• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Fast Algorithm for Mining Top-Rank-k Erasable Closed Patterns

    2022-08-24 07:01:58HamNguyenandTuongLe
    Computers Materials&Continua 2022年8期

    Ham Nguyen and Tuong Le

    1Faculty of Information Technology,HUTECH University,Ho Chi Minh City,Vietnam

    2Informetrics Research Group,Ton Duc Thang University,Ho Chi Minh City,Vietnam

    3Faculty of Information Technology,Ton Duc Thang University,Ho Chi Minh City,Vietnam

    Abstract: The task of mining erasable patterns(EPs)is a data mining problem that can help factory managers come up with the best product plans for the future.This problem has been studied by many scientists in recent times,and many approaches for mining EPs have been proposed.Erasable closed patterns (ECPs) are an abbreviated representation of EPs and can be considered condensed representations of EPs without information loss.Current methods of mining ECPs identify huge numbers of such patterns,whereas intelligent systems only need a small number.A ranking process therefore needs to be applied prior to use,which causes a reduction in efficiency.To overcome this limitation,this study presents a robust method for mining toprank-k ECPs in which the mining and ranking phases are combined into a single step.First,we propose a virtual-threshold-based pruning strategy to improve the mining speed.Based on this strategy and dPidset structure,we then develop a fast algorithm for mining top-rank-k ECPs,which we call TRK-ECP.Finally,we carry out experiments to compare the runtime of our TRK-ECP algorithm with two algorithms modified from dVM and TEPUS(Top-rank-k Erasable Pattern mining Using the Subsume concept),which are state-of-the-art algorithms for mining top-rank-k EPs.The results for the running time confirm that TRK-ECP outperforms the other experimental approaches in terms of mining the top-rank-k ECPs.

    Keywords: Pattern mining;erasable closed pattern mining;top-rank-k pattern mining

    1 Introduction

    Frequent pattern mining is one of the most popular topics in data mining and involves extracting frequent itemsets from a database.By identifying frequent patterns,we can observe that some items are strongly correlated together and can easily recognize similar characteristics and associations among them.This topic has attracted a lot of research attention,and many methods have been proposed,such as dEclat [1],FP-Growth * [2],DBV-FI (Dynamic Bit Vector for mining Frequent Itemsets)[3],and NSFI (N-list and Subsume-based algorithm for mining Frequent Itemsets) [4].Frequent itemsets have also been applied to solvethe problem of multi-attribute users under conditions of local differential privacy[5].There are also numerous variations of pattern mining,including frequent closed itemset mining[6],maximal frequent patterns[7],frequent weighted itemset mining[8],utility patterns[9,10],colossal patterns[11],erasable itemset mining[12],and so on.These variations have different meanings and are used in intelligent systems for specific situations.In addition,too many patterns are often generated when traditional approaches are used in intelligent systems,making it time-and resource-consuming to rank the patterns and find the most promising.Several top-kand top-rank-kapproaches have been developed [13-18]for different types of patterns and rules,such as frequent patterns,frequent weighted patterns,closed sequential patterns,and association rules,in order to combine the mining and ranking processes into a single algorithm.This can help intelligent systems to work better.

    Erasable pattern mining,developed by Deng et al.[12]in 2009,aims to help manufacturing managers to come up with the best production plans for the coming years.This problem often arises in the product planning process in a factory.In this scenario,a factory produces a wide range of products,each of which is made from certain components(items)and earns a particular amount of money for the manufacturer as profit.The current production plan requires the manufacturer to spend large amounts of money to purchase and store these items.In unexpected situations,such as a financial crisis or the COVID 19 pandemic,the manufacturer cannot afford to purchase all the necessary items as usual;managers therefore need to reconsider their production plans to ensure the stability of the manufacturing process.In the case described above,the problem involves finding itemsets that can be eliminated but do not greatly affect the factory’s profit.In other words,we wish to find the sets of itemsets which can best be eliminated(erased)(called EPs)so that managers can then utilize this knowledge to create a new production plan that minimizes the profit reduction.Numerous algorithms have been proposed to solve the EP mining problem,such as META [12],MEI (mining erasable itemsets)[19],EIFDD(erasable itemsets for very dense datasets)[20],pMEI(parallel mining erasable itemsets)[21],and BREM(bitmap-representation erasable mining)[22].Several variations have also been developed,such as mining EPs with constraints[23],mining erasable closed patterns[24],mining maximal EPs [25],mining top-rank-kEPs [26,27]mining erasable patterns in incremental database[28,29],and mining EPs in data streams[30-33].

    When applied to the problem of mining erasable closed patterns(ECPs),the traditional mining approaches proposed in [24]give very large numbers of patterns,and this is the reason for the low efficiency of intelligent systems.These systems mine ECPs by applying traditional algorithms(in the mining phase)and then rank the results to select the top patterns based on their gains(in the ranking phase).This two-phase process is time-and resource-consuming,and such systems may even fail to run due to memory and storage space limitations.Hence,in this paper,we address the problem of mining top-rank-kECPs in order to combine the mining and ranking phases.The key contributions of this study are as follows:(i)we develop a virtual-threshold-based pruning strategy for the mining of toprank-kECPs,in which the virtual threshold is set to the highest threshold of the results in the mining process,thus helping to improve the mining time by avoiding the creation of unsatisfactory candidates;(ii)we present the TRK-ECP algorithm,which uses a virtual-threshold-based pruning strategy for the mining of top-rank-kECPs;(iii)we conduct experiments to demonstrate the effectiveness of the TRKECP algorithm in terms of the mining time,the results of which indicate that TRK-ECP outperforms two alternative modified algorithms(namely dVM and TEPUS)in terms of the mining time for toprank-kECPs.

    The rest of this study is structured as follows.An overview of the basic principles of EPs and ECPs is given in Section 2.A definition of the mining of top-rank-k ECPs and a fast-mining algorithm are introduced in Section 3.Our experimental results are presented in Section 4,and it is shown that these confirm the effectiveness of the TRK-ECP algorithm.The conclusions of the study and suggestions for future work are given in Section 5.

    2 Basic Principles

    This section introduces the basic concepts needed to understand the topic of this study.Section 2.1 presents the definition of EPs and gives examples based on a toy product dataset.Section 2.2 discusses the concept of an ECP and presents some examples.

    2.1 Erasable Patterns

    Deng et al.[12]introduced an interesting problem called erasable pattern mining,as briefly summarized in this section.We consider a product dataset for a factory,denoted asDB.This dataset containsnproducts,asP={P1,P2,...,Pn}.Each product in this dataset is created from a set of components.For convenience in terms of our study of pattern mining,the set of all components can be considered as the set of all items,denoted byI={i1,i2,...,im}.Each product in the product dataset is represented in the form〈Items,Val〉,in whichItemsare the components required to manufacture this product,andValis the profit that the factory gains by selling this product.A toy product dataset is presented in Tab.1 and is used as an example throughout this study.

    Table 1:Toy product dataset

    Definition 1.For a product dataset denoted byDBand a threshold ξ,a patternXis an erasable pattern if and only if:

    In Eqs.(1)-(3),g(X) is the gain due toX,andTis the total profit of the whole datasetDB.According to Eq.(1),the problem of mining EPs involves finding all patternsXwith gainsg(X)that are less thanT×ξ.

    Example 1.For the product dataset which shown in Tab.1,we calculate the total profit asT=We can calculate the gain from itemA5as follows:g(A5)==P2.Val+P3.Val+P4.Val+P5.Val+P6.Val=200+150+50+100+200=$700.For a threshold ξ=50%,A5is an EP,asg(A5)=700<T×ξ=$975.

    2.2 Erasable Closed Patterns

    In 2017,Vo et al.[24]presented the definition of an ECP,which can be summarized as follows.An EP is called an ECP if and only if there are no supersets that have the same gain.For instance,consider the dataset in Tab.1 with ξ=40%.In this example,A5andA5A3are two EPs,asg(A5)=g(A5A3)=700<T×ξ=$780.In terms of the problem of ECP mining,A5is not an ECP,because we have a superset(A5A3)with the same gain asA5,i.e.,g(A5)=g(A5A3)=$700.Hence,A5A3is an ECP andA5is not.Tab.2 provides all ECPs for our dataset with ξ=40%.

    Table 2:ECPs for the example dataset with ξ=40%

    2.3 dPidset Structure

    In 2014,Le et al.[19]developed the dPidset structure,which is typically used to mine EPs.In this study,we also use this structure to mine top-rank-kECPs.We can summarize the dPidset structure as follows.Firstly,the pidsetp(X)of patternXis determined as:

    whereAis an item in patternX,andp(A)is the set of products that containA.

    Example 2.For the dataset in Tab.1,the pidsets ofA5,A3,andA6arep(A5)={2,3,4,5,6},p(A3)={3,5},andp(A6)={4,6,8},respectively.We havep(A5A3)=p(A5)∪p(A3)={2,3,4,5,6}.We also havep(A5A6)=p(A5)∪p(A6)={2,3,4,5,6,8}.

    Definition 2.LetXAandXBbe two patterns.The dPidset ofXAB,denoted asdP(XAB),is computed by the following equation:

    Example 3.In Example 2,the pidsets ofA5,A3,andA6arep(A5)={2,3,4,5,6},p(A3)={3,5},andp(A6)={4,6,8}.Based on Definition 2,we know that the dPidset ofA5A3isdP(A5A3)=p(A3)/p(A5)=?.Similarly,the dPidsets ofA5A6andA5A3A6aredP(A5A6)=p(A6)/p(A5)={8},anddP(A5A3A6)=p(A5A6)/p(A5A3)={8},respectively.

    Theorem 1[19].LetXAandXBbe two patterns with dPidsetsdP(XA)anddP(XB),respectively.The dPidset ofXABis determined using the following equation:

    Example 4.In Example 3,the dPidsets ofA5A3andA5A6aredP(A5A3)=? anddP(A5A6)={8},respectively.We havedP(A5A3A6)=dP(A5A6)/dP(A5A3)={8}.The results for Examples 3 and 4 clearly verify Theorem 1.

    Theorem 2[19].The gain ofXABcan be computed based on the gain ofXAand the dPidset ofXAB,as follows:

    In Eq.(7),g(XA)is the gain ofXAwhilePk.Valis the profit of productPkin the product dataset.

    Example 5.For the example dataset in Tab.1,we know that the pidsets ofA5,A3,andA6arep(A5)={2,3,4,5,6},p(A3)={3,5},andp(A6)={4,6,8},respectively.We also haveg(A5)=$700,g(A3)=$250,andg(A6)=$350.SincedP(A5A3)=?,we haveg(A5A3)=g(A5)+.Val=$700.Then,sincedP(A5A6)={8},we haveg(A5A6)=g(A5)+.Val=$800.Finally,sincedP(A5A3A6)={8},we haveg(A5A3A6)=g(A5A3)+.Val=$800.

    3 TRK-ECP:A New Algorithm for Mining Top-Rank-k ECPs

    3.1 The Problem of Mining Top-Rank-k ECPs

    Definition 3.A patternXis in the top-rank-kECPs if and only ifr(X)≤k,where the rank of an ECPXis determined by the following equation:

    The problem of mining the top-rank-kECPs is therefore the task of finding the complete set of ECPs for which the rank is no greater thank,wherekis input by the user.

    Example 5.For the dataset in Tab.1,letkbe five.Tab.3 below shows all ECPs belonging to the top-5 ECPs from our dataset.We call these the top-rank-5 ECPs.

    Table 3:Top-rank-5 ECPs

    3.2 TRK-ECP Algorithm

    In this section,we present a virtual-threshold-based pruning strategy to accelerate the runtime for mining top-rank-kECPs.We first consider a top-rank-ktable structure calledTR,which is used to store the current top-rank-kECPs.In this table,ranking is done based on ascending order of gain,meaning that the last rank inTRis the largest gain.Hence,whenTRreceiveskranks(i.e.,there arekranks inTR),the virtual threshold (ξ) will be updated based on the gain of the last rank inTR.During the candidate generation procedure,the algorithm will not create a candidate from two ECPs if either of them has a gain greater than the virtual threshold.This strategy helps to reduce the search space and accelerates the runtime,and we refer to this as our virtual-threshold-based pruning strategy.Secondly,we develop the TRK-ECP algorithm based on this strategy,as shown in Algorithm 1.

    Example 6.To illustrate the operation of the TRK-ECP algorithm,we apply it to the example dataset in Tab.1,withk=5.In Lines 1-3,the proposed algorithm scans the example dataset to determine the gain and dPidset for each 1-item stored inE1,as shown in Tab.4.Note thatE1is the set of all items in the dataset,without a threshold.

    Algorithm 1:TRK-ECP algorithm Input:A product dataset DB and a threshold k Output:TR(the top-rank-k ECPs)1.Let TR ←? and Ck ←? 2.Scan DB to determine the gain and dPidset for each item,and store them in E1 3.Sort E1 in ascending order of gain 4.Initialize TR from E1 5.Let ξ be g(TR.last_entry)//update ξ based on the gain of the last entry 6.While Ck.count>1 do 7.C ←Candidate_Generation(Ck)8.Sort C in ascending order of gain 9.Ck ←? 10.For each c in C do 11.Let ECPs be all the ECPs with rank c in TR 12.For each e in ECPs do 13.If e is a subset of c then 14.Remove ECP from ECPs 15.Insert c into ECPs and update ECPs in TR 16.Insert c into Ck 17.If TR.count>k then 18.Remove the last tuple from TR 19.Let ξ be g(TR.last_tuple)//update ξ based on the gain of the last entry Procedure Candidate_Generation(Ck)1.Let Cnext ←? 2.For each cu ∈Ck do 3.For each cv ∈Ck with u<v do 4.If g(cu)>ξ or g(cv)>ξ then 5.Continue;//using the pruning strategy based on a virtual threshold(Continued)

    Algorithm 1:Continued 6.If cu and cv are in an equivalence class then 7.c.dPidset=cv.dPidsetcu.dPidset 8.g(c)=g(cu)+∑Pj ∈cv.dPidsetPj.Val 9.If g(c)<=ξ then 10 c=cu ∪cv 11.Add c to Cnext 12.Return Cnext

    Table 4:Gains and dPidsets for E1 in the example dataset

    In Lines 4-10,the TRK-ECP algorithm inserts the first five items ofE1--,{A3,A6,A7,A4,A5},into the results for the top-rank-kECPs,denoted byTR,and the next-level candidatesCk(which are used to create the next-level candidates).Note thatA1andA2are eliminated,since the results have alreadyk=5 elements.The number of ranks in the results(TR)is five,and the threshold for this step ξ is set to 700.The results after the first step are presented in Tab.5.

    Table 5:Top five ranked ECPs after the first step

    In the next step (Lines 11-24),TRK-ECP utilizesCkto create the next-level candidates {〈A3A6,600〉,〈A6A7,500〉,〈A6A4,600〉,〈A7A4,600〉},using the Candidate_Generation procedure.Note that{〈A3A7,700〉,〈A3A4,750〉,〈A3A5,700〉,〈A6A5,800〉,〈A7A5,950〉,〈A4A5,950〉} are not generated by the virtual-threshold-based pruning strategy.The TRK-ECP algorithm then sorts the candidates in ascending order of gain,and thus we have the list of candidates{〈A6A7,500〉,〈A3A6,600〉,〈A6A4,600〉,〈A7A4,600〉}.Next,these candidates will be inserted intoTRandCk.This step also removes any non-ECPs that have been added to the results.In our example,this step inserts a new rank with a gain of 500,which includes an ECP{〈A6A7,500〉},while the rank for a gain of 700 is removed fromTR.At a rank of 600,this algorithm removes{A4}from the result,as it is not an ECP.The virtual threshold ξ is set to 600.The results of this step are presented in Tab.6.

    Table 6:Top five ranked ECPs after the second step

    In the third step,the TRK-ECP algorithm usesCk={〈A6A7,500〉,〈A3A6,600〉,〈A6A4,600〉,〈A7A4,600〉}to create〈A6A7A4,600〉,and inserts〈A6A7A4,600〉intoTRandCk.In this step,{A6A4,A7A4}is a subset ofA6A7A4and has the same gain of 600.The algorithm therefore removes{A6A4,A7A4}from the results.Tab.7 presents the results after this step.

    Table 7:Top five ranked ECPs after the third step

    In the next step,the set of candidatesCk={〈A6A7A4,600〉}contains only one item;the TRK-ECP algorithm therefore stops,and the final results are as shown in Tab.7.

    4 Experiments

    The experiments described in this section were conducted on a computer with an Intel Core i5-7200U 2.5 GHz CPU and 16 GBs of RAM.All the experimental algorithms were implemented in C#and were run in the same environment with the.Net Framework Version 4.5.Four public datasets(Chess,Connect,Mushroom,and T10I4D100K) were used to test the effectiveness of the proposed approach.These datasets are frequently used to evaluate pattern mining algorithms in relation to data mining tasks.To create the product datasets,a column generated using a random function was added to store the profit for each product.The features of these datasets are given in Tab.8.

    To verify the effectiveness of the TRK-ECP approach,we compare its runtime with those of TEPUS[27]and dVM[26]for the problem of mining the top-rank-kECPs(denoted as TEPUS4ECP and dVM4ECP).Note that there are currently no alternative algorithms for mining the top-rank-kECPs,and we therefore had to modify TEPUS and dVM accordingly.TEPUS4ECP and dVM4ECP were created in two stages,as follows.In the first step,we used TEPUS and dVM to mine the toprank-kEPs.The top-rank-kECPs were obtained in the second step,based on the top-rank-kEPs.The runtimes for TEPUS4ECP and dVM4ECP consist of the sums of the runtimes for the first and second steps.

    Table 8:Features of the experimental datasets

    In Fig.1,we compare the runtimes of TKR-ECP,TEPUS4ECP and dVM4ECP on the Chess dataset.The results show that TKR-ECP is the fastest and dVM4ECP is the slowest.For example,fork=400,the runtimes for TKR-ECP,TEPUS4ECP,and dVM4ECP are 0.159,0.24,and 1.42 s,respectively.Thus,TKR-ECP is 33.75%times faster than TEPUS4ECP and 88.8%times faster than dVM4ECP on the Chess dataset,for k=400.The total times fork=100,200,300,and 400 for TKRECP,TEPUS4ECP,and dVM4ECP are 0.608,0.84 and 4.15 s.

    Figure 1:Runtimes for three experimental methods on the chess dataset

    Fig.2 compares the runtimes of TKR-ECP,TEPUS4ECP and dVM4ECP on the Connect dataset.The results show that TKR-ECP is the fastest,and dVM4ECP is the slowest.For example,fork=300,the runtimes for TKR-ECP and TEPUS4ECP are 4.16 and 6.28 s,while dVM4ECP cannot run at this threshold.The total times fork=100,200,300,and 400 for TKR-ECP and TEPUS4ECP are 14.88 and 21.97 s.Hence,TKR-ECP is 33.75%times faster than TEPUS4ECP on this dataset.

    Fig.3 compares the runtimes of TKR-ECP,TEPUS4ECP and dVM4ECP for the Mushroom dataset.The results show that the times for all three algorithms are the same for all thresholdsk.The total times fork=100,200,300,and 400 for TKR-ECP,TEPUS4ECP,and dVM4ECP on the Mushroom dataset are 1.55,1.98 and 10.32 s,respectively.

    Figure 2:Runtimes for three experimental methods on the connect dataset

    Figure 3:Runtimes for three experimental methods on the mushroom dataset

    Fig.4 compares the runtimes of TKR-ECP,TEPUS4ECP and dVM4ECP on the T10I4D100K dataset.The results show that TKR-ECP is the fastest and dVM4ECP is the slowest in terms of runtime.For example,fork=200,the runtimes for TKR-ECP,TEPUS4ECP,and dVM4ECP on the T10I4D100K dataset are 3.58,3.64,and 5.36 s,respectively,meaning that TKR-ECP is 1.6% times faster than TEPUS4ECP and 33%times faster than dVM4ECP for the T10I4D100K dataset with this threshold.The total times fork=100,200,300,and 400 for TKR-ECP,TEPUS4ECP,and dVM4ECP for this dataset are 15.6,16.22 and 29.32 s,respectively.

    To test whether our method was the best,we conducted paired t-test statistics for the experimental methods for all four datasets.As we can see from Tab.9,most of thep-values for Chess,Connect and Mushroom were less than 0.05,meaning that our proposed method outperformed dVM4ECP and TEPUS4ECP on these datasets.For T10I4D100K,the differences between the experimental methods were not obvious.

    Figure 4:Runtimes for three experimental methods on the T10I4D100K dataset

    Table 9: p-values for paired t-test statistics

    From the experimental results presented above,we can see that TKR-ECP was the fastest,and dVM4ECP was the slowest.TKR-ECP was faster than TEPUS4ECP for three databases (Chess,Connect,and Mushroom),and the performance of these two methods was equal on the remaining database(T10I4D100K).In addition,the memory usage for TKR-ECP and TEPUS4ECP was roughly equivalent on these experimental databases.Overall,the proposed algorithm outperformed the other experimental approaches for mining top-rank-kECPs in terms of processing time.

    5 Conclusion

    In this study,we first introduced the concept of mining the top-rank-kECPs,and a fast method for mining top-rank-kECPs was then presented.Our new algorithm combines the mining and ranking of ECPs into a single algorithm and can therefore help to improve the processing time of intelligent systems.We developed a virtual-threshold-based pruning strategy to improve the mining speed for this task and applied this strategy with the dPidset structure to devise the TRK-ECP algorithm for mining the top-rank-kECPs.We have presented detailed,step-by-step examples of how our algorithm works,and conducted experiments to compare the runtime of the proposed algorithm with two modified algorithms (dVM4ECP and TEPUS4ECP) for the mining of top-rank-kECPs.Our experimental results confirm that the proposed algorithm outperforms the other experimental approaches for the mining of top-rank-kECPs in terms of processing time.

    In the future,several topics related to the problem of mining EPs and ECPs in incremental databases and data streams will be studied.Moreover,we intend to focus on the problem of mining EPs and ECPs with certain kinds of constraints.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    国产熟女欧美一区二区| 欧美一区二区精品小视频在线| 国产成人aa在线观看| 亚洲专区中文字幕在线| 亚洲男人的天堂狠狠| 日韩欧美免费精品| 久久国产乱子免费精品| 国产一级毛片七仙女欲春2| 亚洲人成网站高清观看| 亚洲黑人精品在线| 午夜福利高清视频| 成人精品一区二区免费| 两人在一起打扑克的视频| 极品教师在线免费播放| 亚洲美女视频黄频| 亚洲欧美激情综合另类| 国产三级在线视频| 精品午夜福利视频在线观看一区| 国产免费av片在线观看野外av| 91在线观看av| 人妻少妇偷人精品九色| 亚洲乱码一区二区免费版| 老熟妇乱子伦视频在线观看| 欧美人与善性xxx| 一夜夜www| 搡老岳熟女国产| 在线观看66精品国产| 淫妇啪啪啪对白视频| 99热这里只有是精品在线观看| 欧美性猛交黑人性爽| 国产女主播在线喷水免费视频网站 | 日韩高清综合在线| 精品久久久久久,| 欧美激情久久久久久爽电影| 国内久久婷婷六月综合欲色啪| 欧美成人一区二区免费高清观看| 久久中文看片网| 此物有八面人人有两片| h日本视频在线播放| 黄色丝袜av网址大全| 别揉我奶头~嗯~啊~动态视频| 嫩草影院新地址| 亚洲18禁久久av| 亚洲精品成人久久久久久| 免费av观看视频| 一进一出抽搐动态| 最近视频中文字幕2019在线8| 少妇人妻一区二区三区视频| 中国美白少妇内射xxxbb| 一级av片app| 女人十人毛片免费观看3o分钟| 美女黄网站色视频| 国产老妇女一区| 在线国产一区二区在线| 欧美另类亚洲清纯唯美| 春色校园在线视频观看| 亚洲精品日韩av片在线观看| 亚洲中文日韩欧美视频| 两个人视频免费观看高清| 97人妻精品一区二区三区麻豆| 啦啦啦观看免费观看视频高清| 色播亚洲综合网| 成人特级av手机在线观看| 亚洲av.av天堂| 亚洲一区二区三区色噜噜| 成熟少妇高潮喷水视频| 在线观看美女被高潮喷水网站| 日本与韩国留学比较| 亚洲经典国产精华液单| 精品国内亚洲2022精品成人| 亚洲人与动物交配视频| 亚洲国产精品成人综合色| 久久久久久国产a免费观看| 久久99热这里只有精品18| 久久热精品热| 国内精品美女久久久久久| 中国美白少妇内射xxxbb| 国产高清三级在线| 九九久久精品国产亚洲av麻豆| .国产精品久久| 色av中文字幕| 男女边吃奶边做爰视频| 久久精品91蜜桃| 国产精品1区2区在线观看.| 真人做人爱边吃奶动态| 国产精品精品国产色婷婷| 成人av一区二区三区在线看| 免费av观看视频| 亚洲人成伊人成综合网2020| 国产精品爽爽va在线观看网站| 美女黄网站色视频| 久久亚洲精品不卡| 欧美又色又爽又黄视频| 成人特级黄色片久久久久久久| 亚洲色图av天堂| 小蜜桃在线观看免费完整版高清| bbb黄色大片| a级毛片a级免费在线| 久久久午夜欧美精品| 亚洲国产精品合色在线| 免费黄网站久久成人精品| 久久久久九九精品影院| 88av欧美| 亚洲乱码一区二区免费版| 国产老妇女一区| 在线播放无遮挡| 乱码一卡2卡4卡精品| xxxwww97欧美| 一本久久中文字幕| www.www免费av| 极品教师在线免费播放| 我的女老师完整版在线观看| 亚洲 国产 在线| 特级一级黄色大片| 精品久久久久久久久久免费视频| 亚洲性夜色夜夜综合| 在线a可以看的网站| 国内精品久久久久久久电影| 给我免费播放毛片高清在线观看| 99国产精品一区二区蜜桃av| 舔av片在线| 五月玫瑰六月丁香| 国产高清不卡午夜福利| 成人综合一区亚洲| 免费看av在线观看网站| 国模一区二区三区四区视频| 校园人妻丝袜中文字幕| 在线免费观看的www视频| 无遮挡黄片免费观看| 久久精品人妻少妇| 小说图片视频综合网站| 免费无遮挡裸体视频| 国产免费男女视频| 在线观看舔阴道视频| 国产 一区 欧美 日韩| 天堂影院成人在线观看| 乱码一卡2卡4卡精品| 精品免费久久久久久久清纯| 他把我摸到了高潮在线观看| 国产乱人视频| 国产欧美日韩精品一区二区| xxxwww97欧美| 午夜精品在线福利| 国产av不卡久久| 中文字幕av成人在线电影| 亚洲国产高清在线一区二区三| 免费av观看视频| 国产色爽女视频免费观看| 亚洲精品乱码久久久v下载方式| 国产单亲对白刺激| 女人被狂操c到高潮| 干丝袜人妻中文字幕| 一级黄片播放器| 97超级碰碰碰精品色视频在线观看| 一区二区三区免费毛片| 国产精品人妻久久久影院| 999久久久精品免费观看国产| 特级一级黄色大片| 狂野欧美白嫩少妇大欣赏| 亚洲精品粉嫩美女一区| 一进一出好大好爽视频| 国产真实伦视频高清在线观看 | 在线免费观看的www视频| 亚洲成人中文字幕在线播放| 男女啪啪激烈高潮av片| 在线a可以看的网站| 看免费成人av毛片| 中国美白少妇内射xxxbb| av专区在线播放| 国产精品电影一区二区三区| 亚洲av中文字字幕乱码综合| 中文字幕人妻熟人妻熟丝袜美| 精品日产1卡2卡| 熟女人妻精品中文字幕| 麻豆成人午夜福利视频| 美女cb高潮喷水在线观看| 成人无遮挡网站| 18禁裸乳无遮挡免费网站照片| 床上黄色一级片| 国产精品一区二区三区四区久久| 久久久久久久久大av| 免费不卡的大黄色大毛片视频在线观看 | 亚洲国产高清在线一区二区三| 在线国产一区二区在线| 国内久久婷婷六月综合欲色啪| 如何舔出高潮| 国产精品伦人一区二区| 欧美精品国产亚洲| 亚洲精品一卡2卡三卡4卡5卡| 国产亚洲精品综合一区在线观看| 亚洲av中文字字幕乱码综合| 国产激情偷乱视频一区二区| 亚洲精华国产精华液的使用体验 | ponron亚洲| 成人av一区二区三区在线看| 男女啪啪激烈高潮av片| 色噜噜av男人的天堂激情| 久久香蕉精品热| 精品久久久久久久人妻蜜臀av| 欧美一级a爱片免费观看看| 色视频www国产| 久久久久国内视频| 少妇猛男粗大的猛烈进出视频 | 亚洲国产高清在线一区二区三| 在线观看舔阴道视频| 熟妇人妻久久中文字幕3abv| 欧美绝顶高潮抽搐喷水| 搞女人的毛片| 国语自产精品视频在线第100页| 日韩中文字幕欧美一区二区| 两个人的视频大全免费| 免费看a级黄色片| 久久久午夜欧美精品| 22中文网久久字幕| 神马国产精品三级电影在线观看| 身体一侧抽搐| 国内少妇人妻偷人精品xxx网站| 亚洲专区中文字幕在线| 女同久久另类99精品国产91| 色综合色国产| 波野结衣二区三区在线| h日本视频在线播放| 国产高清不卡午夜福利| 国产亚洲精品久久久久久毛片| 亚洲成人免费电影在线观看| 亚洲一区二区三区色噜噜| 日韩欧美国产一区二区入口| 欧美日本亚洲视频在线播放| 亚洲精品一区av在线观看| 他把我摸到了高潮在线观看| 国产精品三级大全| 丰满的人妻完整版| 黄片wwwwww| 成人三级黄色视频| 悠悠久久av| av国产免费在线观看| 精品乱码久久久久久99久播| 噜噜噜噜噜久久久久久91| 少妇猛男粗大的猛烈进出视频 | 国产精品亚洲一级av第二区| 欧美潮喷喷水| 日日摸夜夜添夜夜添av毛片 | 国产精品一及| 国内揄拍国产精品人妻在线| 久久久久久久久久黄片| 日韩强制内射视频| 国产精品久久久久久av不卡| 亚洲精品久久国产高清桃花| 国产人妻一区二区三区在| 日本黄色片子视频| 国产精品永久免费网站| 成人精品一区二区免费| 婷婷精品国产亚洲av| 国内精品久久久久精免费| 久久精品国产鲁丝片午夜精品 | 身体一侧抽搐| 午夜福利在线观看免费完整高清在 | 观看免费一级毛片| 亚洲精品456在线播放app | 黄色配什么色好看| 免费av观看视频| 亚洲性久久影院| 欧美日韩瑟瑟在线播放| 国语自产精品视频在线第100页| 欧美日韩黄片免| 精品久久久久久,| 免费电影在线观看免费观看| 噜噜噜噜噜久久久久久91| 丝袜美腿在线中文| 亚洲成人久久爱视频| 亚洲图色成人| 亚洲精华国产精华液的使用体验 | 99视频精品全部免费 在线| 人人妻人人看人人澡| 别揉我奶头 嗯啊视频| 一级av片app| 中出人妻视频一区二区| 国产在视频线在精品| 日日摸夜夜添夜夜添小说| 欧美+日韩+精品| 小说图片视频综合网站| 国产爱豆传媒在线观看| 亚洲欧美日韩无卡精品| 黄色女人牲交| 亚洲国产欧美人成| 久久久精品欧美日韩精品| 99热只有精品国产| 日韩欧美免费精品| 毛片一级片免费看久久久久 | 久久久精品欧美日韩精品| 久久中文看片网| 国内毛片毛片毛片毛片毛片| 亚洲黑人精品在线| 精品人妻熟女av久视频| 亚洲男人的天堂狠狠| 成人综合一区亚洲| 少妇高潮的动态图| 神马国产精品三级电影在线观看| 一区福利在线观看| 久久久久久国产a免费观看| 男女视频在线观看网站免费| 最近在线观看免费完整版| 99riav亚洲国产免费| 国模一区二区三区四区视频| 嫁个100分男人电影在线观看| 欧美xxxx黑人xx丫x性爽| 麻豆精品久久久久久蜜桃| 一本精品99久久精品77| 乱码一卡2卡4卡精品| 成人美女网站在线观看视频| 人人妻人人看人人澡| 一区二区三区激情视频| 国产午夜精品久久久久久一区二区三区 | 亚洲精品国产成人久久av| 中国美女看黄片| 成人鲁丝片一二三区免费| 精品国内亚洲2022精品成人| 日韩,欧美,国产一区二区三区 | 国产真实乱freesex| 亚洲欧美日韩高清专用| 亚洲人成网站在线播| 欧美另类亚洲清纯唯美| 乱码一卡2卡4卡精品| 成人美女网站在线观看视频| 天堂av国产一区二区熟女人妻| 午夜视频国产福利| 亚洲中文字幕一区二区三区有码在线看| 久久久久久九九精品二区国产| 亚洲乱码一区二区免费版| 88av欧美| 日韩av在线大香蕉| 久久久国产成人精品二区| 可以在线观看毛片的网站| 熟女电影av网| 3wmmmm亚洲av在线观看| 深爱激情五月婷婷| 在线免费观看不下载黄p国产 | 国产精品1区2区在线观看.| ponron亚洲| 久久人人精品亚洲av| 精品一区二区免费观看| 国产精品爽爽va在线观看网站| 欧美在线一区亚洲| 国产淫片久久久久久久久| 亚洲avbb在线观看| 国产精品野战在线观看| 免费无遮挡裸体视频| 日韩一本色道免费dvd| 草草在线视频免费看| 欧美一区二区亚洲| 国产真实乱freesex| 级片在线观看| 黄色配什么色好看| 美女黄网站色视频| 91麻豆精品激情在线观看国产| 亚洲七黄色美女视频| 在线免费十八禁| 老女人水多毛片| 日本熟妇午夜| 国产 一区精品| 欧美精品国产亚洲| 中亚洲国语对白在线视频| 春色校园在线视频观看| 一区二区三区免费毛片| 国产欧美日韩一区二区精品| 国产人妻一区二区三区在| 中文字幕久久专区| 国产熟女欧美一区二区| 国产私拍福利视频在线观看| 亚洲五月天丁香| 亚洲不卡免费看| 变态另类成人亚洲欧美熟女| 午夜福利18| 成人国产麻豆网| 婷婷六月久久综合丁香| 狠狠狠狠99中文字幕| 91麻豆av在线| 成人美女网站在线观看视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精华国产精华液的使用体验 | 亚洲乱码一区二区免费版| 久久久久久久午夜电影| 精品一区二区三区视频在线| 亚洲三级黄色毛片| 1000部很黄的大片| 国产黄a三级三级三级人| 国产人妻一区二区三区在| 亚洲人成网站高清观看| 在线天堂最新版资源| 精品乱码久久久久久99久播| 亚洲最大成人手机在线| 亚洲图色成人| 国产伦精品一区二区三区四那| 国内少妇人妻偷人精品xxx网站| 一a级毛片在线观看| 校园人妻丝袜中文字幕| 男人和女人高潮做爰伦理| 男女那种视频在线观看| 韩国av一区二区三区四区| 精品人妻偷拍中文字幕| 亚洲美女视频黄频| 男女之事视频高清在线观看| 亚洲精品久久国产高清桃花| 特大巨黑吊av在线直播| 色综合色国产| 久久精品久久久久久噜噜老黄 | 午夜a级毛片| 欧美成人性av电影在线观看| 国产美女午夜福利| 看黄色毛片网站| 亚洲美女黄片视频| 日日干狠狠操夜夜爽| 久久精品国产鲁丝片午夜精品 | 嫩草影院精品99| 干丝袜人妻中文字幕| 国产精品99久久久久久久久| 国产爱豆传媒在线观看| 久久久久久久久久黄片| 校园人妻丝袜中文字幕| aaaaa片日本免费| 午夜精品一区二区三区免费看| 国产精品一区二区三区四区免费观看 | 久久精品国产亚洲网站| 亚洲午夜理论影院| 国产精品无大码| 两个人视频免费观看高清| 极品教师在线视频| .国产精品久久| 久久99热这里只有精品18| 高清毛片免费观看视频网站| 久久人妻av系列| 国产一区二区三区视频了| 久久中文看片网| 嫁个100分男人电影在线观看| 九九爱精品视频在线观看| 久久香蕉精品热| 床上黄色一级片| 亚洲成a人片在线一区二区| 亚洲最大成人中文| 国产免费av片在线观看野外av| 国产亚洲av嫩草精品影院| netflix在线观看网站| 免费看a级黄色片| 狠狠狠狠99中文字幕| 国产精品久久电影中文字幕| 欧美日韩综合久久久久久 | 久久精品国产亚洲av香蕉五月| 欧美黑人巨大hd| 精品久久久噜噜| 午夜福利在线在线| 欧美一区二区国产精品久久精品| 国产精品美女特级片免费视频播放器| 在线观看舔阴道视频| 少妇丰满av| 给我免费播放毛片高清在线观看| 亚洲av中文字字幕乱码综合| 91av网一区二区| 日本 欧美在线| 真实男女啪啪啪动态图| 成人国产一区最新在线观看| 午夜亚洲福利在线播放| 久久久久久久久久久丰满 | 日本与韩国留学比较| 久久6这里有精品| 干丝袜人妻中文字幕| 18禁裸乳无遮挡免费网站照片| 久久久国产成人免费| 国产大屁股一区二区在线视频| 成年女人看的毛片在线观看| 色哟哟·www| 精品日产1卡2卡| 国产精品一区二区性色av| 亚洲狠狠婷婷综合久久图片| 特大巨黑吊av在线直播| 全区人妻精品视频| 男女边吃奶边做爰视频| 国产v大片淫在线免费观看| 夜夜看夜夜爽夜夜摸| a级毛片a级免费在线| 99热这里只有精品一区| 人妻夜夜爽99麻豆av| 校园人妻丝袜中文字幕| 国产在线精品亚洲第一网站| 国产精品久久久久久亚洲av鲁大| 成人无遮挡网站| 在线观看舔阴道视频| 国产免费av片在线观看野外av| 日韩亚洲欧美综合| 国产精品乱码一区二三区的特点| 国产精品久久久久久av不卡| 成人鲁丝片一二三区免费| 波野结衣二区三区在线| 久久人人爽人人爽人人片va| 久久久国产成人精品二区| 三级男女做爰猛烈吃奶摸视频| 久久久成人免费电影| 午夜爱爱视频在线播放| 亚洲性久久影院| 他把我摸到了高潮在线观看| 午夜爱爱视频在线播放| 成人高潮视频无遮挡免费网站| 美女高潮喷水抽搐中文字幕| 桃色一区二区三区在线观看| 变态另类成人亚洲欧美熟女| 欧美日韩中文字幕国产精品一区二区三区| 特大巨黑吊av在线直播| 亚洲成人久久性| 欧美激情在线99| 看片在线看免费视频| 久久精品久久久久久噜噜老黄 | 哪里可以看免费的av片| 美女高潮的动态| 亚洲专区国产一区二区| 免费av毛片视频| 99精品久久久久人妻精品| 亚洲在线观看片| 成人三级黄色视频| 精品欧美国产一区二区三| 国产亚洲精品av在线| 亚州av有码| 91麻豆av在线| 亚洲专区中文字幕在线| 午夜福利在线观看吧| 国产伦一二天堂av在线观看| 色哟哟·www| 亚洲精品456在线播放app | 99热网站在线观看| 非洲黑人性xxxx精品又粗又长| 国产毛片a区久久久久| 少妇的逼好多水| 欧美国产日韩亚洲一区| av天堂在线播放| 给我免费播放毛片高清在线观看| 久久久久免费精品人妻一区二区| 日本精品一区二区三区蜜桃| 内地一区二区视频在线| ponron亚洲| 91久久精品国产一区二区成人| 窝窝影院91人妻| 久久精品夜夜夜夜夜久久蜜豆| 1024手机看黄色片| 人妻制服诱惑在线中文字幕| 亚洲av成人av| 日本三级黄在线观看| 精品人妻1区二区| 欧美色视频一区免费| 婷婷精品国产亚洲av| 极品教师在线免费播放| 亚洲三级黄色毛片| 国产免费av片在线观看野外av| 免费看av在线观看网站| 久久久午夜欧美精品| 丝袜美腿在线中文| 国产激情偷乱视频一区二区| 亚洲av免费在线观看| 性欧美人与动物交配| 亚洲国产高清在线一区二区三| 久久久久久久精品吃奶| 成人一区二区视频在线观看| 国内揄拍国产精品人妻在线| 99热这里只有是精品在线观看| 一个人看的www免费观看视频| 亚洲av日韩精品久久久久久密| 亚洲第一电影网av| 亚洲精品在线观看二区| 性色avwww在线观看| 国产伦一二天堂av在线观看| 日本精品一区二区三区蜜桃| 校园春色视频在线观看| av中文乱码字幕在线| 国产亚洲精品久久久com| 黄色日韩在线| 校园人妻丝袜中文字幕| 看黄色毛片网站| 国产欧美日韩精品亚洲av| 中文字幕人妻熟人妻熟丝袜美| 欧美bdsm另类| 成人二区视频| av中文乱码字幕在线| 国产人妻一区二区三区在| 在线天堂最新版资源| 中亚洲国语对白在线视频| 看免费成人av毛片| 亚洲性夜色夜夜综合| 真人做人爱边吃奶动态| 亚洲18禁久久av| av在线老鸭窝| 成人三级黄色视频| 桃色一区二区三区在线观看| 老熟妇仑乱视频hdxx| a在线观看视频网站| 小说图片视频综合网站| 欧美黑人巨大hd| 老熟妇乱子伦视频在线观看| 制服丝袜大香蕉在线| 91狼人影院| 成人特级av手机在线观看| 黄色欧美视频在线观看| 美女黄网站色视频| 在线播放国产精品三级| 国内揄拍国产精品人妻在线| 精品午夜福利视频在线观看一区| 国产精品无大码| 久久久国产成人精品二区| 午夜影院日韩av| 精品无人区乱码1区二区| 国内少妇人妻偷人精品xxx网站| 麻豆成人午夜福利视频| 1000部很黄的大片| 久久午夜亚洲精品久久| 免费观看在线日韩| 国产亚洲精品久久久com| 亚洲电影在线观看av| 久久午夜亚洲精品久久| 欧美三级亚洲精品|