• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Detection of Lung Tumor Using ASPP-Unet with Whale Optimization Algorithm

    2022-08-24 07:01:46MimounaAbdullahAlkhonainiSiwarBenHajHassineMarwaObayyaFahdAlWesabiAnwerMustafaHilalManarAhmedHamzaAbdelwahedMotwakelandMesferAlDuhayyim
    Computers Materials&Continua 2022年8期

    Mimouna Abdullah Alkhonaini,Siwar Ben Haj Hassine,Marwa Obayya,Fahd N.Al-Wesabi,Anwer Mustafa Hilal,Manar Ahmed Hamza,Abdelwahed Motwakel and Mesfer Al Duhayyim

    1Department of Computer Science,College of Computer and Information Sciences,Prince Sultan University,11564,Saudi Arabia

    2Department of Computer Science,College of Science and Arts,King Khalid University,Mahayil,Asir,61913,Saudi Arabia

    3Department of Biomedical Engineering,College of Engineering,Princess Nourah Bint Abdulrahman University,Riyadh,11671,Saudi Arabia

    4Department of Computer and Self Development,Preparatory Year Deanship,Prince Sattam bin Abdulaziz University,AlKharj,16278,Saudi Arabia

    5Department of Natural and Applied Sciences,College of Community-Aflaj,Prince Sattam bin Abdulaziz University,16278,Saudi Arabia

    Abstract: The unstructured growth of abnormal cells in the lung tissue creates tumor.The early detection of lung tumor helps the patients avoiding the death rate and gives better treatment.Various medical image modalities can help the physicians in the diagnosis of disease.Many research works have been proposed for the early detection of lung tumor.High computation time and misidentification of tumor are the prevailing issues.In order to overcome these issues,this paper has proposed a hybrid classifier of Atrous Spatial Pyramid Pooling(ASPP)-Unet architecture with Whale Optimization Algorithm(ASPP-Unet-WOA).To get a fine tuning detection of tumor in the Computed Tomography(CT)of lung image,this model needs pre-processing using Gabor filter.Secondly,feature segmentation is done using Guaranteed Convergence Particle Swarm Optimization.Thirdly,feature selection is done using Binary Grasshopper Optimization Algorithm.This proposed (ASPPUnet-WOA)is implemented in the dataset of National Cancer Institute(NCI)Lung Cancer Database Consortium.Various performance metric measures are evaluated and compared to the existing classifiers.The accuracy of Deep Convolutional Neural Network (DCNN) is 93.45%,Convolutional Neural Network (CNN) is 91.67%,UNet obtains 95.75% and ASPP-UNet-WOA obtains 98.68%.compared to the other techniques.

    Keywords: Classifier;whale optimization;ASPP-unet;gabor filter;lung tumor

    1 Introduction

    In the medical diagnostics,digital image processing plays a vital role[1].Biomedical image processing is used to process the digital image in the field of biomedical science[2].For the diagnosis of disease at the early stage,bio-medical field needs an accurate detection using computing intelligent approach[3].It could provide more precise and active treatment for the disease.There are various medical image modalities like Magnetic Resonance Imaging(MRI),ultrasound,Computed Tomography(CT)scanners that are used in the diagnosis of image in a greater way.CT is the most effective approach of lung tumor detection and tumor pathology[4].

    The analysis of tumor is a tedious and time consumption task.CT plays a vital role and more sensitive in the determination of tumor size.Computer Aided Diagnosis (CAD) has been used for the early prediction of lung cancer[5].As far as CAD model is concerned,sensitivity,specificity,cost effectiveness and accuracy are achieved in the analysis of lung cancer[6].For enhancing the affected region of the disease,CAD uses the digital images[7].The prediction of diseases is done through the information gathered from the image modalities and as well as the clinical analysis is carried out by the radiologist for the final decision[8].

    The use of multimodal medical images will lead the physician to take more time to diagnosis and provides a better treatment.Therefore,in order to get an accurate and an effective treatment,the biomedical field needs an automatic segmentation of tumor which relieves the physicians by increasing the consistency and efficiency[9-11].

    The issues in the existing techniques have high consumption of energy,inaccurate detection,and high time complexity.To overcome these problems,the proposed work gives more accurate detection of tumor in the lung and similarly,it detects the tumor at the earlier stage in an effective manner.

    The contributions of the proposed work are:

    1.To implement an enhanced version of feature selection by applying binary grasshopper optimization algorithm.

    2.Proposed work(ASPP-UNet-WOA)is applied for the detection of tumor in the lung image by optimizing the features subset.

    The rest of the research article is written as follows:Section 2 discusses the related work on various classification techniques of lung tumor image processing and methods.Section 3 shows the algorithm process and general working methodology of proposed work.Section 4 evaluates the implementation and results of the proposed method.Section 5 concludes the work and discusses the result evaluation.

    2 Related Work

    The abnormal growth of cells in the lung tissue is considered as tumor.Early detection and prevention of high risk in the treatment of the disease are the essential things.In medical image diagnosis of disease,the accuracy and consistency are very important things for the survival of human beings.In the training of CT lung image data set,Feed Forward Neural Network (FFNN),Feed Forward Back Propagation (FWBP) were used.For providing better classification of tumor,Feed Forward Back Propagation(FWBP)was applied[12].

    It is difficult to diagnosis using CNN and sometimes it detects falsely.Moreover,3D CNN has handled this type of lung pathology.In order to produce better result,it combines the max pooling layer and convolutional layer which were applied to produce each CNN.ReLU is applied here as activation function along with Softmax layer which is applied fully to connect the layer and finally it produces the result[13].This paper[14]proposed an automatic detection of lung tumor using public dataset of LIDC-IRDI.It uses MultiScene Deep Learning Framework which provides CT lung images as input and obtains probability distribution of distinct gray levels using threshold segmentation.Tab.1 shows the survey on existing algorithms in the base of tumor in lung image.

    Table 1:Existing algorithms in the base of tumor in lung image

    3 Methodology

    One of the high risky diseases is lung tumor.But early prediction can save the life of a patient.But it is undeniable that the prediction of tumor is a challenging task.This proposed work consists of following phases:pre-processing,segmentation,extraction of the feature,feature selection,and classifying of tumor from the CT lung image.These phases are shown in Fig.1.

    Fig.1 shows the two phases namely,training phase and testing phase.In the segmentation phase,using Guaranteed Convergence Particle Swarm Optimization Algorithm is applied in the filtered input lung tumor image(GCPSOA).The feature extraction is done using GLCM and in the feature selection,binary grasshopper optimization algorithm (BGOA) is used.From the selected features,tumor lung image is classified using Atrous Spatial Pyramid Pooling(ASPP)-Unet architecture with whale optimization algorithm(ASPP-Unet-WOA).

    3.1 Pre-processing

    Pre-processing is the most significant step in the detection of lung tumor.To enhance the accuracy in the detection of tumor,removal of unnecessary signals in the image pre-processing are needed.In this work Gabor filter is used to remove the noise in the lung tumor image.

    Figure 1:Architecture of proposed work

    3.1.1 Gabor Filter

    Gabor is a multi-scale,multi resolution filter[23,24].Gabor filter can be applied in four different orientations and five different frequency values.The steps involved in Gabor filter using Gaussian rule can be referred in the article[25].

    Apply the Gaussian function of standard deviation to the lung tumor image (img)_(i,j) with different angles like 0°,20°,40°,60°,120°and various orientations such as 60,80,120 and 140 using Eq.(1).

    where,

    ωi0,ωj0-Centre frequency ofiandjdirections of image.

    σi,σj-Standard deviation of the Gaussian function withiandjaxis or direction.

    i,j-Position of the image in pixel format.

    Step 4:Substitute the Eq.(1)in Eq.(2).

    3.1.2 Data Augmentation

    To get better quality of classification,data augmentation process is done in the Lung image.It involves transformation of CT lung image performing rotation at 90 degrees and flipping the image horizontal operation[26-29].

    3.1.3 Normalization of the Image Using Min-Max Normalization Technique

    To normalize the input CT lung image of size 512×512 pixels and the value of intensity between[0,1]is evaluated in Eq.(5)

    Here,piis the normalized intensity value of position of imageqi(1=1,2,...,n)and intensity values of maximum and minimum are represented asmax (q)andmin (q).After applying the normalization,the size of image gets resized to 256×256 pixels[30,31].

    3.2 Segmentation of Lung Tumor Image

    Segmentation is a process of dividing the filtered lung tumor image into sub-regions.To detect the tumor easily,segmentation process is applied.In this work,Guaranteed Convergence Particle Swarm Optimization Algorithm is applied (GCPSOA).Let assume that population of the swarm ismaxparticles in the dimensional space ofD.Then the optimal position ofjthparticle is represented asposi,i=1,2,...,max.Refer Eqs.(6)and(7).

    where,itshows iteration number and dimensionD.xi,D(it)isDthdimension variable of theithparticle in the iteration.veli,Dis the velocity for particlepbesti,D(it)in the dimension variable.The global best position of swarm population is represented assgbestj,D(it).coef1andcoef2coefficient variables with random vectors likernd1andrnd2and the diameter of search areaρa(bǔ)re uniformly distributed in the interval of[0,1].The fitness function of particle swarm optimization algorithm is defined in Eq.(8)

    The convergence of particles is determined by implementing the Eqs.(6) and (7).Then transformed into the dynamic form as described in Eq.(9).

    where,φ1=coef1.rnd1,φ2=coef2.rnd2andφ=φ1+φ2.The optimal positionposiof the particle and finally it converges at the position of swarm’s populationspopj.The diameter search area can be updated as given in Eq.(10).

    where,num_successes and num_failures are represented as number of successes and failures,suc and fac are defined as threshold parameter values.

    3.3 Feature Selection

    In order to get fine tuning classification of image,feature selection task is required by which reducing the features quantity by means of removing redundant and irrelevant information is possible.In this work,Binary Grasshopper Optimization Algorithm(BGOA)is implemented.Grasshoppers are treated as a pest.The key feature of these pests is connected to their movements.At their larval state,it has a slow movement when compared to its adult state.Since at the adult state,its movement is rapid.The movement of the grasshoppers can be represented as in Eq.(11).

    where,upbdis upper bound in thedthdimension,lwbdis lower bound in thedthdimension.Tdis the target value ofdthdimension,cis the value of coefficient which reduces the proportional value of the comfort zone to the iterations and it is evaluated as per Eq.(12).

    Here,iteris the current iteration.Lis the total number of iterations,cmaxis the maximum coefficient value of 1,cminis the minimum coefficient value of 0.00001.This binarization value of continuous space transforms into 0 or 1.For this binary transformation,it needs Transfer Function(TF).Now the Eq.(11)has changed into Eq.(13)as given below:

    Transfer Function (TF) has two types of functions based on their shapes such as Sigmoidal (Sshaped)and Hyperbolic tan(V-shaped).The Sigmoidal(S-shaped)function is represented in Eq.(14)

    whereΔAindicates the velocity of search agent atithrepetition.Now the current location of the grasshopper is based on the probability value which is given in Eq.(15):

    where thedthdimension of the grasshopper is denoted as,andrnd1is a random number that lies between 0 and 1.

    Hyperbolic tan(V-shaped)is represented as(16)

    Then the improved version of current location grasshopper is represented in Eq.(16):

    Herernd2is the random number between 0 and 1.See Eq.(17)

    For every iteration,fitness function is calculated.It is carried out because the aim of the feature selection is to enhance the accuracy and decrease the number of selected features.For the best solution,the nominated features are to be selected.For these nominated features,the classification rate is also reduced.The fitness function for the selected features is defined in Eq.(18):

    where the taxonomy error rate of the classifier is represented asγR(D),|N|is the number of features and|R|is the number of selected features andαis the taxonomy error rate,βis the length of the subset.Hence,α∈[0,1]and the value ofβ=(1-α).The algorithm of Binary Grasshopper Optimization Algorithm(BGOA)is discussed.

    3.4 Classification Using ASPP-Unet-WOA

    The selected features are provided to the ASPP-Unet(Atrous spatial pyramid pooling)architectures as the input.ASPP-Unet model is similar to the U-Net model in the aspects of contracting the path with CNN model.The architecture of ASPP-Unet model is given in the Fig.2.

    Figure 2:Architecture of ASPP Unet

    Fig.2 shows a pyramid-like structure and each down layer consists of two sequential unpadded 3×3 convolutions.Each convolution operation is executed by an activation function in the basis of element-wise.After the convolution execution,the feature maps get doubled.In this work Exponential linear unit(Elu)function is applied to perform the activation function and it is given in Eq.(19):

    whereαis a parameter value between 0 and 1.To reduce the resolution of feature maps,2×2 max pooling operation is applied in the contracting path between the lower and the upper layers.The size of the feature maps gets reduced toof its original image in the bottom layer with 3×3 convolution at the rate of 1,2,4,8,16 which is implemented parallelly.The objective function of fitness in each iteration is given in Eqs.(20)and(21)

    whereβis the constant value of 0.5,E is the overall error rate,m is the number of selected features,and S is the number of swarms.Hunting of prey with the help of searching agent(best)and chasing of prey are the behaviours of whale,and due to that the position gets changed in an encircled way.This can be defined in Eqs.(22)and(23):

    where,C and P are the coefficient vector values,j is the iteration.represents the position of vector value,Y*denotes the best solution of position vector.These coefficient vector values are shown in the Eqs.(24)and(25).

    eis the linear decreasing value from 3 to 0 andrndis the random vector value [-1,1].In the formulation of bubble net phase for the search of prey and the updating position of spiral process are defined in Eq.(26)

    The humpback whales chase around the prey within the spiral-shaped and the shrinking circle simultaneously to catch the prey.The algorithm of the proposed work using ASPP-Unet-WOA is given below:

    Algorithm 1:Classification using ASPP-Unet-WOA Input:Selected features of image,Atrous CNN layer and train the data set Output:Optimized solution in classify the tumor in the lung image Step 1:Initialize the population of WOA algorithm Step 2:Calculate the objective fitness function using Eq.(20)Step 3:While(j<max-iterations)Step 4:For each search agent(Continued)

    Algorithm 1:Continued Step 5:Construct ASPP-Unet with WOA Step 6:Update e,p,l and m Step 7:If(m<0.5)Step 8:If(|P|<2)Step 9:Change the current position of search agent using Eq.(22)Step 10:Else If(|P|>2)Step 11:Randomly choose the search agent Step 12:Search to find the global best position of search agent.Step 13:End if Step 14:Else if(m>0.5)Step 15:Update the position of current search agent using Eq.(26)Step 16:By using Eqs.(24)and(25)replace the new best position globally.Step 17:End if Step 18:Update the best solution in the search agent Step 19:j=j+1 Step 20:End While Step 21:Return the best position of the search agent

    4 Result and Analysis

    4.1 Dataset Description

    For the early detection of lung tumor,this work has implemented using 150 samples of lung CT images.The images are obtained from the NCI Lung Cancer Database Consortium.Computed Tomography(CT)scan images are used in this study in order to detect the tumor in the lung image in an effective and accurate way.

    The statistical performance of metric measures are given below:

    Accuracy

    It is used to evaluate the classification of correct lung tumor images accurately.See Eq.(27).

    Sensitivity

    It is used in the evaluation of sensitivity to measure how far the lung tumor images are identified.See Eq.(28).

    Specificity

    It is used to evaluate the rate between True Negative(TN)and True Positive(TP).See Eq.(29).

    Dice Similarity Coefficient

    It is used to evaluate the ratio between tumor lung images and non-tumor lung images.See Eq.(30)

    Precision

    See Eq.(31).

    Recall

    See Eq.(32).

    JACCARD Similarity Index(JSI)

    It is used to evaluate the similarity between the actual tumor image pixels and the predicted tumor image pixels using Eq.(33):

    False Positive Rate(FPR)

    It is used to evaluate the ratio between correctly identified pixels of brain image to wrongly identified pixels of brain image using Eq.(34):

    False Negative Rate(FNR)

    It is used to evaluate the positive proportion value but negative pixel value is identified using

    Performance metric based on error rate of the Root Mean Square Error(RMSE),Signal-to-Noise-Ratio(SNR),Peak Signal-to-Noise-Ratio(PSNR),and Mean Absolute Error(MAE).The error rate value is calculated as fro Eqs.(36)to(37).

    Speckle Suppression Index Value(SSI)

    Speckle Suppression and Mean Preservation Index(SMPI)

    where,Ifis the filtered image andIois the noisy image.This SSI tends to be less than 1 if the filter performance is efficient in reducing the speckle noise(Sheng and Xia,1996).Tab.2 shows SSI index value for filter image.

    Table 2:SSI value for filtering lung tumor image

    Tab.2 shows the performance of median filter,adaptive median filter,average filter,rolling guidance filter and Gabor filter with gaussian rule that are applied.Here Gabor filter shows very good performance in suppressing the noise of speckle over the other filters.Gabor filter undergoes various frequency and orientation which enhance the image for the further process.Tab.3 shows the SMPI index value for the filtering image.

    Tab.3 shows the performance of median filter,adaptive median filter,average filter rolling guidance filter and Gabor filter with gaussian rule that are applied.Gabor filter got good performance in filtering the noise in the image as well as it enhances the contrast of the image.Fig.3 shows the sample images after applying the filtering.

    4.2 Segmentation

    In the segmentation process,this work has implemented the Guaranteed Convergence Particle Swarm Optimization Algorithm (GCPSOA).This work is compared with the existing segmentation techniques of the watershed,Otsu threshold algorithm[32,33].Moreover,GCPSO algorithm is based on the population and searching for the best solution.It uses the velocity as an impartial value of the function.Update its velocity value when the particle comes closer to the best solution.Fig.3 shows the segmentation of the lung tumor detection output using GCPSO algorithm.

    Table 3:SMPI value for filtering the lung tumor image

    Figure 3:Segmentation

    4.3 Feature Selection

    This work has implemented the Binary Grasshopper Optimization Algorithm(BGOA)for feature selection of lung tumor image.Tab.4 shows the sensitivity,specificity and precision performance comparison using various feature of selection techniques such as Particle Swarm Optimization Algorithm(PSOA),K-means Clustering(KmC)and BGOA.

    Table 4:Feature selection

    Tab.4 shows sensitivity,specificity and precision which provide the best performances for BGO algorithm compared to the existing algorithms.BGOA provides the optimized features selection of the lung tumor image.

    Fig.4 shows the accuracy rate of BGOA that outperforms when compared to the other existing algorithms in the selection of features from the lung tumor images.

    Figure 4:Accuracy rate of feature selection

    4.4 Classification

    The proposed ASPP-Unet-WOA technique is accurately identified from the lung tumor image.Gabor filter with Gaussian rule is used to remove the noise from the images.Using Guaranteed Convergence Particle Swarm Optimization Algorithm(GCPSOA)is used to segment the lung tumor from the pre-processed image.After segmentation,BGOA is used to select the relevant features from the CT lung image,and it enhances the classification accuracy.After feature selection process,the selected features are provided to the ASPP-Unet-WOA classifier to detect the lung tumor.

    The proposed work is compared with the existing classifiers of DCNN,CNN,UNet.Tab.4 shows the performance metric measures of DSC,FPR,FNR and JSI using Eqs.(30)to(35).

    Tab.5 shows the analysis of various metric measures that produce the best performance compared to the other existing approach.The metric measure of DSC value is highly achieved as 98.67%compared with DCNN of 88.21%,CNN of 84.78%,and UNet is 86.56%.FPR rate proposed algorithm has secured 0.0525 rate and FNR rate is 0.0041 compared to the existing model.JACCARD Similarity Index(JSI)measure has got 98.75%.Tab.5 shows the computation time of the proposed work ASPPUNet-WOA at various stages.

    Table 5:Comparison of various metric measures

    From the Tab.5.it is observed that the computation times on running the detection of tumor program in DCNN,CNN,UNet and ASPP-UNet-WOA approaches are provided.The robustness of ASPP-UNet-WOA performs well better in both the aspects of accuracy and the time taken for computation.Fig.5 shows the accuracy rate of classifier model.

    Figure 5:Accuracy

    Fig.5 shows the accuracy rate of proposed work ASPP-UNet-WOA technique Tab.6.This proposed study outperforms with the other existing algorithms in the early detection of lung tumor.Tab.7 shows the comparison of the proposed work with the existing scheme.

    Table 6:Computation time of ASPP-UNet-WOA

    Table 7:Comparison of proposed work with the existing scheme

    From the Tab.7.it is observed that the proposed scheme has obtained the best accuracy for NCI LCDC dataset compared to the existing methods.The comparison performance metrics of accuracy,sensitivity,specificity,FPR,and FNR are better for the proposed method compared to the existing techniques.From these results,it is stated that the proposed ASPP-Unet-WOA method is the best selection for the early diagnosis of lung tumor.

    From the Fig.6.it is observed that PSNR value must be increased and MAE value must be decreased for the best detection of tumor image.The proposed approach gives the better error rate value on the basis of accuracy.In the proposed work,the value of PSNR gets increased and the value of MAE gets decreased compared to the other existing techniques.

    Figure 6:Error rate in accuracy

    5 Conclusions

    This paper presents the detection of lung tumor using ASPP-UNet with whale optimization algorithm.Diagnosis at the early stage can decrease the death rate.In this paper,ASPP-UNet-WOA has proposed various processes like pre-processing,segmentation,feature selection and classification or detection of tumor in the CT lung image.In the pre-processing stage,Gabor filter with Gaussian rule is used.Then Guaranteed Convergence Particle Swarm Optimization Algorithm (GCPSOA) is used for the segment of tumor part in the CT lung image.After the segmentation process,the relevant features are selected using BGOA technique.These optimized features are provided to the classifier of ASPP-UNet-WOA and lung tumor is effectively detected.This paper collected the dataset from NCI lung cancer database consortium.The accuracy of DCNN is 93.45%,CNN is 91.67%,UNet obtains 95.75% and ASPP-UNet-WOA obtains 98.68%.For the future studies,the proposed work can be extended to the diagnosis strategies.

    Acknowledgement:The authors would like to acknowledge the support of Prince Sultan University for paying the Article Processing Charges(APC)of this publication.

    Funding Statement:The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number (GRP/303/42).www.kku.edu.sa Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R203),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    午夜久久久久精精品| 成人毛片60女人毛片免费| 日本黄大片高清| 免费看a级黄色片| 高清日韩中文字幕在线| 国产免费福利视频在线观看| 亚洲成人中文字幕在线播放| 91久久精品国产一区二区三区| 岛国在线免费视频观看| 亚洲国产精品成人久久小说| 高清在线视频一区二区三区 | 免费黄网站久久成人精品| 欧美潮喷喷水| 亚洲成人av在线免费| 久久欧美精品欧美久久欧美| 色吧在线观看| 少妇裸体淫交视频免费看高清| 男插女下体视频免费在线播放| 欧美丝袜亚洲另类| 免费观看精品视频网站| 九草在线视频观看| 亚洲精品久久久久久婷婷小说 | 少妇猛男粗大的猛烈进出视频 | 午夜福利网站1000一区二区三区| 亚洲av男天堂| 欧美zozozo另类| 国产在视频线精品| 成人二区视频| 日韩成人伦理影院| 久久久亚洲精品成人影院| 搡女人真爽免费视频火全软件| 91久久精品国产一区二区三区| 久久午夜福利片| 三级国产精品片| 亚洲av成人精品一区久久| 日韩国内少妇激情av| 午夜福利网站1000一区二区三区| 夜夜看夜夜爽夜夜摸| 人妻制服诱惑在线中文字幕| 亚洲人成网站在线观看播放| 蜜桃久久精品国产亚洲av| 国产单亲对白刺激| 亚洲人与动物交配视频| 久久99热这里只频精品6学生 | 欧美bdsm另类| 国产精品一区二区性色av| av.在线天堂| 日韩,欧美,国产一区二区三区 | 亚洲欧洲日产国产| 好男人在线观看高清免费视频| 欧美成人精品欧美一级黄| 国产淫语在线视频| 永久网站在线| 国产一区二区在线观看日韩| 一个人免费在线观看电影| 精品一区二区三区视频在线| 国产色婷婷99| av天堂中文字幕网| 久久久久久久久大av| 99九九线精品视频在线观看视频| 成人性生交大片免费视频hd| 亚洲国产精品久久男人天堂| kizo精华| 1000部很黄的大片| 有码 亚洲区| av国产久精品久网站免费入址| 免费看av在线观看网站| 久久久久久久久久成人| 美女被艹到高潮喷水动态| 天堂网av新在线| 国产极品精品免费视频能看的| 日韩欧美三级三区| 国产精品熟女久久久久浪| 最近最新中文字幕大全电影3| 国产av码专区亚洲av| 七月丁香在线播放| 老司机影院成人| 老师上课跳d突然被开到最大视频| 国产av码专区亚洲av| 亚洲精品色激情综合| 国产精华一区二区三区| 欧美成人午夜免费资源| 国产淫片久久久久久久久| 日韩欧美 国产精品| av播播在线观看一区| 国产免费一级a男人的天堂| 97人妻精品一区二区三区麻豆| 搡女人真爽免费视频火全软件| 国产黄a三级三级三级人| 午夜亚洲福利在线播放| 亚洲综合精品二区| 日韩一区二区三区影片| 国产一区有黄有色的免费视频 | 非洲黑人性xxxx精品又粗又长| 国产又黄又爽又无遮挡在线| 青春草视频在线免费观看| 99热精品在线国产| 色5月婷婷丁香| 欧美激情久久久久久爽电影| 22中文网久久字幕| 男女下面进入的视频免费午夜| 成人国产麻豆网| 国产av不卡久久| 青春草亚洲视频在线观看| 午夜免费激情av| 成人亚洲精品av一区二区| 女人久久www免费人成看片 | 国产激情偷乱视频一区二区| av免费观看日本| 91久久精品国产一区二区成人| 久久精品国产亚洲av天美| 在线a可以看的网站| 亚州av有码| 成人性生交大片免费视频hd| 日日摸夜夜添夜夜添av毛片| 七月丁香在线播放| 韩国av在线不卡| 国产伦在线观看视频一区| 亚洲精品日韩av片在线观看| 在现免费观看毛片| 女的被弄到高潮叫床怎么办| 欧美高清成人免费视频www| 寂寞人妻少妇视频99o| 床上黄色一级片| 国产麻豆成人av免费视频| 尾随美女入室| 亚洲综合色惰| 久久久久性生活片| 一级黄色大片毛片| 亚洲精品国产成人久久av| 欧美3d第一页| 欧美区成人在线视频| av又黄又爽大尺度在线免费看 | 国产午夜福利久久久久久| 精品久久久久久久久av| 特大巨黑吊av在线直播| 国产免费一级a男人的天堂| 我要看日韩黄色一级片| 高清在线视频一区二区三区 | 一级毛片我不卡| 成人一区二区视频在线观看| 五月伊人婷婷丁香| 国产老妇伦熟女老妇高清| 国产成人午夜福利电影在线观看| 精品国产三级普通话版| 国产黄色视频一区二区在线观看 | 18禁裸乳无遮挡免费网站照片| 啦啦啦观看免费观看视频高清| 午夜日本视频在线| 亚洲婷婷狠狠爱综合网| 久久久欧美国产精品| 成人三级黄色视频| 1024手机看黄色片| 亚洲色图av天堂| 亚洲av免费在线观看| 亚洲欧美一区二区三区国产| 尤物成人国产欧美一区二区三区| 91狼人影院| 成人亚洲欧美一区二区av| 成年女人看的毛片在线观看| 日本与韩国留学比较| av又黄又爽大尺度在线免费看 | 国产老妇伦熟女老妇高清| 午夜精品国产一区二区电影 | 丰满少妇做爰视频| 色视频www国产| 国产成人精品一,二区| 国产精品麻豆人妻色哟哟久久 | 免费观看在线日韩| 在线观看美女被高潮喷水网站| 色尼玛亚洲综合影院| 国产免费一级a男人的天堂| 观看美女的网站| 亚洲天堂国产精品一区在线| 久久99精品国语久久久| 18禁裸乳无遮挡免费网站照片| 少妇的逼水好多| 亚洲欧美成人综合另类久久久 | 中文欧美无线码| 97热精品久久久久久| 男女那种视频在线观看| 3wmmmm亚洲av在线观看| 最近2019中文字幕mv第一页| 九九在线视频观看精品| 嫩草影院新地址| av在线老鸭窝| 哪个播放器可以免费观看大片| 一边摸一边抽搐一进一小说| 国产亚洲精品av在线| www.色视频.com| 亚洲人与动物交配视频| 熟女电影av网| 女人十人毛片免费观看3o分钟| 国产一区有黄有色的免费视频 | 国产精品,欧美在线| 最近2019中文字幕mv第一页| 精品熟女少妇av免费看| 国产精品女同一区二区软件| 欧美潮喷喷水| 日韩大片免费观看网站 | 国内少妇人妻偷人精品xxx网站| 久久精品久久精品一区二区三区| 少妇的逼水好多| 日韩制服骚丝袜av| 日本黄色片子视频| 人妻夜夜爽99麻豆av| 日本爱情动作片www.在线观看| 91精品国产九色| 国产免费又黄又爽又色| 可以在线观看毛片的网站| 在线天堂最新版资源| 亚洲精品成人久久久久久| 美女内射精品一级片tv| 亚洲精华国产精华液的使用体验| 国产高清视频在线观看网站| 国产精品伦人一区二区| 日本黄大片高清| 69人妻影院| 国产成人精品一,二区| 最近视频中文字幕2019在线8| 中文字幕亚洲精品专区| 欧美又色又爽又黄视频| 久久久色成人| 小说图片视频综合网站| av视频在线观看入口| 国产欧美日韩精品一区二区| 99久久精品热视频| 美女高潮的动态| 国产一级毛片七仙女欲春2| 久久99热这里只频精品6学生 | av在线观看视频网站免费| 精品久久久久久久末码| 国产淫语在线视频| 欧美三级亚洲精品| eeuss影院久久| 亚洲av电影在线观看一区二区三区 | 国产美女午夜福利| 国产探花在线观看一区二区| 国产极品精品免费视频能看的| 久久精品夜夜夜夜夜久久蜜豆| 国产精品女同一区二区软件| 久久久国产成人精品二区| 岛国毛片在线播放| 有码 亚洲区| 日本三级黄在线观看| 久久欧美精品欧美久久欧美| 亚洲欧美中文字幕日韩二区| 插逼视频在线观看| 91久久精品国产一区二区成人| 国产午夜精品一二区理论片| 亚洲内射少妇av| 中文字幕免费在线视频6| 91午夜精品亚洲一区二区三区| 午夜福利在线观看吧| 91精品一卡2卡3卡4卡| 免费不卡的大黄色大毛片视频在线观看 | 欧美极品一区二区三区四区| 91aial.com中文字幕在线观看| 精品欧美国产一区二区三| 精品酒店卫生间| 亚洲精品国产成人久久av| 99热这里只有是精品50| 免费av毛片视频| 欧美3d第一页| 国产极品天堂在线| 三级毛片av免费| 全区人妻精品视频| 午夜福利在线观看吧| 精品少妇黑人巨大在线播放 | 人妻制服诱惑在线中文字幕| 国产高清国产精品国产三级 | 我要搜黄色片| 看片在线看免费视频| 亚洲综合色惰| 欧美成人免费av一区二区三区| 亚洲精品乱码久久久久久按摩| 性色avwww在线观看| 国产精品乱码一区二三区的特点| 少妇裸体淫交视频免费看高清| 国产精品野战在线观看| 天堂√8在线中文| 欧美成人午夜免费资源| 色噜噜av男人的天堂激情| 久久精品国产亚洲网站| 一区二区三区高清视频在线| 国产老妇伦熟女老妇高清| 一级黄色大片毛片| 欧美xxxx黑人xx丫x性爽| 亚洲在久久综合| a级毛片免费高清观看在线播放| 观看免费一级毛片| 久久久久精品久久久久真实原创| 男人狂女人下面高潮的视频| 亚洲欧美日韩无卡精品| 久久久久性生活片| 亚洲精品久久久久久婷婷小说 | 99视频精品全部免费 在线| 69人妻影院| 在线播放无遮挡| 九色成人免费人妻av| 午夜久久久久精精品| 免费播放大片免费观看视频在线观看 | 国产亚洲精品av在线| 国产黄a三级三级三级人| 国产精品麻豆人妻色哟哟久久 | 卡戴珊不雅视频在线播放| 日韩欧美国产在线观看| 99视频精品全部免费 在线| 九色成人免费人妻av| 欧美成人a在线观看| 久久久久久久国产电影| 久久久久久久久久久免费av| 亚洲av男天堂| 熟女人妻精品中文字幕| 日韩在线高清观看一区二区三区| 国产成人精品久久久久久| 国产精品爽爽va在线观看网站| 极品教师在线视频| 国产午夜福利久久久久久| 国产高清国产精品国产三级 | 中文字幕人妻熟人妻熟丝袜美| 全区人妻精品视频| 色综合站精品国产| 又爽又黄无遮挡网站| 波野结衣二区三区在线| 99在线人妻在线中文字幕| 国产单亲对白刺激| 国产熟女欧美一区二区| 美女xxoo啪啪120秒动态图| 秋霞伦理黄片| 欧美性猛交黑人性爽| 夜夜爽夜夜爽视频| 国产男人的电影天堂91| 国产又黄又爽又无遮挡在线| 丰满人妻一区二区三区视频av| 别揉我奶头 嗯啊视频| 国产一区二区在线观看日韩| 成年av动漫网址| 久久精品国产自在天天线| 久久精品国产99精品国产亚洲性色| 婷婷色麻豆天堂久久 | 深夜a级毛片| 三级国产精品片| 久久欧美精品欧美久久欧美| a级毛色黄片| 精品人妻偷拍中文字幕| 免费黄色在线免费观看| av在线观看视频网站免费| 一级黄片播放器| 精品人妻偷拍中文字幕| 男人和女人高潮做爰伦理| 亚洲中文字幕日韩| 99久国产av精品国产电影| 美女脱内裤让男人舔精品视频| 国产精品久久视频播放| 色网站视频免费| 一区二区三区免费毛片| 色综合色国产| 97在线视频观看| 国产91av在线免费观看| 色综合色国产| 爱豆传媒免费全集在线观看| 精品人妻熟女av久视频| 日韩,欧美,国产一区二区三区 | 日韩一区二区视频免费看| 日韩欧美三级三区| 国产91av在线免费观看| 在线天堂最新版资源| 床上黄色一级片| 啦啦啦韩国在线观看视频| 狠狠狠狠99中文字幕| 亚洲成av人片在线播放无| 国产高清国产精品国产三级 | 一二三四中文在线观看免费高清| h日本视频在线播放| 欧美成人a在线观看| 国产精品1区2区在线观看.| 亚洲婷婷狠狠爱综合网| 日本黄色视频三级网站网址| 男人和女人高潮做爰伦理| av在线蜜桃| 精品一区二区三区视频在线| 亚洲av中文av极速乱| 麻豆乱淫一区二区| 亚洲欧美日韩无卡精品| 免费黄网站久久成人精品| 草草在线视频免费看| 99久久人妻综合| 久久久成人免费电影| 亚洲国产精品国产精品| 国产一区亚洲一区在线观看| 国产欧美日韩精品一区二区| 亚洲av电影在线观看一区二区三区 | 国产午夜精品久久久久久一区二区三区| 亚洲国产最新在线播放| 日韩一区二区视频免费看| 亚洲国产精品专区欧美| 国产单亲对白刺激| 亚洲欧美精品自产自拍| 一级毛片电影观看 | 黄色一级大片看看| 久久久久久久久久黄片| 国产v大片淫在线免费观看| 1000部很黄的大片| 国语对白做爰xxxⅹ性视频网站| 夜夜看夜夜爽夜夜摸| 在现免费观看毛片| 亚洲精品日韩在线中文字幕| 国产69精品久久久久777片| 国产精品无大码| 国产精品伦人一区二区| 99久久精品热视频| 中文字幕久久专区| 青春草亚洲视频在线观看| 内射极品少妇av片p| 亚洲av熟女| 老司机影院毛片| 国产精华一区二区三区| 日韩一本色道免费dvd| 建设人人有责人人尽责人人享有的 | 听说在线观看完整版免费高清| 亚洲,欧美,日韩| 丝袜美腿在线中文| 最近中文字幕2019免费版| 春色校园在线视频观看| 22中文网久久字幕| 男人狂女人下面高潮的视频| 日韩制服骚丝袜av| 联通29元200g的流量卡| 听说在线观看完整版免费高清| 天天一区二区日本电影三级| 精品久久久久久久末码| 午夜福利网站1000一区二区三区| 国产视频内射| 久久久久精品久久久久真实原创| 国产一区有黄有色的免费视频 | 成人午夜高清在线视频| 国产精品久久久久久久电影| 欧美xxxx性猛交bbbb| 亚洲乱码一区二区免费版| 女的被弄到高潮叫床怎么办| 亚洲一级一片aⅴ在线观看| 国产免费又黄又爽又色| 国产精品精品国产色婷婷| 日韩国内少妇激情av| 美女内射精品一级片tv| 欧美精品一区二区大全| 国产69精品久久久久777片| 日韩精品有码人妻一区| 天堂网av新在线| 国产精品爽爽va在线观看网站| 日韩国内少妇激情av| 国产av在哪里看| 啦啦啦啦在线视频资源| 免费播放大片免费观看视频在线观看 | 三级男女做爰猛烈吃奶摸视频| 免费观看的影片在线观看| 欧美精品一区二区大全| 男人狂女人下面高潮的视频| av免费在线看不卡| 精品久久久久久久人妻蜜臀av| 18禁在线播放成人免费| 在线观看66精品国产| 老司机影院成人| 国产av在哪里看| 免费黄网站久久成人精品| 黑人高潮一二区| 成人午夜精彩视频在线观看| 久久6这里有精品| 日本黄色视频三级网站网址| 秋霞在线观看毛片| 久久亚洲精品不卡| 一级毛片aaaaaa免费看小| 最近视频中文字幕2019在线8| 国产精品国产高清国产av| 18禁裸乳无遮挡免费网站照片| 亚洲av二区三区四区| 国产高清有码在线观看视频| 日韩欧美在线乱码| 久久精品综合一区二区三区| 国产精品麻豆人妻色哟哟久久 | 免费av毛片视频| 亚洲精品456在线播放app| 久久久午夜欧美精品| 国产精品一区www在线观看| 夫妻性生交免费视频一级片| 最近中文字幕高清免费大全6| 亚洲性久久影院| 免费看美女性在线毛片视频| 欧美日本视频| 丰满乱子伦码专区| 午夜视频国产福利| 九色成人免费人妻av| 一级毛片aaaaaa免费看小| 黑人高潮一二区| 国产综合懂色| 亚洲av男天堂| 亚洲国产精品久久男人天堂| 日本午夜av视频| 久久99热6这里只有精品| 久久久午夜欧美精品| 男人和女人高潮做爰伦理| 亚洲国产高清在线一区二区三| 国产精品久久视频播放| 一个人看的www免费观看视频| 卡戴珊不雅视频在线播放| 伦理电影大哥的女人| 丝袜美腿在线中文| 美女脱内裤让男人舔精品视频| 51国产日韩欧美| 国内揄拍国产精品人妻在线| 国产欧美日韩精品一区二区| 亚洲国产精品成人综合色| av在线蜜桃| 国产精品久久久久久久久免| 国产精品一区二区三区四区久久| 欧美激情国产日韩精品一区| 最近手机中文字幕大全| 国产精品福利在线免费观看| 真实男女啪啪啪动态图| 听说在线观看完整版免费高清| 在线观看66精品国产| 免费黄色在线免费观看| 亚洲国产精品专区欧美| 在线播放无遮挡| 97热精品久久久久久| 久久久午夜欧美精品| 国产av一区在线观看免费| 国国产精品蜜臀av免费| 人人妻人人澡人人爽人人夜夜 | 欧美成人免费av一区二区三区| 国产精品一区二区三区四区久久| 久久精品国产亚洲av涩爱| 亚洲av免费高清在线观看| 国产三级在线视频| 久久精品国产亚洲av天美| 美女国产视频在线观看| 国产 一区 欧美 日韩| 亚洲美女视频黄频| 色尼玛亚洲综合影院| 日韩大片免费观看网站 | 大香蕉久久网| 亚洲国产精品成人综合色| 成年版毛片免费区| 久久午夜福利片| 在线天堂最新版资源| 亚洲欧美日韩高清专用| 边亲边吃奶的免费视频| 熟女人妻精品中文字幕| 日产精品乱码卡一卡2卡三| 日韩欧美国产在线观看| 欧美性感艳星| 最近中文字幕高清免费大全6| 国产老妇女一区| 久久99热6这里只有精品| 亚洲精品乱久久久久久| 搞女人的毛片| 亚洲国产色片| 亚洲av成人精品一二三区| 看黄色毛片网站| 日韩欧美精品免费久久| 国产三级在线视频| 欧美一级a爱片免费观看看| av视频在线观看入口| 日韩人妻高清精品专区| 国产精品永久免费网站| 99九九线精品视频在线观看视频| 日本-黄色视频高清免费观看| 久久久国产成人精品二区| 亚洲av成人av| 99久久九九国产精品国产免费| 亚洲成人久久爱视频| 色综合亚洲欧美另类图片| 91精品一卡2卡3卡4卡| 国产亚洲精品久久久com| 精品久久久久久久久亚洲| 天堂av国产一区二区熟女人妻| 18禁在线无遮挡免费观看视频| 久久久亚洲精品成人影院| 国产在视频线在精品| 99九九线精品视频在线观看视频| 永久网站在线| 亚洲久久久久久中文字幕| 久久久精品欧美日韩精品| 成年女人看的毛片在线观看| 亚洲av电影不卡..在线观看| 国产一区二区在线av高清观看| 三级经典国产精品| 桃色一区二区三区在线观看| 亚洲av免费在线观看| 搞女人的毛片| 国产美女午夜福利| 国产精品,欧美在线| 成人高潮视频无遮挡免费网站| 熟女人妻精品中文字幕| 国产精品一及| 欧美人与善性xxx| 久99久视频精品免费| 国产成人免费观看mmmm| 国产精品乱码一区二三区的特点| 日韩高清综合在线| 日本免费一区二区三区高清不卡| 桃色一区二区三区在线观看| 色噜噜av男人的天堂激情| 老师上课跳d突然被开到最大视频| 日本猛色少妇xxxxx猛交久久| 欧美日韩国产亚洲二区| 六月丁香七月| 欧美一区二区精品小视频在线| 干丝袜人妻中文字幕| 搡女人真爽免费视频火全软件| 久久精品国产鲁丝片午夜精品| 日本与韩国留学比较| 乱系列少妇在线播放| 亚洲自拍偷在线|