• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimized Artificial Neural Network Techniques to Improve Cybersecurity of Higher Education Institution

    2022-08-24 07:01:24AbdullahSaadALMalaiseALGhamdiMahmoudRagabMahaFaroukSabirAhmedElhassaneinandAshrafGouda
    Computers Materials&Continua 2022年8期

    Abdullah Saad AL-Malaise AL-Ghamdi,Mahmoud Ragab,Maha Farouk S.Sabir,Ahmed Elhassanein and Ashraf A.Gouda

    1Information Systems Department,Faculty of Computing and Information Technology King Abdulaziz University,Jeddah,21589,Saudi Arabia

    2Information Technology Department,Faculty of Computing and Information Technology,King Abdulaziz University,Jeddah,21589,Saudi Arabia

    3Centre of Artificial Intelligence for Precision Medicines,King Abdulaziz University,Jeddah,21589,Saudi Arabia

    4Mathematics Department,Faculty of Science,Al-Azhar University,Naser City,11884,Cairo,Egypt

    5Mathematics Department,College of Science,University of Bisha,Bisha,Saudi Arabia

    6Mathematics Department,Faculty of Science,Damanhour University,Damanhour,Egypt

    Abstract: Education acts as an important part of economic growth and improvement in human welfare.The educational sectors have transformed a lot in recent days,and Information and Communication Technology(ICT)is an effective part of the education field.Almost every action in university and college,right from the process from counselling to admissions and fee deposits has been automated.Attendance records,quiz,evaluation,mark,and grade submissions involved the utilization of the ICT.Therefore,security is essential to accomplish cybersecurity in higher security institutions(HEIs).In this view,this study develops an Automated Outlier Detection for CyberSecurity in Higher Education Institutions (AOD-CSHEI) technique.The AOD-CSHEI technique intends to determine the presence of intrusions or attacks in the HEIs.The AOD-CSHEI technique initially performs data pre-processing in two stages namely data conversion and class labelling.In addition,the Adaptive Synthetic (ADASYN) technique is exploited for the removal of outliers in the data.Besides,the sparrow search algorithm (SSA) with deep neural network (DNN) model is used for the classification of data into the existence or absence of intrusions in the HEIs network.Finally,the SSA is utilized to effectually adjust the hyper parameters of the DNN approach.In order to showcase the enhanced performance of the AOD-CSHEI technique,a set of simulations take place on three benchmark datasets and the results reported the enhanced efficiency of the AOD-CSHEI technique over its compared methods with higher accuracy of 0.9997.

    Keywords: Higher security institutions;intrusion detection system;artificial intelligence;deep neural network;hyperparameter tuning;deep learning

    1 Introduction

    The network environment of education institutions is uncontrollable,with different types of users namely residents,researchers,students,faculty,etc.[1].There are several incidences where information in education institutions was the aim of hacking attempts.In education institutions,several measures have been taken to control suspected traffics.Novel attack takes advantage of computer vulnerability that doesn’t have a solution at present.They are hard to identify,through reactive and proactive security methods.There is two technique for detecting attacks-anomaly detection and signaturebased detection.Signature-based detection depends on matching attack patterns with signatures saved in a repository[2].This technique isn’t effective with attacks that signature is unavailable.In anomaly detection,standard profile pattern is preserved and any deviation or abnormality from this pattern is described.Anomaly detection could identify novel attacks;however,it leads to a higher amount of false positives.This approach requires heavy human contribution to upgrade signature repository and standard profiles.This is a time-consuming and expensive procedure[3].The upgrading speed is slower when compared to the speed of new intrusion.Novel attack discovery needs defenders to be on-guard,however,this is impossible for automatically interfaced system.Few types of automated defense method are needed for preventing this attack.Automated signature generation and attack detection schemes support intrusion detection systems (IDS) to report and capture this attack.No single approach could assist in resolving this issue.Integration of methods-like signature generation algorithm,honeypots,IDS,analysis,and tracking-is required.

    Network Intrusion Detection System (NIDS) was rapidly advanced in industry and academia responding to the growing cyberattacks against commercial enterprises and governments worldwide.The yearly cost of cybercrime is rising endlessly[4].The more disturbing cybercrimes are resulting from denial of services,web-based attacks,and malicious insiders.Organizations could lose the intellectual property with this malevolent software crept into the network that might result in disruption to a country’s critical national framework.Organization deploys antivirus software,firewall,and NIDS for securing computer systems from unauthorized accessing [5].One of the attentive areas to solve cyberattacks rapidly is to distinguish the attack method earlier from the system utilizing NIDS.The NIDS is developed for detecting malevolent activity includes distributed denial of service (DDoS),virus,and worm attacks.The crucial factor for NIDS is reliability abnormality,detection speed,and accuracy.To fulfill the requirement of an IDS,the researcher has discovered the likelihood of utilizing machine learning(ML)and deep learning(DL)methods[6].The two technique comes under the class of artificial intelligence (AI) and aims at learning effective data from the big data.This technique has received much recognition in the fields of network security [7],in the past few years because of the development of graphics processor units (GPU).The above two methods are effective tools in learning important features from the network traffics and predicting the normal and abnormal events on the basis of learned patterns[8].The ML-based IDS heavily based on feature engineering for learning important data from the network traffics.Meanwhile,DL-based IDS don’t depend on feature engineering and are good at learning complicated features automatically from the raw information because of their deep framework.

    Vinayakumar et al.[9]define how consecutive data modelling is a related process in Cybersecurity.Sequence is temporal features implicitly or explicitly.The recurrent neural network(RNN)method is a set of artificial neural network(ANN)that has seemed as a principle,powerful method for learning dynamic temporal behavior in a random length of largescale sequence data.Moreover,stacked RNN(S-RNN) has the possibility of quickly learning complicated temporal behavior,involving sparse representation.Agarwal et al.[10]introduced a certain factor that makes complex for an IDS to detect and monitor web-based attacks.Also,the study presents a complete review of the current detection system developed exclusively for observing web traffics.Moreover,recognize different dimensions to compare the IDS from distinct perceptions based on the functionality and design.Also,we presented a conceptual architecture of web-based IDS with a prevention method for offering systematic guidelines for the system performance.

    Zhou et al.[11]present an IDS method and it is depending on the ensemble learning and feature selection methods.Initially,a heuristic method named correlation based feature selection(CFS)-bat algorithm (BA) is presented for reduction dimension that chooses optimum subset on the basis of correlations among the features.Next,present an ensemble model which integrates C4.5,random forest (RF),and Forest using Penalizing Attribute (Forest PA) algorithm.Akashdeep et al.[12]developed a smart technique that implements feature ranking based on the data correlation and gain.Then,reduction feature is performed by integrating rank attained from data correlation and gain with a method for identifying useless and useful characteristics.This reduction feature is later given to an feed forward neural network(FFNN)model for testing and training on KDD99 datasets.

    Jin et al.[13]designed an IDS called SwiftIDS,i.e.,able to analyse huge traffic information in higher-speed network at an appropriate time and keep acceptable recognition performance.SwiftIDS accomplishes this aim by two techniques.One method is that light gradient boosting machine(LightGBM)is adapted as the IDS for handling the huge data traffics.Li et al.[14]present effective DL methods such as autoencoder(AE)-IDS based random forest(RF)technique.This approach created the training set with feature grouping and FS.When the training process gets completed,the method could forecast the fallouts with AE that significantly decreases the recognition time and efficiently enhanced the predictive performance.

    This study presented a novel automated outlier detection technique for cybersecurity in higher education institutions(HEI),named AOD-CSHEI technique.The AOD-CSHEI technique originally executes data pre-processing in two stages namely data conversion and class labelling.Also,the Adaptive Synthetic (ADASYN) is exploited for the removal of outliers in the data.Further,the sparrow search algorithm(SSA)with DNN model is used for classifying the data into the existence or absence of intrusions in the HEIs network.Lastly,the SSA is utilized to effectually adjust the hyper parameter of the DNN.To demonstrate the improved outcomes of the AOD-CSHEI technique,a wide ranging experimental analysis is carried out using three benchmark datasets.

    The remaining sections of the paper is organized as follows.Section 2 elaborates the proposed model,Section 3 offers the performance validation,and Section 4 draws the conclusion.

    2 The Proposed AOD-CSHEI Technique

    This study has presented a new AOD-CSHEI technique to identify the presence of intrusions or attacks in the HEIs and the overall process is given in Fig.1.At the initial stage,the input data is pre-processed in two stages namely data conversion and class labelling.The AOD-CSHEI technique performs different subprocesses namely pre-processing,ADASYN based outlier detection,DNN based classification,and SSA based hyperparameter tuning.In this work,the SSA with DNN model is used for the classification of data into the existence or absence of intrusions in the HEIs network and the SSA is utilized to effectually adjust the hyper parameters of the DNN model.

    Figure 1:Overall working process of AOD-CSHEI technique

    2.1 ADASYN Based Outlier Detection

    During the removal of outlier’s process,the ADASYN technique receives the pre-processed data as input to eradicate the outliers that exist in it.The fundamental concept of ADASYN technique is to describe the weight distribution of minority sample by determining the degree of learning difficulty of minority sample[15].For binary classification problems,the datasetDtrofmsamples are formulated by {xi,yi},in whichi=1,...,m,xiindicates a sample ofn-dimension feature space X,andyirepresent the label of samplexi,yi∈Y={-1,1}.The amount of majority sample representsm1,and the amount of minority sample representms.Oncedthis 1,it implies that it could be accepted when the amount of samples in distinct classes is equivalent.β∈[0,1]indicates a variable utilized to set the balanced degree of synthetic data set afterward creating sample.Whenβ=1,the dataset to generate a new sample would be balanced completely[16],i.e.,the amount of sample in distinct classes is equal.Kdenotes the parameter to find KNN.For the generated sample setSreturned by the approach,it would be fused with the original datasetDtrinto a novel dataset as a training set.This approach creates further novel instances in the area wherein learning is complex for minority sample that could efficiently reinforce the model learning of minority sample therefore enhancing the model recognition rate of minority sample prediction.

    2.2 DNN Based Classification Model

    At this stage,the DNN model gets executed to determine the presence of intrusions or attacks in the HEIs.The DNN is a network system i.e.,depending upon DL approach.This technique is extensively applied in the image classification,computational biology,and signal prediction fields due to its benefits namely ease of understanding and simple structure.The internal architecture of the DNN comprises input,output,and hidden layers;each layer is fully connected.The input layer has m neuron,as well as w and b,denote the weight and bias,correspondingly [17].The gradient backpropagation method is employed for updating parameters in the DNN.This parameter includes bias b and weight w of all the connection layers.There might be an unavoidable error between the output and the input sample label at the time of network training.Once the DNN method begins to train,few initialized network parameter needs to be fixed namely network model parameter (the amount of neurons from the hidden layers,the amount of neurons from the input layer,the amount of neurons in the output layer,and the activation function),epoch,momentum,batch size,initial learning rate.

    2.3 SSA Based Hyperparameter Tuning Process

    For boosting the efficacy of the DNN,the SSA is applied to properly tune the hyper parameter of the DNN.In general,sparrow is the type of bird i.e.,more common one since it tends to relate with group and survives more near to us.For experimental purpose,virtual sparrow is utilized for searching food source.The position of the sparrow is determined as follows:

    In whichnindicates the amount of sparrows andddenotes the dimensional of parameter that must be tuned as follows:

    While the values existing in all the rows ofFxdetermines the fitness value of each individual.In SSA,the producer with optimum fitness value has the importance of attained food in the search method [18].Also,the producer’s sparrow takes responsibility for guiding the motion of the entire population and searching for food.

    In the equation,tdenotes the existing iteration,j=1,2,...,d.determines the value ofjthparameter ofithsparrow.As well,iter-max is a constant with various rounds.α∈(0,1]denotes arbitrary valueR2(R2∈[0,1])andST(ST∈[0.5,1.0])determine the alarm values and the safety thresholds along with,O denoting a random value following the standard distribution andLrepresents a matrix of 1×dwhere all the elements within 1.Fig.2 illustrates the flowchart of SSA.

    1.WhenR2<ST,it shows the absenteeism of predator and the producer enters to a search process

    2.WhenR2=ST,it shows that few sparrows have found the predator,and all the sparrows should fly to a safe place at a fast speed.

    Figure 2:Flowchart of SSA

    In the event of scrounger,it is essential for enforcing the rules(1)and(2).After winning the battle,they obtain producer food instantaneously;otherwise,they persevere to achieve the rules(1)and(2):

    In the equation,XPdenotes the optimal location reached by producer,Xworstcharacterizes the existing global worst position,Adescribes a matrix of 1×dwhere all the elements within 1 or-1,andA+=AT(AAT)-1.ifi>n/2,it can be suggested that theithscrounger with the worst fitness values is more possible that hungry.At the simulation time,the sparrow is considered as the one that is danger aware in ten to twenty percent of the overall population.The initial location of the sparrow is made randomly in the population.According to the rules,it is arithmetically determined by:

    In whichXbestindicates the existing global optimal position,βdenotes the step size control variable,is a standard distribution of arbitrary numbers with a variance of 1and mean values of 0.K∈[-1,1]indicates an arbitrary value.Nowfiindicates the fitness values of the existing sparrowfgandfwshows the existing global optimum and worse fitness values,respectivelyεdenote the smaller constant utilized for eliminating the zero-division-error.Whenfi>fg,it is represented that the sparrow existing at the edge of swarm,Xbestdescribes the location of the middle of the population and is secured around it.fi=fgshows that the sparrow in the center of population is aware of the risks and moves closer to another sparrow andKdescribe the path of the sparrow motion.

    OBL is a powerful mechanism utilized for optimization to increase the convergence speed of distinct metaheuristic approaches[19].The efficient model of the OBL includes the validation of the existing population in the similar round to describe the optimum candidate for given problems.The idea of OBL was applied efficiently in and the concept of opposite value is needed to be determined for describing OBL.

    3 Experimental Validation

    In this section,the experimental result analysis of the AOD-CSHEI methodology takes place using three benchmark dataset[20].A comparative analysis is made with decision tree(DT),logistic regression (LR),Na?ve Bayesian (NB),ANN,support vector machines (SVM),Adaboost,and LightGBM techniques.

    Tab.1 provides a detailed comparative study of the AOD-CSHEI technique with existing techniques on the test NSL-KDD data set.Fig.3 offers the accuracy analysis of the AOD-CSHEI technique and existing techniques on the testing and training of NSL-KDD datasets.

    Table 1:Result analysis of AOD-CSHEI technique on NSL-KDD dataset

    Figure 3:Accuracy analysis of AOD-CSHEI technique on NSL-KDD dataset

    The outcomes illustrated that the NB model has shown ineffectual outcomes with the least values of accuracy.At the same time,the ANN,DT,and LR models have obtained slightly improved values of accuracy.Followed by,the Adaboost model has resulted in moderately increased accuracy values.Though the LightGBM and SVM techniques have reached reasonable accuracy values,the presented AOD-CSHEI technique has accomplished maximum training and testing accuracy of 0.9936 and 0.9152 respectively.

    Next,the training time (TRT) and testing time (TST) analysis of the AOD-CSHEI approach take place on NSL-KDD dataset has been demonstrated in Fig.4.The figure reported that the SVM method has showcased worse outcomes with the maximum values of TRT and TST.In line with,the Adaboost model has obtained slightly reduced TRT and TST.Followed by,the LR,NB,and ANN models have accomplished somewhat decreased values of TRT and TST.Although the DT and LightGBM models have resulted in reasonable values of TRT and TST,the presented AODCSHEI technique has reached to effective outcome with the lower TRT and TST values of 3.04 min and 0.67 min respectively.

    Figure 4:Time analysis of AOD-CSHEI technique on NSL-KDD dataset

    Fig.5 demonstrates the ROC analysis of the AOD-CSHEI methodology on NSL-KDD dataset.The figure exposed that the AOD-CSHEI technique has reached enhanced outcome with the minimum ROC of 99.9714.

    Tab.2 offers a detailed comparative study of the AOD-CSHEI technique with existing techniques on the test UNSW-NB15 dataset.Fig.6 provides the accuracy analysis of the AOD-CSHEI approach and existing methods on the training and testing set of UNSW-NB15 datasets.The results demonstrated that the NB system has exhibited ineffectual outcomes with the least values of accuracy.At the same time,the ANN,DT,and LR approaches have reached somewhat higher values of accuracy.Then,the Adaboost model has resulted in moderately increased accuracy values.Afterward,the LightGBM and SVM technique has reached reasonable accuracy values,the projected AOD-CSHEI technique has accomplished maximum training and testing accuracy of 0.8918 and 0.8852 correspondingly.

    Figure 5:ROC analysis of AOD-CSHEI technique on NSL-KDD dataset

    Table 2:Result analysis of AOD-CSHEI technique on UNSW-NB15 dataset

    Figure 6:Accuracy analysis of AOD-CSHEI technique on UNSW-NB15 dataset

    Next,the TRT and TST analysis of the AOD-CSHEI technique take place on UNSW-NB15 dataset is exhibited in Fig.7.The figure obvious that the SVM algorithm has illustrated least outcome with the superior values of TRT and TST.Likewise,the Adaboost system has obtained slightly decreased TRT and TST.Followed by,the LR,NB,and ANN models have accomplished somewhat lower values of TRT and TST.But,the DT and LightGBM methodologies have resulted in reasonable values of TRT and TST,the presented AOD-CSHEI technique has reached to effectual outcome with the lower TRT and TST values of 0.54 min and 0.36 min correspondingly.

    Figure 7:Time analysis of AOD-CSHEI technique on UNSW-NB15 dataset

    Fig.8 showcases the Receiver operating characteristic(ROC)curve analysis of the AOD-CSHEI technique on UNSW-NB15 dataset.The figure exposed that the AOD-CSHEI approach has attained improved outcomes with the reduced ROC of 96.7291.

    Tab.3 gives a detailed comparative study of the AOD-CSHEI method with existing techniques on the test CICIDS2017 dataset.Fig.9 offers the accuracy analysis of the AOD-CSHEI technique and existing techniques on the training and testing set of CICIDS2017 dataset.The outcomes demonstrated that the NB technique has revealed ineffectual outcomes with the least values of accuracy.Simultaneously,the ANN,DT,and LR models have obtained slightly increased values of accuracy.Similarly,the Adaboost approach has resulted in moderately enhanced accuracy values.Though the LightGBM and SVM techniques have reached reasonable accuracy values,the presented AOD-CSHEI technique has accomplished maximum training and testing accuracy of 0.9997 and 0.9991 correspondingly.

    Table 3:Result analysis of AOD-CSHEI technique on CICIDS2017 dataset

    Table 3:Continued

    Figure 9:Accuracy analysis of AOD-CSHEI technique on CICIDS2017 dataset

    Afterward,the TRT and TST analysis of the AOD-CSHEI technique take place on CICIDS2017 dataset is depicted in Fig.10.The figure revealed that the SVM model has showcased worse outcomes with the maximum values of TRT and TST.Along with that,the Adaboost system has obtained slightly reduced TRT and TST.After that,the LR,NB,and ANN models have accomplished somewhat decreased values of TRT and TST.Although the DT and LightGBM models have resulted in reasonable values of TRT and TST,the presented AOD-CSHEI methodology has gained to effective outcome with the lower TRT and TST values of 2.56 min and 0.14 min correspondingly.

    Fig.11 exhibits the ROC analysis of the AOD-CSHEI approach on CICIDS2017 dataset.The figure exposed that the AOD-CSHEI methodologies have attained improved outcome with the lower ROC of 99.9904.The above mentioned result analysis reported the supremacy of the AOD-CSHEI technique over the recent approaches.

    Figure 10:Time analysis of AOD-CSHEI technique on CICIDS2017 dataset

    Figure 11:ROC analysis of AOD-CSHEI technique on CICIDS2017 dataset

    4 Conclusion

    This study has presented a new AOD-CSHEI technique to identify the presence of intrusions or attacks in the HEIs.The AOD-CSHEI technique performs different subprocesses namely preprocessing,ADASYN based outlier detection,DNN based classification,and SSA based hyperparameter tuning.In this work,the SSA with DNN model is used for the classification of data into the existence or absence of intrusions in the HEIs network and the SSA is utilized to effectually adjust the hyper parameters of the DNN model.In order to showcase the enhanced efficacy of the AOD-CSHEI technique,a set of simulations take place on three benchmark datasets and the results reported the enhanced efficiency of the AOD-CSHEI technique over its compared methods.Therefore,the AODCSHEI technique has been utilized as an effective tool for cybersecurity in HEIs.In the future,the AOD-CSHEI technique can be placed in the online learning process of HEIs.

    Acknowledgement:The authors extend their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the project number(IFPRC-154-611-2020)and King Abdulaziz University,DSR,Jeddah,Saudi Arabia.

    Funding Statement:This project was supported financially by Institution Fund projects under grant no.(IFPRC-154-611-2020).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    女人高潮潮喷娇喘18禁视频| 亚洲欧美激情综合另类| 满18在线观看网站| 免费高清在线观看日韩| 久久久水蜜桃国产精品网| 亚洲激情在线av| videosex国产| 亚洲一码二码三码区别大吗| 亚洲黑人精品在线| 99热只有精品国产| 禁无遮挡网站| www.熟女人妻精品国产| 国产精品国产高清国产av| 亚洲精品一区av在线观看| 欧美日韩黄片免| 久热这里只有精品99| 欧美激情高清一区二区三区| bbb黄色大片| 我的亚洲天堂| 一区二区三区高清视频在线| 国产欧美日韩一区二区三| 久久精品国产亚洲av高清一级| 99久久精品国产亚洲精品| 亚洲欧美日韩高清在线视频| 精品国产亚洲在线| 亚洲男人天堂网一区| 在线观看午夜福利视频| 亚洲男人的天堂狠狠| 天天一区二区日本电影三级 | 国产麻豆成人av免费视频| 欧美一级a爱片免费观看看 | 麻豆成人av在线观看| 国产不卡一卡二| 黄频高清免费视频| 法律面前人人平等表现在哪些方面| 久久精品亚洲熟妇少妇任你| 日韩精品免费视频一区二区三区| 久久天躁狠狠躁夜夜2o2o| 欧美日韩亚洲国产一区二区在线观看| 久久久久国产精品人妻aⅴ院| 亚洲欧美日韩无卡精品| 少妇裸体淫交视频免费看高清 | 国产一区二区三区在线臀色熟女| 国产国语露脸激情在线看| 色尼玛亚洲综合影院| 一区二区三区国产精品乱码| 精品人妻1区二区| 久久久国产精品麻豆| 美女 人体艺术 gogo| 日韩欧美国产在线观看| 国产伦一二天堂av在线观看| 国产精品香港三级国产av潘金莲| 亚洲黑人精品在线| 亚洲国产中文字幕在线视频| 亚洲色图综合在线观看| 人人妻,人人澡人人爽秒播| 久久香蕉国产精品| 亚洲一区高清亚洲精品| 免费在线观看视频国产中文字幕亚洲| 国产高清视频在线播放一区| 淫秽高清视频在线观看| 性少妇av在线| 一级毛片高清免费大全| 久久国产乱子伦精品免费另类| 俄罗斯特黄特色一大片| 美女扒开内裤让男人捅视频| 精品不卡国产一区二区三区| 亚洲久久久国产精品| 亚洲九九香蕉| 日本免费a在线| 免费看美女性在线毛片视频| 亚洲欧美一区二区三区黑人| 青草久久国产| 欧美日韩一级在线毛片| 国内精品久久久久久久电影| 一卡2卡三卡四卡精品乱码亚洲| 亚洲第一欧美日韩一区二区三区| 激情视频va一区二区三区| 成人国产一区最新在线观看| 国产av在哪里看| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕精品免费在线观看视频| 日本在线视频免费播放| 国产成人免费无遮挡视频| 一级黄色大片毛片| 国产亚洲精品第一综合不卡| 欧美日本中文国产一区发布| 中国美女看黄片| 大型av网站在线播放| 一边摸一边抽搐一进一小说| 免费搜索国产男女视频| 欧美中文日本在线观看视频| 黄色a级毛片大全视频| 久久国产亚洲av麻豆专区| 女人爽到高潮嗷嗷叫在线视频| 在线观看66精品国产| 日本黄色视频三级网站网址| 久久人人97超碰香蕉20202| 久久狼人影院| 国产精品二区激情视频| 女生性感内裤真人,穿戴方法视频| 99国产精品一区二区蜜桃av| 日韩大码丰满熟妇| 一级作爱视频免费观看| 国产亚洲欧美98| 在线播放国产精品三级| 好看av亚洲va欧美ⅴa在| 日韩中文字幕欧美一区二区| 亚洲精品一区av在线观看| 国产精品免费一区二区三区在线| 中文字幕另类日韩欧美亚洲嫩草| 母亲3免费完整高清在线观看| 大码成人一级视频| av电影中文网址| 老司机靠b影院| 美女大奶头视频| 国产成年人精品一区二区| 精品免费久久久久久久清纯| 国产欧美日韩综合在线一区二区| 欧美另类亚洲清纯唯美| 黄色毛片三级朝国网站| 岛国在线观看网站| 老熟妇仑乱视频hdxx| 一级a爱片免费观看的视频| 18禁国产床啪视频网站| 午夜福利,免费看| 一区二区日韩欧美中文字幕| 女生性感内裤真人,穿戴方法视频| 亚洲aⅴ乱码一区二区在线播放 | 欧美日韩瑟瑟在线播放| 免费在线观看影片大全网站| 国产av一区二区精品久久| 免费观看人在逋| 97超级碰碰碰精品色视频在线观看| 欧美最黄视频在线播放免费| 日韩中文字幕欧美一区二区| 国产av一区二区精品久久| 99国产精品一区二区蜜桃av| 久久久久国内视频| 国内毛片毛片毛片毛片毛片| 日韩av在线大香蕉| 日韩欧美一区二区三区在线观看| 日韩高清综合在线| 久久影院123| 可以在线观看毛片的网站| 久久久久国内视频| 国产欧美日韩综合在线一区二区| 黄片播放在线免费| 欧美日韩精品网址| 久久精品国产亚洲av香蕉五月| 美女高潮到喷水免费观看| 青草久久国产| 亚洲第一欧美日韩一区二区三区| 曰老女人黄片| 在线观看一区二区三区| 亚洲国产欧美一区二区综合| 性少妇av在线| 免费在线观看视频国产中文字幕亚洲| 国产精品一区二区精品视频观看| av在线播放免费不卡| 满18在线观看网站| 老司机午夜十八禁免费视频| 成人精品一区二区免费| 国产高清视频在线播放一区| 亚洲精品在线观看二区| 啦啦啦 在线观看视频| 香蕉国产在线看| 欧美大码av| 9热在线视频观看99| 最好的美女福利视频网| 久久久国产精品麻豆| 国产麻豆69| 可以在线观看毛片的网站| 亚洲精品中文字幕在线视频| 丰满的人妻完整版| 欧美成人一区二区免费高清观看 | xxx96com| 欧美成人午夜精品| 国产蜜桃级精品一区二区三区| 免费人成视频x8x8入口观看| www国产在线视频色| 又黄又粗又硬又大视频| 国产在线观看jvid| 男女下面插进去视频免费观看| 中文字幕人妻熟女乱码| 成人欧美大片| 欧美日本视频| 久久人人爽av亚洲精品天堂| 国产亚洲精品综合一区在线观看 | 大陆偷拍与自拍| 首页视频小说图片口味搜索| 两性午夜刺激爽爽歪歪视频在线观看 | 国产真人三级小视频在线观看| 亚洲无线在线观看| 久9热在线精品视频| 久久国产精品人妻蜜桃| 97人妻天天添夜夜摸| 日本 av在线| 母亲3免费完整高清在线观看| 亚洲avbb在线观看| 性色av乱码一区二区三区2| 亚洲成av人片免费观看| 最新美女视频免费是黄的| av免费在线观看网站| 午夜a级毛片| 久久人妻福利社区极品人妻图片| 国产亚洲av嫩草精品影院| 99久久综合精品五月天人人| 丝袜美足系列| 精品不卡国产一区二区三区| 成人三级黄色视频| 欧美日韩乱码在线| 老司机午夜福利在线观看视频| 精品久久久精品久久久| 丝袜在线中文字幕| 亚洲第一青青草原| 色精品久久人妻99蜜桃| 夜夜夜夜夜久久久久| 香蕉久久夜色| 此物有八面人人有两片| 免费高清在线观看日韩| 久久草成人影院| 亚洲午夜理论影院| 亚洲国产毛片av蜜桃av| 国内毛片毛片毛片毛片毛片| 成人国语在线视频| 色老头精品视频在线观看| 欧美黑人精品巨大| 夜夜夜夜夜久久久久| 成人特级黄色片久久久久久久| 精品国产乱码久久久久久男人| 亚洲成av人片免费观看| 又紧又爽又黄一区二区| 久久精品国产亚洲av高清一级| 国内精品久久久久精免费| 亚洲欧美激情在线| 国产成人精品久久二区二区91| 女性生殖器流出的白浆| 欧美久久黑人一区二区| 两个人免费观看高清视频| 国产成人av教育| 亚洲精品一卡2卡三卡4卡5卡| 美女高潮到喷水免费观看| 免费在线观看亚洲国产| 久久精品亚洲精品国产色婷小说| 亚洲全国av大片| av有码第一页| 日本vs欧美在线观看视频| 亚洲专区字幕在线| www.自偷自拍.com| 十八禁网站免费在线| 精品熟女少妇八av免费久了| 看免费av毛片| 女人被躁到高潮嗷嗷叫费观| 久久天堂一区二区三区四区| 久久久久九九精品影院| 熟女少妇亚洲综合色aaa.| 麻豆成人av在线观看| 黄片小视频在线播放| 男人的好看免费观看在线视频 | 亚洲av成人不卡在线观看播放网| 久久久久久久午夜电影| 久久九九热精品免费| 亚洲色图综合在线观看| av中文乱码字幕在线| 狠狠狠狠99中文字幕| 久久伊人香网站| 精品国产亚洲在线| 国产三级黄色录像| av片东京热男人的天堂| 亚洲一区中文字幕在线| 两个人看的免费小视频| av欧美777| 极品人妻少妇av视频| 一边摸一边做爽爽视频免费| 国产精品久久视频播放| 日韩精品中文字幕看吧| 国产亚洲精品久久久久5区| 亚洲精品av麻豆狂野| 国产私拍福利视频在线观看| 午夜成年电影在线免费观看| 国产xxxxx性猛交| bbb黄色大片| 精品国产超薄肉色丝袜足j| 啪啪无遮挡十八禁网站| 欧美日韩瑟瑟在线播放| 亚洲av第一区精品v没综合| 真人做人爱边吃奶动态| 国产精品二区激情视频| 国产在线精品亚洲第一网站| 久久天堂一区二区三区四区| 黄色丝袜av网址大全| 亚洲国产毛片av蜜桃av| 最新在线观看一区二区三区| 精品人妻1区二区| 99香蕉大伊视频| 中文亚洲av片在线观看爽| 亚洲一码二码三码区别大吗| 色婷婷久久久亚洲欧美| 国产成人精品在线电影| 亚洲中文日韩欧美视频| 亚洲精品粉嫩美女一区| 亚洲精品av麻豆狂野| 99热只有精品国产| 久久人妻av系列| 一区二区日韩欧美中文字幕| 国产av一区二区精品久久| 亚洲va日本ⅴa欧美va伊人久久| 999久久久精品免费观看国产| av有码第一页| 亚洲欧美精品综合久久99| 精品一区二区三区视频在线观看免费| 亚洲人成77777在线视频| 中文字幕色久视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产欧美日韩一区二区三区在线| 69av精品久久久久久| 成人欧美大片| 久久国产精品男人的天堂亚洲| 久久性视频一级片| 中文字幕精品免费在线观看视频| 国产成年人精品一区二区| 欧美成人免费av一区二区三区| 18禁观看日本| 国产精品 国内视频| 欧美乱码精品一区二区三区| 亚洲片人在线观看| 波多野结衣一区麻豆| 欧美 亚洲 国产 日韩一| 亚洲成人国产一区在线观看| 免费在线观看亚洲国产| 亚洲欧美日韩另类电影网站| 99国产综合亚洲精品| 亚洲情色 制服丝袜| 亚洲欧美日韩无卡精品| 亚洲五月婷婷丁香| 在线国产一区二区在线| 婷婷六月久久综合丁香| 国产国语露脸激情在线看| 岛国在线观看网站| 变态另类丝袜制服| 中出人妻视频一区二区| 欧美日韩黄片免| 日本免费a在线| 久久国产精品人妻蜜桃| 波多野结衣av一区二区av| 午夜福利视频1000在线观看 | 黄色视频,在线免费观看| 日本在线视频免费播放| 日本五十路高清| 国产欧美日韩一区二区精品| 精品福利观看| 国产精品免费一区二区三区在线| 首页视频小说图片口味搜索| 欧美亚洲日本最大视频资源| 美女高潮到喷水免费观看| 日韩欧美一区视频在线观看| 午夜精品久久久久久毛片777| 50天的宝宝边吃奶边哭怎么回事| 精品久久久久久,| 国产亚洲av嫩草精品影院| 免费少妇av软件| 精品国产乱码久久久久久男人| 国产激情欧美一区二区| 一进一出好大好爽视频| 美女扒开内裤让男人捅视频| 午夜福利18| bbb黄色大片| 每晚都被弄得嗷嗷叫到高潮| 一本久久中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 满18在线观看网站| 国产伦一二天堂av在线观看| 91成年电影在线观看| 免费观看精品视频网站| 久久中文看片网| 亚洲国产精品久久男人天堂| 免费少妇av软件| 亚洲 欧美一区二区三区| 宅男免费午夜| 国产精品永久免费网站| 亚洲国产毛片av蜜桃av| 18禁黄网站禁片午夜丰满| 一区二区三区激情视频| 香蕉丝袜av| 精品第一国产精品| 午夜福利欧美成人| 波多野结衣一区麻豆| 亚洲专区国产一区二区| 免费女性裸体啪啪无遮挡网站| 日韩欧美国产在线观看| 午夜福利一区二区在线看| 久久久国产成人精品二区| 999精品在线视频| 亚洲av熟女| 亚洲国产日韩欧美精品在线观看 | 啦啦啦观看免费观看视频高清 | 中文字幕色久视频| 日本免费一区二区三区高清不卡 | 在线观看66精品国产| 亚洲国产精品成人综合色| 美国免费a级毛片| 国产精品一区二区三区四区久久 | 亚洲av成人一区二区三| 制服丝袜大香蕉在线| 亚洲专区字幕在线| 久久亚洲真实| 亚洲电影在线观看av| 后天国语完整版免费观看| 日韩中文字幕欧美一区二区| 精品熟女少妇八av免费久了| av中文乱码字幕在线| 久久精品国产99精品国产亚洲性色 | 欧美日韩中文字幕国产精品一区二区三区 | 亚洲av五月六月丁香网| 亚洲五月婷婷丁香| 大型黄色视频在线免费观看| 十分钟在线观看高清视频www| 欧美av亚洲av综合av国产av| 亚洲成国产人片在线观看| 日本欧美视频一区| 国产精品 欧美亚洲| 久久亚洲精品不卡| 国产高清videossex| 久久中文看片网| 50天的宝宝边吃奶边哭怎么回事| 一个人免费在线观看的高清视频| 欧美精品啪啪一区二区三区| 日本a在线网址| 美女国产高潮福利片在线看| 国产成人影院久久av| 亚洲一区二区三区色噜噜| 国产欧美日韩一区二区精品| 神马国产精品三级电影在线观看 | 一本大道久久a久久精品| 亚洲成人国产一区在线观看| 夜夜躁狠狠躁天天躁| 琪琪午夜伦伦电影理论片6080| 好看av亚洲va欧美ⅴa在| 亚洲av熟女| 国产视频一区二区在线看| 国产成人av教育| 一级a爱视频在线免费观看| 国产精华一区二区三区| 亚洲中文字幕一区二区三区有码在线看 | 波多野结衣巨乳人妻| 免费看美女性在线毛片视频| 亚洲精品一卡2卡三卡4卡5卡| 久久性视频一级片| 好男人电影高清在线观看| 亚洲成国产人片在线观看| 日韩欧美一区视频在线观看| 一级毛片女人18水好多| 国产精品av久久久久免费| 曰老女人黄片| 制服诱惑二区| 色哟哟哟哟哟哟| 国产麻豆69| 中文字幕人成人乱码亚洲影| 国产日韩一区二区三区精品不卡| 深夜精品福利| 国产亚洲精品综合一区在线观看 | 天天添夜夜摸| 国产精品99久久99久久久不卡| 久久性视频一级片| 女人高潮潮喷娇喘18禁视频| 校园春色视频在线观看| 亚洲av成人av| 欧美绝顶高潮抽搐喷水| 久久精品成人免费网站| ponron亚洲| 狂野欧美激情性xxxx| 国产蜜桃级精品一区二区三区| 国内精品久久久久精免费| 国产精品自产拍在线观看55亚洲| 手机成人av网站| 禁无遮挡网站| 国产亚洲精品第一综合不卡| 正在播放国产对白刺激| 午夜福利免费观看在线| 精品高清国产在线一区| 久久久久久国产a免费观看| 可以在线观看毛片的网站| 一区二区三区激情视频| 一级黄色大片毛片| 久久中文字幕一级| 国产亚洲精品综合一区在线观看 | 热re99久久国产66热| 免费看a级黄色片| 最新在线观看一区二区三区| 午夜福利18| 色综合欧美亚洲国产小说| 亚洲国产毛片av蜜桃av| 午夜福利成人在线免费观看| 一区二区日韩欧美中文字幕| 高清在线国产一区| 国产一卡二卡三卡精品| 最近最新中文字幕大全电影3 | 久久久国产欧美日韩av| 国产97色在线日韩免费| 久久国产乱子伦精品免费另类| 大码成人一级视频| av欧美777| 伦理电影免费视频| 1024香蕉在线观看| 欧美一级a爱片免费观看看 | 精品久久久精品久久久| 亚洲人成77777在线视频| 精品国产国语对白av| 俄罗斯特黄特色一大片| 成人欧美大片| 亚洲无线在线观看| 黄色毛片三级朝国网站| 在线天堂中文资源库| 欧美最黄视频在线播放免费| 国产欧美日韩精品亚洲av| 久久 成人 亚洲| 国产精品精品国产色婷婷| 岛国在线观看网站| 丝袜人妻中文字幕| 不卡一级毛片| 免费在线观看黄色视频的| 亚洲精品一区av在线观看| 又大又爽又粗| 亚洲va日本ⅴa欧美va伊人久久| av在线天堂中文字幕| 国产熟女xx| 制服丝袜大香蕉在线| 精品久久久久久久人妻蜜臀av | 欧美色视频一区免费| 老汉色∧v一级毛片| 久久久久九九精品影院| 欧美成人午夜精品| 操出白浆在线播放| 久久国产乱子伦精品免费另类| 成熟少妇高潮喷水视频| 男人舔女人下体高潮全视频| 亚洲avbb在线观看| 亚洲成人国产一区在线观看| 久久青草综合色| 岛国视频午夜一区免费看| 国产日韩一区二区三区精品不卡| 19禁男女啪啪无遮挡网站| 日韩精品青青久久久久久| 老汉色av国产亚洲站长工具| 一区二区三区国产精品乱码| 99国产综合亚洲精品| 中文字幕精品免费在线观看视频| 日韩欧美免费精品| 老司机在亚洲福利影院| av超薄肉色丝袜交足视频| 激情视频va一区二区三区| 久久香蕉激情| 亚洲av成人不卡在线观看播放网| 99久久精品国产亚洲精品| 无遮挡黄片免费观看| 日本vs欧美在线观看视频| 男女午夜视频在线观看| 久99久视频精品免费| 国产精品影院久久| 国内精品久久久久久久电影| 村上凉子中文字幕在线| 十分钟在线观看高清视频www| 成人三级黄色视频| 亚洲欧洲精品一区二区精品久久久| 国产精品久久久久久精品电影 | 成人18禁高潮啪啪吃奶动态图| 欧美日本中文国产一区发布| 国产日韩一区二区三区精品不卡| 亚洲少妇的诱惑av| 精品欧美国产一区二区三| 日本黄色视频三级网站网址| 两性夫妻黄色片| 少妇粗大呻吟视频| 日韩一卡2卡3卡4卡2021年| 午夜福利18| 欧美国产日韩亚洲一区| 免费av毛片视频| 啦啦啦韩国在线观看视频| 91成年电影在线观看| 欧美 亚洲 国产 日韩一| a级毛片在线看网站| 黄色 视频免费看| 性欧美人与动物交配| 国产免费av片在线观看野外av| 91大片在线观看| 中文字幕人妻丝袜一区二区| 夜夜躁狠狠躁天天躁| 国产精品精品国产色婷婷| av电影中文网址| 久久亚洲真实| 国语自产精品视频在线第100页| 国产精品久久视频播放| 午夜两性在线视频| 欧美乱妇无乱码| 精品国产超薄肉色丝袜足j| 久久九九热精品免费| 国产精品久久久久久亚洲av鲁大| 久久久国产成人精品二区| 男女下面进入的视频免费午夜 | 麻豆国产av国片精品| 好男人电影高清在线观看| av片东京热男人的天堂| 中文字幕人成人乱码亚洲影| 亚洲男人的天堂狠狠| 亚洲熟妇中文字幕五十中出| 久久国产亚洲av麻豆专区| 日本a在线网址| 97人妻天天添夜夜摸| 国产色视频综合| 午夜福利高清视频| 国产成人欧美在线观看| 18禁国产床啪视频网站| 韩国av一区二区三区四区| 久久精品成人免费网站|