• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hybrid Deep Learning Enabled Intrusion Detection in Clustered IIoT Environment

    2022-08-24 07:02:34RadwaMarzoukFadwaAlrowaisNohaNegmMimounaAbdullahAlkhonainiManarAhmedHamzaMohammedRizwanullahIshfaqYaseenandAbdelwahedMotwakel
    Computers Materials&Continua 2022年8期

    Radwa Marzouk,Fadwa Alrowais,Noha Negm,Mimouna Abdullah Alkhonaini,Manar Ahmed Hamza,Mohammed Rizwanullah,Ishfaq Yaseen and Abdelwahed Motwakel

    1Department of Information Systems,College of Computer and Information Sciences,Princess Nourah Bint Abdulrahman University,Riyadh,11671,Saudi Arabia

    2Department of Computer Sciences,College of Computer and Information Sciences,Princess Nourah Bint Abdulrahman University,Riyadh,11671,Saudi Arabia

    3Department of Computer Science,College of Science&Art at Mahayil,King Khalid University,Abha,62529,Saudi Arabia

    4Department of Computer Science,College of Computer and Information Sciences,Prince Sultan University,Riyadh,11586,Saudi Arabia

    5Department of Computer and Self Development,Preparatory Year Deanship,Prince Sattam bin Abdulaziz University,AlKharj,Saudi Arabia

    Abstract: Industrial Internet of Things (IIoT) is an emerging field which connects digital equipment as well as services to physical systems.Intrusion detection systems(IDS)can be designed to protect the system from intrusions or attacks.In this view,this paper presents a novel hybrid deep learning with metaheuristics enabled intrusion detection(HDL-MEID)technique for clustered IIoT environments.The HDL-MEID model mainly intends to organize the IIoT devices into clusters and enabled secure communication.Primarily,the HDL-MEID technique designs a new chaotic mayfly optimization (CMFO) based clustering approach for the effective choice of the Cluster Heads (CH) and organize clusters.Moreover,equilibrium optimizer with hybrid convolutional neural network long short-term memory(HCNNLSTM) based classification model is derived to identify the existence of the intrusions in the IIoT environment.Extensive experimental analysis is performed to highlight the enhanced outcomes of the HDL-MEID technique and the results were investigated under different aspects.The experimental results highlight the supremacy of the proposed HDL-MEID technique over recent state-of-the-art techniques.

    Keywords: Industrial internet of things;security;intrusion detection;classification;deep learning

    1 Introduction

    The Industrial Internet of Things (IIoT) provides manufacturers in every industry with great connections that sequentially,generate intelligence and valuable information about the operation[1].Through leveraging this intelligence,they are capable of manufacturing improvements and attaining significant efficiencies.The main objective of the IIoT is to exploit Internet of Things(IoT)technique in the industrial control system (ICS).ICS is an essential part of crucial infrastructure and has been employed for a longer period for supervising industrial processes and machines [2].They implement real-time interacting and monitoring with the devices,realtime analysis,and collection of the information,in addition to sorting of each event that occurs in the industrial system [3].Using IoT techniques in this system improves the network security and intelligence in the automation and optimization of industrial operations.But this extended network similarly opens up this recently interconnected device to substantial threat of cyber-attacks.Since industrial facility becomes closer integrated,attackers are getting increasingly complex,resultant in great vulnerability and bigger possibility of damaging cyber-attack [4].Intrusion detection,the capacity to identify once attackers start searching devices,is the first critical stage to build a secured IIoT[5].Intrusion Detection Solution(IDS)for IIoT must be personalized to the nature of the device[6].Smaller devices with constrained resources want a personalized solution to the type of attack they are expected to encounter without over-whelming the computing resources and constrained memory of the devices.Fig.1 shows the overview of clustered IIoT architecture.

    Figure 1:Clustered IoT environment

    Simultaneously,the complexity of the IDS needs to scale up for supporting control and effective gateway systems[7].Consequently,there is a need for building an adaptable architecture which could assist a wide-ranging device and simply personalized according to the requirements of the single network or device.In every case,the main step is to monitor for,quickly report,and detect anomaly traffics[8].This needs incorporation with a security managing scheme in which IDS event is viewed and sent through an individual (or possibly an AI engine) to define whether the anomaly event indicates a cyberattack.On the IIoT,deep learning and machine learning approaches could improve customer satisfaction,reliability,and production by merging technical innovation,sensor,program,and application[9,10].

    Alkadi et al.[11]presented a deep blockchain framework (DBF) to provide privacy-based and blockchain security-based distributed ID with smart contracts in IoT systems.The IDS is assessed by the datasets and can be utilized by a deep learning(DL)approach for handling consecutive network data.Vargas et al.[12]incorporate the preceding solution to generate an essential security method for IoT devices that will activate secured data transfer mechanism,enable the detection of threat,and it will be adopted to the computation capability of industrial IoT.The presented method accomplished a feasible method for containing and detecting intruders in an IoT.In[13],a security architecture helps comprehensive protection for the IIoT through blockchain(BC)and Coalition Formation concept has been introduced.In addition,we support a traditional DL-based classification method for effectively categorizing benign and malicious devices in IIoT.In the presented method,only connections could be determined whether the information of the linking is mined on the BC by the“sender”device.

    Awotunde et al.[14]presented a DL-based IDS for IIoT using hybrid rule-based FS for training and verifying data taken from TCP/IP packets.The trained progression has been performed by a hybrid rule-based feature selection and DL method.The suggested method was tested by using two common network data sets.Li et al.[15]presented a DL method for IDS with a multiple convolutional neural network(CNN)fusion model.Based on the relationship,the feature data are separated into four parts,later the 1D feature data are transformed into a grayscale graph.By utilizing the data visualization model,CNN is presented into the ID problem and the best of the four outcomes arise.Latif et al.[16]introduced a deep random neural(DRaNN)based system for IDS in IIoT.The presented method is estimated through a novel generation IIoT security datasets UNSW-NB15.The experiment result proves that our presented model effectively categorized nine distinct kinds of attacks.

    This paper presents a novel hybrid deep learning with metaheuristics enabled intrusion detection(HDL-MEID) technique for clustered IIoT environments.The HDL-MEID model designs a new chaotic mayfly optimization(CMFO)based clustering approach for the effective choice of the Cluster Heads(CH)and organizing clusters.Moreover,equilibrium optimizer with hybrid CNN long shortterm memory (HCNN-LSTM) based classification model is derived to identify the existence of the intrusions in the IIoT environment.Extensive experimental analysis is performed to highlight the enhanced outcomes of the HDL-MEID technique and the results were investigated under different aspects.

    2 The Proposed Model

    This paper has presented a new HDL-MEID technique to organize the IIoT devices into clusters and allow secure communication with intrusion detection in clustered IIoT environments.Initially,the HDL-MEID technique designed an effective CMFO based clustering technique with HCNN-LSTM based intrusion detection.The proposed model utilizes IDS technology to enable secure communication and HCNN-LSTM model to identify the existence of intrusions in the IIoT environment.

    2.1 Level I:CMFO Based Clustering Technique

    Primarily,the CMFO algorithm is applied for the choice of CHs and organizing clusters.The MFO algorithm is based on the social behavior of the mayflies (MFs).Each candidate alters the trajectory based on the optimal position and optimal position to every MFs.The gathering of the male MMs(MMFs)reflected the understanding of every MMF in computing the position based on the nearby positions[17].Considerxtias the present position of a candidate solutioniat iterationt,the position can be modified through the inclusion of the velocityvti+1as given below.

    Withx0i U(xmin,xmax).

    With the consideration of the low velocity of the MMF population,the velocity is defined as follows.

    wherevtijimplies the velocity of MFi,xtijindicates the position of MFi,a1anda2are positive constants indicating attractiveness.pbestiindicates optimal position that a candidate solutioniattained,andpbestijat the following stept+1 can be determined using Eq.(3).

    wheref:Rn?Rindicates the minimization function,gbestdenotes the global optima attained iterationt.The coefficient restricted the population reflectiveness.rpsignifies the distance amongxiandpbesti.In addition,rgdenotes the distance fromxitogbest.rpandrgcan be computed as follows.

    wherexijis thejthcomponent of theithcandidate.Xiis linked pbest.The optimal fitting candidate sustains by carrying out the upward and downward movement via adjusting the velocity,which can be computed using Eq.(5):

    where d denotes a coefficient linked to upward and downward movement;and r is an arbitrary value.The female MFs (FMFs) do not gather however it moves in the direction of MMFs.Considerytias the present position of FMFiat iterationt.The variation in position can be defined as follows.

    withy0i U(xmin,xmax).

    The FMFs’velocity can be computed using Eq.(7).

    wherevtijimplies the velocity of theithfemale at iterationt.

    Crossover operation is employed as the mutation function.A set of male as well as female parents is selected and produces offspring as given below.

    whereLis an arbitrary number.

    The chaotic order is generated using the logistic map[18],as given below.

    udenotes control parameter and implies a chaotic state.The primary MF population undergoes mapping in a chaotic way.The CMFO algorithm derives a fitness function with four parameters namelyf1,f2,f3,andf4.The objective function to elect CHs is given as follows.

    whereα,β,γ,&δindicates weight coefficients off1,f2,f3,&f4FF variables lie in the range of[0,1].Here,f1,f2,f3,&f4indicates energy efficiency,node density,average intra-cluster distance,and intercluster distance.

    2.2 Level II:HCNN-LSTM Based Intrusion Detection Approach

    At this stage,the HCNN-LSTM based intrusion detection technique is applied for determining the existence of intrusions in the network.The standard CNN infrastructure basically has convolution,pooling,and fully connected (FC) layers [19].The LSTM network is a class of recurrent neural networks(RNN)which utilizes memory block which supports running effectively and learning faster than typical RNN.The LSTM network defines practical solutions to vanish and explode gradient problems of RNNs.Besides the RNN,a cell state was utilized from the LSTM network for saving long-term conditions containing input,forget,and output gates.Therefore,the network is remember preceding data and attaches it with present ones.In addition,it resolves difficult tasks complex for determining a solution by preceding RNNs.A CNN-LSTM method is a group of CNN layers which remove the feature in input data and LSTM layer for providing sequence forecast,as shown in Fig.2.It can be considered that infrastructure of our method with 9 layers:input layer,4 CNN layers wrapped by time-distributed layer,LSTM layer,dense layer,dropout layer,and output layer correspondingly.If every data is padding and vectorizing,the network developed is arranged to the feature extracting method.

    Figure 2:Structure of CNN-LSTM model

    During this phase,3 convolution layers are utilized for automatically extracting features in input orders utilizing the rectified linear unit(ReLU)activation function.During these convolution layers,128 filters are utilized.The kernel height is chosen as 6 and kernel width is chosen 4 to convolutional function.This kernel size provides maximum efficiency.During these convolution steps.It can be wrapped the convolutional layers from time-distributed wrapper for reshaping input data by more dimensional finally.In order to concatenation of every extracting feature,it can be utilized a fatten layer to pass the LSTM layer.

    Afterward,1 LSTM layer has been structured with 100 units subsequent to a dropout layer(0.5)on FC layer.Lastly,to binary classification,the softmax activation function is utilized to specify output.This technique is optimization for 30 epochs,6 for batch size,and 0.1 for validation split with trained.The validation data set monitor the convergence from the trained procedure thus the trained technique is canceled early based on the modification under this convergence.In addition,Adam optimizing with 0,001 rates of learning to optimized and categorical cross entropy(CE)to loss function is chosen under the optimized procedure.Adam is most gradient descent technique which computes adaptive learning rate to all momentums as parameter and categorical CE is most loss function chosen if there are more than two one hot encoding label classes.It optimizes multi-class classifier techniques with softmax activation functions.

    2.3 Level III:Hyperparameter Tuning

    For optimally tuning the hyperparameters of the HCNN-LSTM model,the EO algorithm can be utilized.The EO algorithm is stimulated by the law of physics,which can be used to solve the optimization problem [20].The EO algorithm can be mathematically formulated as follows.At the time of initialization,the EO algorithm utilizes a collection of particles,where every individual one indicates a concentration vector comprising solution.The primary concentration vector is arbitrarily produced in the search space by the use of Eq.(11):

    Therefore she went into the garden, and stretched out her crutch towards all the rose-trees, beautiful though they were; and they immediately sunk into the dark earth, so that no one could tell where they had once stood

    For concentration updates,the EO algorithm holds a reasonable tradeoff among intensification as well as diversification.As turnover rate varied over time in a real control volume,can be represented as an arbitrary vector in the range of 0 to 1.

    wheretgets reduced with a rise in iteration(it)by the use of Eq.(14):

    whereitandtmaxdenotes the present and higher iteration.Also,a2 is a constant value employed for controlling the exploitation abilities.

    The generation rate(R)can be utilized for improving the intensification operator as given below:

    wherer1andr2denotes arbitrary numbers in the range of [0,1].Here,vector denotes the generation rate control variable.Lastly,the EO algorithm can update using Eq.(19):

    whereVis equivalent to 1.

    3 Results and Discussion

    The performance validation of the HEL-MEID technique takes place under several aspects.Fig.3 inspects the packet delivery ratio(PDR)analysis of the HEL-MEID technique is compared with other techniques[21,22]under distinct sensor nodes(SNs).

    Figure 3:Comparative PDR analysis of HDL-MEID with recent models

    The results demonstrate that the HEL-MEID technique has attained higher PDR under all SNs.For instance,with 100 SNs,the HEL-MEID technique has offered higher PDR of 99.53%whereas the DEEC,GA-CP,PSO-CP,ALO-CP,and RDAC-CP techniques have obtained lower PDR of 91.31%,93.26%,94.73%,96.13%,and 98.63% respectively.Along with that,with 500 SNs,the HEL-MEID technique has resulted in maximum PDR of 96.13% whereas the DEEC,GA-CP,PSO-CP,ALOCP,and RDAC-CP techniques have reached minimal PDR of 90.19%,90.67%,92.24%,94.08%,and 95.99%respectively.

    Fig.4 illustrates throughput(THRP) analysis of the HEL-MEID technique with recent models under varying SNs.The results indicated the betterment of the HEL-MEID technique with increased THRP under every SN.For instance,with 100 SNs,the HEL-MEID technique has provided improved THRP of 97.84% whereas the DEEC,GA-CP,PSO-CP,ALO-CP,and RDAC-CP techniques have reached lower THRP of 67.17%,73.31%,80.34%,88.82%,and 96.54%respectively.In line with,with 500 SNs,the HEL-MEID technique has depicted increased THRP of 96.13% whereas the DEEC,GA-CP,PSO-CP,ALO-CP,and RDAC-CP techniques have exhibited decreased THRP of 54.18%,62.41%,70.53%,77.81%,and 85.49%respectively.

    Figure 4:Comparative THRP analysis of HDL-MEID with recent models

    An energy consumption(ECM)analysis of the HDL-MEID technique with compared methods is offered in Fig.5.The figure portrayed the enhanced outcomes of the HEL-MEID technique with minimal ECM under every round.For instance,with 100 SNs,the HEL-MEID technique has reached to least ECM of 0.00654 mJ whereas the DEEC,GA-CP,PSO-CP,ALO-CP,and RDACCP techniques have resulted in increased ECM of 0.2615,0.2056,0.1757,0.1326,and 0.0974 mJ respectively.In addition,with 500 SNs,the HEL-MEID technique has displayed lower ECM of 0.3546 MJ whereas the DEEC,GA-CP,PSO-CP,ALO-CP,and RDAC-CP techniques have revealed increased ECM of 0.8158,0.7755,0.6326,0.5778,and 0.4440 respectively.

    Figure 5:Comparative ECM analysis of HDL-MEID with recent models

    Fig.6 exemplifies network lifetime (NLFT) analysis of the HEL-MEID technique with latest models under varying SNs.The results designated the improvement of the HEL-MEID technique with amplified NLFT under every SN.For instance,with 100 SNs,the HEL-MEID technique has extended NLFT of 1860 rounds whereas the DEEC,GA-CP,PSO-CP,ALO-CP,and RDAC-CP techniques have offered reduced NLFT of 1214,1260,1337,1473,and 1556 rounds respectively.Furthermore,with 500 SNs,the HEL-MEID technique has depicted increased NLFT of 3794 rounds whereas the DEEC,GA-CP,PSO-CP,ALO-CP,and RDAC-CP techniques have exhibited decreased NLFT of 2912,3035,3107,3245,and 3325 rounds respectively.

    Figure 6:Comparative NLFT analysis of HDL-MEID with recent models

    Fig.7 performs a comparative number of alive SNs (NASN) analysis of the HEL-MEID technique with existing techniques under distinct rounds.The experimental results reported the better outcomes of the HEL-MEID technique with increased NASN under every round.For instance,with 400 rounds,the HEL-MEID technique has attained higher NASN of 500 whereas the DEEC,GACP,PSO-CP,ALO-CP,and RDAC-CP techniques have achieved decreased NASN of 354,362,386,417,and 498 respectively.Moreover,with 500 SNs,the HEL-MEID technique has exhibited maximum NASN of 168 whereas the DEEC,GA-CP,PSO-CP,ALO-CP,and RDAC-CP techniques have shown reduced NASN of 2,3,4,2,and 131 respectively.

    Figure 7:Comparative NASN analysis of HDL-MEID with recent models

    Fig.8 offers a comparative number of dead SN(NDSN)analyses of the HEL-MEID technique with existing techniques under distinct rounds.The figure implied that the HEL-MEID technique has resulted in effectual outcome with least NDSN under every round.For instance,with 400 rounds,the HEL-MEID technique has attained lower NDSN of 0 whereas the DEEC,GA-CP,PSO-CP,ALO-CP,and RDAC-CP techniques have resulted in raised NDSN of 146,138,114,83,and 2 respectively.

    Figure 8:Comparative NDSN analysis of HDL-MEID with recent models

    The intrusion detection results of the HDL-MEID technique are validated using the NSL-KDD 2015 dataset.Tab.1 and Fig.9 provide the classification result analysis of the HDL-MEID technique with existing techniques [23].The results indicated that the KNN,SVM,and LR techniques have reached lower intrusion detection outcomes.At the same time,the RF and DNN models have attained considerably improved intrusion classification performance.Followed by,the DT model has resulted in near optimal intrusion detection results with the precision of 0.9218,recall of 0.6402,accuracy of 0.7881,and F1-score of 0.7556.However,the HDL-MEID technique has resulted in maximum intrusion detection performance with the precision of 0.9856,recall of 0.9424,accuracy of 0.9532,and F1-score of 0.9264.

    Table 1:Intrusion detection results of HDL-MEID with other techniques

    Figure 9:Comparative intrusion detection results of HDL-MEID with other techniques

    Finally,a computation time (CT) analysis of the HDL-MEID with recent models is made in Tab.2.The results demonstrated that the SVM model has accomplished least performance with the CT of 28.7 min whereas the KNN and DNN methods have obtained slightly reduced CT of 4.717 and 3.950 min respectively.At the same time,the DT and RF techniques have resulted in moderately closer CT of 0.028 and 0.040 min respectively.But the HDL-MEID technique has accomplished superior results with the least CT of 0.018 min.From the detailed result analysis,it is ensured that the HDLMEID technique has outperformed the existing methods in the IIoT environment.

    Table 2:Computation time(CT)results of HDL-MEID with other techniques

    4 Conclusion

    This paper has presented a new HDL-MEID technique to organize the IIoT devices into clusters and allow enabled secure communication with intrusion detection in clustered IIoT environments.Initially,the HDL-MEID technique designed an effective CMFO based clustering technique with HCNN-LSTM based intrusion detection.The proposed model utilizes IDS technology to enable secure communication and HCNN-LSTM model to identify the existence of intrusions in the IIoT environment.Extensive experimental analysis is performed to highlight the enhanced outcomes of the HDL-MEID technique and the results were investigated under different aspects.The experimental results highlight the supremacy of the proposed HDL-MEID technique over recent state-of-the-art techniques.As a part of future scope,lightweight cryptographic solutions can be derived to boost security in the IIoT environment.

    Acknowledgement:The authors would like to acknowledge the support of Prince Sultan University for paying the Article Processing Charges(APC)of this publication.

    Funding Statement:The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number(RGP 2/42/43).Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R77),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    激情在线观看视频在线高清| 999久久久精品免费观看国产| 久久久久久九九精品二区国产| 村上凉子中文字幕在线| 女生性感内裤真人,穿戴方法视频| 亚洲七黄色美女视频| 在线观看免费午夜福利视频| 国产成人a区在线观看| 91在线观看av| 在线观看av片永久免费下载| 岛国视频午夜一区免费看| 天天添夜夜摸| 日韩有码中文字幕| 亚洲在线观看片| 少妇熟女aⅴ在线视频| 1000部很黄的大片| 18禁国产床啪视频网站| 免费搜索国产男女视频| 国产成人欧美在线观看| 欧美高清成人免费视频www| 日本黄色视频三级网站网址| 久久99热这里只有精品18| 午夜福利免费观看在线| 久9热在线精品视频| 国内久久婷婷六月综合欲色啪| 91在线观看av| 人人妻,人人澡人人爽秒播| 久久久久久久久大av| 国内毛片毛片毛片毛片毛片| 黄色片一级片一级黄色片| 99久久成人亚洲精品观看| 在线国产一区二区在线| 在线a可以看的网站| 免费av观看视频| 波多野结衣高清无吗| 性欧美人与动物交配| 一边摸一边抽搐一进一小说| 九九热线精品视视频播放| 亚洲,欧美精品.| 国产真人三级小视频在线观看| 国内精品美女久久久久久| 白带黄色成豆腐渣| 内射极品少妇av片p| 国产激情欧美一区二区| 国内揄拍国产精品人妻在线| 亚洲无线在线观看| 在线免费观看不下载黄p国产 | 亚洲欧美日韩卡通动漫| 美女高潮的动态| 国产伦精品一区二区三区四那| 动漫黄色视频在线观看| 美女高潮喷水抽搐中文字幕| 成年人黄色毛片网站| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品一卡2卡三卡4卡5卡| 国产真实伦视频高清在线观看 | 18禁国产床啪视频网站| 给我免费播放毛片高清在线观看| 国产在线精品亚洲第一网站| 国产一级毛片七仙女欲春2| 99久久精品热视频| 欧美成人一区二区免费高清观看| 国产精品亚洲av一区麻豆| 国产成人啪精品午夜网站| a级一级毛片免费在线观看| 国产伦精品一区二区三区四那| 身体一侧抽搐| 19禁男女啪啪无遮挡网站| 久久性视频一级片| 窝窝影院91人妻| 在线天堂最新版资源| 欧美bdsm另类| 国产精品久久久久久人妻精品电影| aaaaa片日本免费| 一级毛片女人18水好多| 两个人的视频大全免费| 亚洲内射少妇av| 毛片女人毛片| 啦啦啦韩国在线观看视频| 国产极品精品免费视频能看的| 国产蜜桃级精品一区二区三区| 欧美成人性av电影在线观看| 少妇的丰满在线观看| 成人永久免费在线观看视频| 激情在线观看视频在线高清| 久久精品亚洲精品国产色婷小说| av国产免费在线观看| 国产一级毛片七仙女欲春2| 亚洲 欧美 日韩 在线 免费| 亚洲成人免费电影在线观看| 国产精品国产高清国产av| 午夜日韩欧美国产| 在线国产一区二区在线| 国内精品一区二区在线观看| 国产视频一区二区在线看| ponron亚洲| 亚洲精品成人久久久久久| 午夜免费观看网址| 琪琪午夜伦伦电影理论片6080| 日本免费a在线| 18禁裸乳无遮挡免费网站照片| 国产精品美女特级片免费视频播放器| 欧美另类亚洲清纯唯美| 国产探花在线观看一区二区| 久久久久久人人人人人| 嫩草影院精品99| 午夜激情欧美在线| 天堂av国产一区二区熟女人妻| 人妻夜夜爽99麻豆av| 深夜精品福利| 三级毛片av免费| 日日夜夜操网爽| 国产高潮美女av| 亚洲熟妇中文字幕五十中出| 久99久视频精品免费| 啦啦啦韩国在线观看视频| 悠悠久久av| 十八禁网站免费在线| 禁无遮挡网站| 怎么达到女性高潮| 国内少妇人妻偷人精品xxx网站| 亚洲国产欧洲综合997久久,| 熟女人妻精品中文字幕| 在线国产一区二区在线| 欧美在线黄色| 18美女黄网站色大片免费观看| 人妻久久中文字幕网| 久久久久国产精品人妻aⅴ院| 国产精品久久久久久亚洲av鲁大| 欧美日韩中文字幕国产精品一区二区三区| 女人被狂操c到高潮| 久久精品国产亚洲av涩爱 | 亚洲,欧美精品.| 一本一本综合久久| 亚洲中文日韩欧美视频| 亚洲国产精品999在线| 日本免费a在线| 亚洲av不卡在线观看| 国产乱人伦免费视频| 免费电影在线观看免费观看| 成人性生交大片免费视频hd| 国产午夜精品论理片| 亚洲美女黄片视频| 老鸭窝网址在线观看| 丰满人妻熟妇乱又伦精品不卡| 久久国产精品影院| 人人妻人人澡欧美一区二区| 国产精品久久久久久亚洲av鲁大| 在线观看免费午夜福利视频| 日韩亚洲欧美综合| 久久九九热精品免费| 黄色片一级片一级黄色片| 国产成人啪精品午夜网站| 欧美高清成人免费视频www| 夜夜看夜夜爽夜夜摸| 国产真实伦视频高清在线观看 | 最新美女视频免费是黄的| 国产伦在线观看视频一区| 欧美日韩乱码在线| 一本精品99久久精品77| 日韩人妻高清精品专区| 久久久久久久精品吃奶| 中文字幕久久专区| 村上凉子中文字幕在线| 青草久久国产| 午夜视频国产福利| 国内揄拍国产精品人妻在线| 午夜精品在线福利| 搞女人的毛片| 天堂动漫精品| 久久草成人影院| 欧美最新免费一区二区三区 | 俄罗斯特黄特色一大片| 日韩欧美在线二视频| 亚洲中文字幕一区二区三区有码在线看| 少妇的逼好多水| av片东京热男人的天堂| 在线观看免费视频日本深夜| 一个人免费在线观看的高清视频| 欧美另类亚洲清纯唯美| 老熟妇仑乱视频hdxx| 国产精品爽爽va在线观看网站| 又爽又黄无遮挡网站| 亚洲国产日韩欧美精品在线观看 | 在线播放国产精品三级| 日韩人妻高清精品专区| 日韩欧美免费精品| 久久国产精品人妻蜜桃| av天堂在线播放| 一夜夜www| 亚洲国产精品久久男人天堂| 色哟哟哟哟哟哟| 国产精品爽爽va在线观看网站| 91麻豆av在线| 一区二区三区激情视频| 深爱激情五月婷婷| 国产综合懂色| 国产男靠女视频免费网站| 免费搜索国产男女视频| 中文字幕高清在线视频| 成人三级黄色视频| 午夜精品久久久久久毛片777| 亚洲国产日韩欧美精品在线观看 | 高潮久久久久久久久久久不卡| 99视频精品全部免费 在线| 99精品欧美一区二区三区四区| 在线免费观看不下载黄p国产 | 啦啦啦观看免费观看视频高清| 国产精品久久久久久亚洲av鲁大| 99久久无色码亚洲精品果冻| a级一级毛片免费在线观看| 欧美bdsm另类| 热99re8久久精品国产| 91九色精品人成在线观看| 国产不卡一卡二| 欧美成狂野欧美在线观看| 小蜜桃在线观看免费完整版高清| 国产真实伦视频高清在线观看 | 露出奶头的视频| 亚洲欧美精品综合久久99| 小说图片视频综合网站| 亚洲精品粉嫩美女一区| 国产成人啪精品午夜网站| 精品电影一区二区在线| 欧美成人一区二区免费高清观看| 久久精品国产综合久久久| 久久精品国产自在天天线| 久久久久九九精品影院| 国产午夜精品论理片| 国产精品,欧美在线| 18禁黄网站禁片午夜丰满| 国产精品国产高清国产av| 精品乱码久久久久久99久播| 美女高潮的动态| 精品不卡国产一区二区三区| 欧美性感艳星| 久久久久久久亚洲中文字幕 | 噜噜噜噜噜久久久久久91| 亚洲国产中文字幕在线视频| 午夜福利高清视频| 亚洲五月天丁香| 看片在线看免费视频| 一级a爱片免费观看的视频| 国产亚洲av嫩草精品影院| 99久久99久久久精品蜜桃| 午夜福利欧美成人| 51国产日韩欧美| 欧美日韩瑟瑟在线播放| 成年女人永久免费观看视频| 99久久成人亚洲精品观看| 又粗又爽又猛毛片免费看| 91在线精品国自产拍蜜月 | 中文字幕熟女人妻在线| 国产av一区在线观看免费| 一区二区三区高清视频在线| 女人十人毛片免费观看3o分钟| 国产成人av激情在线播放| 欧美日本亚洲视频在线播放| 午夜精品久久久久久毛片777| 久久久久国产精品人妻aⅴ院| 国产av不卡久久| 亚洲第一欧美日韩一区二区三区| ponron亚洲| 日本 欧美在线| 看黄色毛片网站| 久久精品夜夜夜夜夜久久蜜豆| av女优亚洲男人天堂| 亚洲欧美日韩东京热| 老汉色av国产亚洲站长工具| 欧美极品一区二区三区四区| 身体一侧抽搐| 中国美女看黄片| 熟妇人妻久久中文字幕3abv| 琪琪午夜伦伦电影理论片6080| 在线播放国产精品三级| 日韩成人在线观看一区二区三区| 非洲黑人性xxxx精品又粗又长| 日韩中文字幕欧美一区二区| 色精品久久人妻99蜜桃| 国产精品一区二区三区四区免费观看 | a在线观看视频网站| www日本在线高清视频| 久久久久久久午夜电影| 夜夜躁狠狠躁天天躁| 99久久精品热视频| 久久草成人影院| 人人妻,人人澡人人爽秒播| 精品一区二区三区视频在线 | 欧美日韩福利视频一区二区| 999久久久精品免费观看国产| 欧美成人a在线观看| 伊人久久精品亚洲午夜| 国产黄色小视频在线观看| 美女被艹到高潮喷水动态| 丰满人妻一区二区三区视频av | 国产男靠女视频免费网站| 欧美日韩一级在线毛片| 日本黄大片高清| 国模一区二区三区四区视频| 网址你懂的国产日韩在线| 欧美性感艳星| 欧美日韩国产亚洲二区| 中文字幕熟女人妻在线| 免费av观看视频| 变态另类丝袜制服| 免费在线观看日本一区| 国产精品久久久人人做人人爽| 午夜久久久久精精品| 亚洲成人中文字幕在线播放| 国产v大片淫在线免费观看| 精品人妻1区二区| 午夜精品久久久久久毛片777| 一区二区三区激情视频| 欧美xxxx黑人xx丫x性爽| 又黄又爽又免费观看的视频| 18禁美女被吸乳视频| 91九色精品人成在线观看| 欧美性猛交黑人性爽| 亚洲在线自拍视频| 亚洲av美国av| 国产高清三级在线| 国产精品av视频在线免费观看| 国产精品亚洲av一区麻豆| 国产精品影院久久| 高清毛片免费观看视频网站| 久久久久免费精品人妻一区二区| 一进一出好大好爽视频| 欧美成人免费av一区二区三区| 久久国产精品影院| 欧美性感艳星| 内射极品少妇av片p| 中文字幕熟女人妻在线| 久久久久精品国产欧美久久久| 亚洲片人在线观看| 法律面前人人平等表现在哪些方面| 国产免费一级a男人的天堂| 欧美性猛交黑人性爽| 成人一区二区视频在线观看| 在线观看一区二区三区| 高清毛片免费观看视频网站| 女同久久另类99精品国产91| 欧美性感艳星| 亚洲国产日韩欧美精品在线观看 | 国产成年人精品一区二区| 高清在线国产一区| 亚洲自拍偷在线| 亚洲精品美女久久久久99蜜臀| 欧美国产日韩亚洲一区| 99国产极品粉嫩在线观看| 一级作爱视频免费观看| 亚洲av二区三区四区| 亚洲精品粉嫩美女一区| 国产激情欧美一区二区| 久久精品国产亚洲av香蕉五月| 日本一二三区视频观看| 三级男女做爰猛烈吃奶摸视频| 欧美日韩中文字幕国产精品一区二区三区| 很黄的视频免费| 精品电影一区二区在线| 中亚洲国语对白在线视频| 岛国在线观看网站| 19禁男女啪啪无遮挡网站| 国产精品久久电影中文字幕| 亚洲片人在线观看| 很黄的视频免费| 99久久九九国产精品国产免费| 99国产精品一区二区蜜桃av| 丁香六月欧美| 男女下面进入的视频免费午夜| 国产v大片淫在线免费观看| 欧美日韩黄片免| 乱人视频在线观看| 免费av观看视频| 亚洲激情在线av| 欧美色欧美亚洲另类二区| 午夜免费成人在线视频| 桃红色精品国产亚洲av| 99国产精品一区二区三区| 亚洲av一区综合| 国产精品一区二区免费欧美| 亚洲熟妇中文字幕五十中出| 国内久久婷婷六月综合欲色啪| 欧美+亚洲+日韩+国产| 少妇人妻精品综合一区二区 | 真实男女啪啪啪动态图| 亚洲成人精品中文字幕电影| 操出白浆在线播放| 亚洲专区中文字幕在线| 欧美成人一区二区免费高清观看| 99久久99久久久精品蜜桃| 欧美性猛交╳xxx乱大交人| 亚洲人成网站高清观看| 三级男女做爰猛烈吃奶摸视频| 狠狠狠狠99中文字幕| 国产在线精品亚洲第一网站| 国产三级黄色录像| 国产av一区在线观看免费| 亚洲国产精品sss在线观看| 精品日产1卡2卡| 我的老师免费观看完整版| 最近最新中文字幕大全免费视频| 亚洲最大成人中文| 国产一区二区亚洲精品在线观看| svipshipincom国产片| 一进一出好大好爽视频| 国产v大片淫在线免费观看| 男女下面进入的视频免费午夜| 精品熟女少妇八av免费久了| 亚洲精品一卡2卡三卡4卡5卡| 最后的刺客免费高清国语| 亚洲va日本ⅴa欧美va伊人久久| 长腿黑丝高跟| 啦啦啦观看免费观看视频高清| 少妇丰满av| 少妇人妻精品综合一区二区 | av女优亚洲男人天堂| 搞女人的毛片| 18美女黄网站色大片免费观看| 精品久久久久久久人妻蜜臀av| 国产精品,欧美在线| 人妻丰满熟妇av一区二区三区| 国产精品av视频在线免费观看| 国产aⅴ精品一区二区三区波| 亚洲国产精品sss在线观看| 校园春色视频在线观看| 最好的美女福利视频网| 色av中文字幕| 婷婷精品国产亚洲av在线| 狂野欧美白嫩少妇大欣赏| 午夜福利在线在线| 精品一区二区三区视频在线 | 首页视频小说图片口味搜索| 午夜福利高清视频| 国产精品自产拍在线观看55亚洲| 午夜精品一区二区三区免费看| 在线视频色国产色| 熟女少妇亚洲综合色aaa.| 亚洲精品亚洲一区二区| 禁无遮挡网站| 此物有八面人人有两片| 亚洲最大成人手机在线| 伊人久久大香线蕉亚洲五| 男人的好看免费观看在线视频| 99国产精品一区二区三区| 国产私拍福利视频在线观看| 欧美黄色淫秽网站| 又黄又爽又免费观看的视频| 色噜噜av男人的天堂激情| 亚洲精品一区av在线观看| 观看美女的网站| 国产又黄又爽又无遮挡在线| 小说图片视频综合网站| 99精品欧美一区二区三区四区| 国产视频内射| 老熟妇仑乱视频hdxx| 天堂√8在线中文| 欧美成人免费av一区二区三区| 精品国产美女av久久久久小说| 欧美3d第一页| 久久精品国产清高在天天线| 色av中文字幕| 在线观看66精品国产| 久久久久九九精品影院| 婷婷精品国产亚洲av| 美女cb高潮喷水在线观看| 欧美日韩精品网址| 亚洲精华国产精华精| 动漫黄色视频在线观看| 18美女黄网站色大片免费观看| 我的老师免费观看完整版| 亚洲精品久久国产高清桃花| 99久久九九国产精品国产免费| 久久久久国内视频| 欧美日韩精品网址| 一级作爱视频免费观看| 国产熟女xx| 国产视频一区二区在线看| www日本在线高清视频| 99视频精品全部免费 在线| 久久久久久九九精品二区国产| 少妇裸体淫交视频免费看高清| 欧美国产日韩亚洲一区| 免费看a级黄色片| 三级毛片av免费| 婷婷精品国产亚洲av| 十八禁网站免费在线| 亚洲av不卡在线观看| 亚洲自拍偷在线| 18禁裸乳无遮挡免费网站照片| 免费看光身美女| or卡值多少钱| 久久伊人香网站| 国产免费一级a男人的天堂| 欧美成人性av电影在线观看| 看免费av毛片| 亚洲成人精品中文字幕电影| 18禁在线播放成人免费| 国产亚洲精品久久久com| 国产亚洲精品综合一区在线观看| 久久久成人免费电影| 国产亚洲欧美98| 欧美又色又爽又黄视频| 母亲3免费完整高清在线观看| 免费人成在线观看视频色| 国产亚洲精品久久久久久毛片| 最新中文字幕久久久久| 天天躁日日操中文字幕| 午夜视频国产福利| 国产伦精品一区二区三区视频9 | 1000部很黄的大片| 日韩欧美免费精品| 国产高清三级在线| 国产男靠女视频免费网站| 亚洲国产欧美人成| 日本在线视频免费播放| 日韩免费av在线播放| 18禁美女被吸乳视频| 欧美黄色淫秽网站| 亚洲精品一区av在线观看| 午夜免费激情av| 在线十欧美十亚洲十日本专区| 国产一区二区在线观看日韩 | 免费av毛片视频| 亚洲五月婷婷丁香| 黄色日韩在线| 长腿黑丝高跟| 一级黄片播放器| 国产成+人综合+亚洲专区| www.色视频.com| 久久精品91无色码中文字幕| 国产高清三级在线| 亚洲精品在线观看二区| 99久久无色码亚洲精品果冻| 免费无遮挡裸体视频| 国产亚洲欧美在线一区二区| 精品久久久久久成人av| 人人妻,人人澡人人爽秒播| 成年免费大片在线观看| 精品一区二区三区人妻视频| 中亚洲国语对白在线视频| 精品一区二区三区视频在线观看免费| 一夜夜www| 麻豆一二三区av精品| 欧美午夜高清在线| 最近最新中文字幕大全电影3| 搡老岳熟女国产| 真人一进一出gif抽搐免费| 亚洲中文字幕日韩| 久久久色成人| 一个人看的www免费观看视频| 男女之事视频高清在线观看| 99久久九九国产精品国产免费| 国产精品女同一区二区软件 | 日本一本二区三区精品| 亚洲乱码一区二区免费版| 精品熟女少妇八av免费久了| 国产精品影院久久| 精品欧美国产一区二区三| 亚洲中文字幕日韩| 久久久国产成人免费| 全区人妻精品视频| 久久久久久久久久黄片| 日韩欧美精品免费久久 | 淫秽高清视频在线观看| 99久久精品国产亚洲精品| 亚洲自拍偷在线| 久久久国产成人免费| 亚洲国产高清在线一区二区三| 国产淫片久久久久久久久 | 免费一级毛片在线播放高清视频| 国产精品久久久人人做人人爽| 午夜免费激情av| 色哟哟哟哟哟哟| 亚洲五月天丁香| 在线十欧美十亚洲十日本专区| 欧美zozozo另类| 一级毛片高清免费大全| www.999成人在线观看| 啦啦啦观看免费观看视频高清| 少妇丰满av| 女人被狂操c到高潮| 久久久久久九九精品二区国产| 精品熟女少妇八av免费久了| 99国产精品一区二区三区| 波多野结衣高清作品| 成人亚洲精品av一区二区| 日韩精品青青久久久久久| 日本撒尿小便嘘嘘汇集6| 欧美区成人在线视频| 欧美成人性av电影在线观看| 亚洲中文日韩欧美视频| 国产精品自产拍在线观看55亚洲| 久久国产精品人妻蜜桃| 婷婷六月久久综合丁香| 给我免费播放毛片高清在线观看| 身体一侧抽搐| 老鸭窝网址在线观看| www日本在线高清视频| 亚洲精品美女久久久久99蜜臀| 一卡2卡三卡四卡精品乱码亚洲| 精品人妻偷拍中文字幕| 免费观看的影片在线观看| 99视频精品全部免费 在线| 性色av乱码一区二区三区2| 国产激情欧美一区二区| 国产精品,欧美在线| 窝窝影院91人妻| 香蕉av资源在线| 亚洲人成伊人成综合网2020| av在线蜜桃| 舔av片在线| 男女那种视频在线观看| 黄色女人牲交| 99热这里只有是精品50| 美女免费视频网站|