少妇极品色| 久久久久久久午夜电影| 色吧在线观看| 日韩伦理黄色片| 边亲边吃奶的免费视频| 亚洲欧美一区二区三区黑人 | 国产成人freesex在线| 欧美最新免费一区二区三区| 永久免费av网站大全| 亚洲精品,欧美精品| 99久久精品热视频| 最近视频中文字幕2019在线8| 亚洲高清免费不卡视频| 国产精品美女特级片免费视频播放器| 成人亚洲精品av一区二区| 在线观看人妻少妇| 免费观看av网站的网址| 国产精品精品国产色婷婷| 极品教师在线视频| 人妻夜夜爽99麻豆av| 国产亚洲午夜精品一区二区久久 | 久久久久久久国产电影| 免费看av在线观看网站| 久久韩国三级中文字幕| 嫩草影院入口| 精品久久久久久久久av| 成人特级av手机在线观看| 啦啦啦中文免费视频观看日本| 搡女人真爽免费视频火全软件| 国产精品国产三级国产av玫瑰| 午夜免费观看性视频| 一个人看视频在线观看www免费| 亚洲欧美精品专区久久| 一区二区三区乱码不卡18| 日韩电影二区| 2021天堂中文幕一二区在线观| 91在线精品国自产拍蜜月| 亚洲精品一区蜜桃| 中文天堂在线官网| 午夜亚洲福利在线播放| 精品一区二区三卡| 最新中文字幕久久久久| 一本一本综合久久| 国产成人freesex在线| 国产精品久久久久久精品电影| 99久久精品国产国产毛片| 欧美潮喷喷水| 国产一区二区三区av在线| av卡一久久| 黄色欧美视频在线观看| 日韩中字成人| 草草在线视频免费看| 一个人观看的视频www高清免费观看| 天堂影院成人在线观看| 男女啪啪激烈高潮av片| 亚洲婷婷狠狠爱综合网| 国产成人精品一,二区| 亚洲精品视频女| 国精品久久久久久国模美| 极品少妇高潮喷水抽搐| 日韩欧美 国产精品| 听说在线观看完整版免费高清| 亚洲av不卡在线观看| 最近中文字幕2019免费版| 麻豆国产97在线/欧美| 成人鲁丝片一二三区免费| 成人亚洲精品一区在线观看 | 日本-黄色视频高清免费观看| 久久久精品94久久精品| 成年av动漫网址| 我的老师免费观看完整版| 欧美性感艳星| 午夜精品一区二区三区免费看| 国产av在哪里看| 一个人观看的视频www高清免费观看| 水蜜桃什么品种好| 麻豆成人av视频| 国产亚洲av片在线观看秒播厂 | 国精品久久久久久国模美| 欧美日韩视频高清一区二区三区二| 亚洲精品国产av成人精品| 国产精品蜜桃在线观看| 成人欧美大片| 精品不卡国产一区二区三区| 美女大奶头视频| 男女边吃奶边做爰视频| 亚洲av免费高清在线观看| 内地一区二区视频在线| 久久久久久久久久成人| 精品人妻偷拍中文字幕| 亚洲自偷自拍三级| 一个人观看的视频www高清免费观看| 99久久精品国产国产毛片| 国产成人aa在线观看| 久久99热6这里只有精品| 最近最新中文字幕大全电影3| 欧美xxⅹ黑人| 卡戴珊不雅视频在线播放| 精品久久久噜噜| 只有这里有精品99| 日本一二三区视频观看| 国产成人精品福利久久| 精品久久久久久久久av| 亚洲不卡免费看| 午夜福利高清视频| 卡戴珊不雅视频在线播放| 亚洲久久久久久中文字幕| 国产一区有黄有色的免费视频 | 看免费成人av毛片| .国产精品久久| 国产一区亚洲一区在线观看| 狠狠精品人妻久久久久久综合| 纵有疾风起免费观看全集完整版 | 日韩在线高清观看一区二区三区| 国产精品一及| 又爽又黄无遮挡网站| 精品不卡国产一区二区三区| 一区二区三区四区激情视频| 赤兔流量卡办理| 国产精品av视频在线免费观看| 国产精品一区www在线观看| 亚洲色图av天堂| 成人特级av手机在线观看| 亚洲精品一区蜜桃| 日本午夜av视频| 91久久精品国产一区二区成人| 一区二区三区免费毛片| 2021少妇久久久久久久久久久| 男人狂女人下面高潮的视频| 国产在视频线在精品| 亚洲欧美一区二区三区黑人 | 夫妻性生交免费视频一级片| 在线观看美女被高潮喷水网站| 又黄又爽又刺激的免费视频.| 少妇人妻一区二区三区视频| 国产麻豆成人av免费视频| 三级男女做爰猛烈吃奶摸视频| 精品久久久久久久久av| 国产精品麻豆人妻色哟哟久久 | 日本一本二区三区精品| 亚洲熟女精品中文字幕| 久久精品夜色国产| 国内精品美女久久久久久| 最近中文字幕高清免费大全6| 久久精品熟女亚洲av麻豆精品 | 天堂俺去俺来也www色官网 | 99久久精品国产国产毛片| 久久精品国产亚洲av涩爱| av又黄又爽大尺度在线免费看| 男人狂女人下面高潮的视频| 蜜臀久久99精品久久宅男| 精品久久久精品久久久| www.av在线官网国产| 国产亚洲午夜精品一区二区久久 | 一级毛片黄色毛片免费观看视频| 女人十人毛片免费观看3o分钟| av专区在线播放| 99久久精品热视频| 成年av动漫网址| 国产亚洲5aaaaa淫片| 日本欧美国产在线视频| 在线天堂最新版资源| 观看美女的网站| 一级毛片aaaaaa免费看小| 久久精品夜夜夜夜夜久久蜜豆| 国产精品国产三级国产专区5o| 亚洲国产高清在线一区二区三| 成人午夜高清在线视频| 尾随美女入室| a级毛片免费高清观看在线播放| 极品少妇高潮喷水抽搐| 美女大奶头视频| 狂野欧美激情性xxxx在线观看| 成人午夜高清在线视频| 欧美激情在线99| 国产亚洲av嫩草精品影院| 亚洲精品日本国产第一区| 日本一本二区三区精品| 国产高潮美女av| 嫩草影院精品99| 婷婷色av中文字幕| 亚洲成色77777| 美女国产视频在线观看| 老司机影院成人| 免费av观看视频| 日韩中字成人| 一区二区三区免费毛片| 久久久a久久爽久久v久久| 永久免费av网站大全| 99九九线精品视频在线观看视频| 久久久久久久大尺度免费视频| 精品不卡国产一区二区三区| 麻豆国产97在线/欧美| 亚洲人成网站在线播| av播播在线观看一区| 一本一本综合久久| 国产一级毛片七仙女欲春2| 大片免费播放器 马上看| 伦精品一区二区三区| 成人特级av手机在线观看| 国产一区有黄有色的免费视频 | 国产乱来视频区| 永久免费av网站大全| 亚洲综合精品二区| 真实男女啪啪啪动态图| 三级男女做爰猛烈吃奶摸视频| 久久久久久九九精品二区国产| 又粗又硬又长又爽又黄的视频| 成人午夜高清在线视频| 亚洲在线自拍视频| 日韩制服骚丝袜av| 国产单亲对白刺激| 中文字幕av成人在线电影| 大香蕉97超碰在线| 人人妻人人澡人人爽人人夜夜 | 久久这里有精品视频免费| 高清日韩中文字幕在线| 精品人妻一区二区三区麻豆| 男人舔女人下体高潮全视频| 狠狠精品人妻久久久久久综合| 亚洲自拍偷在线| 午夜激情福利司机影院| 日日啪夜夜撸| 国产视频内射| 久久99精品国语久久久| 国产亚洲一区二区精品| 国产高潮美女av| 在线观看免费高清a一片| 国产伦在线观看视频一区| or卡值多少钱| 久久久久免费精品人妻一区二区| 欧美一区二区亚洲| 欧美+日韩+精品| 一级毛片电影观看| 国产在线男女| 中国国产av一级| 久久久欧美国产精品| 国产成人精品婷婷| 日本一本二区三区精品| 99久久中文字幕三级久久日本| 高清毛片免费看| 最新中文字幕久久久久| 日本三级黄在线观看| 美女大奶头视频| 免费看av在线观看网站| 国产三级在线视频| 亚洲欧美一区二区三区国产| 国内精品美女久久久久久| 美女cb高潮喷水在线观看| 免费av不卡在线播放| 午夜福利视频精品| 成人亚洲欧美一区二区av| 性插视频无遮挡在线免费观看| 欧美不卡视频在线免费观看| 男女视频在线观看网站免费| 亚洲成人av在线免费| 午夜福利视频精品| 国产老妇女一区| 好男人视频免费观看在线| 黄色日韩在线| 日韩大片免费观看网站| 成人午夜高清在线视频| 如何舔出高潮| 欧美潮喷喷水| 婷婷色麻豆天堂久久| 激情五月婷婷亚洲| 亚洲精品成人av观看孕妇| 免费人成在线观看视频色| 黄片无遮挡物在线观看| 国产精品久久久久久久久免| 哪个播放器可以免费观看大片| 久久精品久久久久久久性| 只有这里有精品99| 如何舔出高潮| 精品国产三级普通话版| 午夜久久久久精精品| 我的女老师完整版在线观看| 国产成人a区在线观看| 亚洲国产精品专区欧美| 日韩欧美三级三区| 久久99蜜桃精品久久| 男女国产视频网站| 麻豆乱淫一区二区| 三级国产精品欧美在线观看| 六月丁香七月| 日韩,欧美,国产一区二区三区| 在线免费观看的www视频| 午夜激情欧美在线| 日韩国内少妇激情av| 又大又黄又爽视频免费| 久久久久九九精品影院| h日本视频在线播放| 91在线精品国自产拍蜜月| 伊人久久精品亚洲午夜| 日韩av在线大香蕉| 在线天堂最新版资源| 国内精品宾馆在线| 91午夜精品亚洲一区二区三区| 99热全是精品| 亚洲国产精品sss在线观看| 欧美 日韩 精品 国产| 久久久久精品久久久久真实原创| 中文字幕人妻熟人妻熟丝袜美| 七月丁香在线播放| 国产探花在线观看一区二区| 高清av免费在线| 成人欧美大片| 一级毛片久久久久久久久女| 白带黄色成豆腐渣| 国语对白做爰xxxⅹ性视频网站| 欧美三级亚洲精品| 水蜜桃什么品种好| 黄片无遮挡物在线观看| 高清毛片免费看| av免费在线看不卡| 日韩一区二区视频免费看| 噜噜噜噜噜久久久久久91| kizo精华| 一区二区三区四区激情视频| 精品国产一区二区三区久久久樱花 | 国产乱人偷精品视频| 久久久久久久久大av| videos熟女内射| 黑人高潮一二区| 99久久精品一区二区三区| 中国国产av一级| 日本熟妇午夜| 精品久久久精品久久久| 国产永久视频网站| 男人狂女人下面高潮的视频| 精品国产三级普通话版| 国产成人a区在线观看| 亚洲国产欧美人成| 久久久久久久久久成人| 欧美xxxx黑人xx丫x性爽| 肉色欧美久久久久久久蜜桃 | 日韩欧美一区视频在线观看 | 老司机影院毛片| 国产亚洲精品久久久com| 1000部很黄的大片| 久久99热6这里只有精品| 国产一区二区在线观看日韩| 观看免费一级毛片| 亚洲精品国产成人久久av| 91狼人影院| 午夜福利视频精品| 免费观看在线日韩| 免费黄色在线免费观看| 久久精品国产自在天天线| 亚洲图色成人| 亚洲av成人av| 高清视频免费观看一区二区 | 日韩欧美 国产精品| 人妻系列 视频| 91av网一区二区| 高清在线视频一区二区三区| 国产亚洲午夜精品一区二区久久 | 日本午夜av视频| 高清在线视频一区二区三区| 色哟哟·www| 亚洲性久久影院| 一二三四中文在线观看免费高清| 亚洲欧美精品自产自拍| 99热全是精品| 欧美日韩综合久久久久久| 亚洲欧美清纯卡通| 午夜日本视频在线| 免费黄网站久久成人精品| 国产欧美另类精品又又久久亚洲欧美| 久久久欧美国产精品| 亚洲欧美日韩卡通动漫| 国产一级毛片七仙女欲春2| 国产中年淑女户外野战色| 美女脱内裤让男人舔精品视频| 久久久久久久午夜电影| 校园人妻丝袜中文字幕| 精品久久久久久久人妻蜜臀av| av免费在线看不卡| 丝瓜视频免费看黄片| 97人妻精品一区二区三区麻豆| 国产乱来视频区| 免费高清在线观看视频在线观看| 好男人在线观看高清免费视频| 熟女电影av网| 成人性生交大片免费视频hd| 国产精品无大码| 精品人妻一区二区三区麻豆| 亚洲在久久综合| 能在线免费看毛片的网站| 国内少妇人妻偷人精品xxx网站| 51国产日韩欧美| 2022亚洲国产成人精品| 国产在线一区二区三区精| 九色成人免费人妻av| 欧美激情国产日韩精品一区| 午夜免费激情av| 男女啪啪激烈高潮av片| 亚洲久久久久久中文字幕| 又粗又硬又长又爽又黄的视频| 色5月婷婷丁香| 亚洲精品影视一区二区三区av| 国产高潮美女av| 91精品国产九色| av免费在线看不卡| 亚洲国产日韩欧美精品在线观看| 嫩草影院入口| 亚洲激情五月婷婷啪啪| 免费黄网站久久成人精品| 777米奇影视久久| 高清视频免费观看一区二区 | 人人妻人人澡人人爽人人夜夜 | 成年版毛片免费区| 能在线免费观看的黄片| 在线观看一区二区三区| 欧美97在线视频| 国产精品女同一区二区软件| 在线天堂最新版资源| 三级国产精品片| 美女国产视频在线观看| 91精品一卡2卡3卡4卡| 欧美成人一区二区免费高清观看| 亚洲av国产av综合av卡| 欧美成人午夜免费资源| 久久久久久久午夜电影| 亚洲经典国产精华液单| 三级毛片av免费| 亚洲av成人精品一二三区| 日韩一区二区视频免费看| 丝袜美腿在线中文| 亚洲精品aⅴ在线观看| 欧美日韩亚洲高清精品| 国产精品一区二区三区四区久久| 欧美+日韩+精品| 丰满少妇做爰视频| 91午夜精品亚洲一区二区三区| 欧美高清性xxxxhd video| 日本猛色少妇xxxxx猛交久久| 九草在线视频观看| 精品人妻熟女av久视频| 热99在线观看视频| 午夜免费男女啪啪视频观看| 亚洲国产最新在线播放| 2021天堂中文幕一二区在线观| 国产亚洲av片在线观看秒播厂 | a级一级毛片免费在线观看| 久久韩国三级中文字幕| 男人舔奶头视频| 亚洲精品一区蜜桃| 欧美性猛交╳xxx乱大交人| 你懂的网址亚洲精品在线观看| 美女高潮的动态| 亚洲精品色激情综合| 国产成人一区二区在线| 日本一二三区视频观看| 日本色播在线视频| 成人一区二区视频在线观看| 毛片一级片免费看久久久久| 日韩一本色道免费dvd| 亚洲精品一区蜜桃| 99九九线精品视频在线观看视频| 欧美三级亚洲精品| 特大巨黑吊av在线直播| 五月玫瑰六月丁香| 国产精品一区二区三区四区免费观看| 亚洲欧美一区二区三区国产| 久久久久久久久大av| 麻豆成人av视频| 好男人在线观看高清免费视频| 日韩伦理黄色片| 国产午夜精品一二区理论片| 一本久久精品| 亚洲成人中文字幕在线播放| 午夜精品一区二区三区免费看| 女人十人毛片免费观看3o分钟| 日韩一本色道免费dvd| av黄色大香蕉| 一个人免费在线观看电影| 身体一侧抽搐| 狠狠精品人妻久久久久久综合| 亚洲精品国产成人久久av| 久久久久久久久久人人人人人人| 美女高潮的动态| 国产国拍精品亚洲av在线观看| 欧美不卡视频在线免费观看| 秋霞在线观看毛片| av又黄又爽大尺度在线免费看| 伊人久久精品亚洲午夜| 亚洲欧美一区二区三区国产| 高清日韩中文字幕在线| 日本熟妇午夜| 精品人妻熟女av久视频| 久久久久久伊人网av| 麻豆成人av视频| 成人性生交大片免费视频hd| 国产精品av视频在线免费观看| 国产精品人妻久久久久久| 国产亚洲av嫩草精品影院| 少妇丰满av| 久久久精品免费免费高清| 久久韩国三级中文字幕| 国产三级在线视频| 啦啦啦韩国在线观看视频| 欧美成人一区二区免费高清观看| 亚洲欧美日韩无卡精品| 久久久精品免费免费高清| 春色校园在线视频观看| 久久精品久久久久久噜噜老黄| 国产精品不卡视频一区二区| 久久久久网色| 色综合亚洲欧美另类图片| 人妻一区二区av| 春色校园在线视频观看| 日韩精品有码人妻一区| 国产午夜精品论理片| 麻豆成人午夜福利视频| 亚洲av.av天堂|