• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Solving Cauchy Issues of Highly Nonlinear Elliptic Equations Using a Meshless Method

    2022-08-24 07:01:00ChihWenChang
    Computers Materials&Continua 2022年8期

    Chih-Wen Chang

    Department of Mechanical Engineering,National United University,Miaoli,360302,Taiwan

    Abstract: In this paper,we address 3D inverse Cauchy issues of highly nonlinear elliptic equations in large cuboids by utilizing the new 3D homogenization functions of different orders to adapt all the specified boundary data.We also add the average classification as an approximate solution to the nonlinear operator part,without requiring to cope with nonlinear equations to resolve the weighting coefficients because these constructions are owned many conditions about the true solution.The unknown boundary conditions and the result can be retrieved straightway by coping with a small-scale linear system when the outcome is described by a new 3D homogenization function,which is right to find the numerical solutions with the errors smaller than the level of noise being put on the over-specified Neumann conditions on the bottom of the cuboid.Besides,note that the new homogenization functions method(HFM)does not require dealing with the regularization and highly nonlinear equations.The robustness and accuracy of the HFM are verified by comparing the recovered results of several numerical experiments to the exact solutions in the entire region,even though a very large level of noise 50%is imposed on the over specified Neumann conditions.The numerical errors of our scheme are in the order of O(10-1)-O(10-4).

    Keywords: Inverse cauchy problems;homogenization functions method(HFM);3D highly nonlinear elliptic equations;3D homogenization functions

    1 Introduction

    In several past decades,lots of researchers utilized mesh methods and meshless approaches to tackle inverse Cauchy issues of linear elliptic equations;however,a few researchers can cope with inverse Cauchy issues of nonlinear elliptic equations.As we all known,inverse Cauchy issues of nonlinear elliptic equations play very pivotal roles in several engineering and scientific domains.These equations occur in the vibration of a structure,the acoustic cavity issue,the radiation wave,the scattering of a wave,heat conduction in fins,semiconductor structures,electrostatic analysis,neutron diffusion problems,advection-diffusion problems,steady-state groundwater flow and so forth.

    For inverse Cauchy issues of linear elliptic equations,Marin et al.[1]proposed the numerical implementation of the conjugate gradient method (CGM) was accomplished by employing the boundary element method(BEM),which needs the discretisation of the boundary merely.They also claimed that Cauchy issues for two-dimensional(2D)Helmholtz-type equation were inverse boundary value issues and therefore the BEM was a very suitable approach for solving such improperly posed issues.However,the numerical results with noisy data are not good.Later,Marin et al.[2]addressed an iterative method on the basis of the Landweber algorithm in combination with the BEM for dealing with the Cauchy issue for 2D Helmholtz-type equations;nevertheless,the drawbacks of the Landweber scheme consisted of the relatively large numbers of iterations required to resolve the issue in comparison with the other regularization approaches.After that,the method of fundamental solutions(MFS)was utilized to solve the Cauchy issue associated with 2D Helmholtz-type equations[3].Their numerical results showed that the present approach was convergent with respect to increasing the number of source points.Wei et al.[4]combined the MFS with three regularization techniques to resolve Cauchy issues of elliptic differential operators.Note that the use of more Cauchy conditions greatly improved the accuracy of the approximate solution;however,their strategy was complex.Qin et al.[5]tackled the highly ill-posed Cauchy issue for the modified Helmholtz equation was firstly transformed into a moment problem by using the Green’s formula.From the numerical verifications,note that their proposed method was stable and efficient.Then,Qin et al.[6]utilized the quasireversibility and the truncation methods to solve a Cauchy issue for the modified Helmholtz equation in a rectangular domain and obtained stable convergence estimates.However,they did not compare with other available techniques,such as the regularized BEM,MFS,CGM.After that,Fan et al.[7]adopted the generalized finite difference method (GFDM) for solving inverse Cauchy issues.In Cauchy issues,part of the boundary data was missing and the numerical simulation may become very unstable.Besides,different levels of noise were added into the boundary conditions to demonstrate the stability of the GFDM;nevertheless,they used small noises to test those examples.Of late,Liu [8]has addressed a homogenized function skill by including the initial condition/boundary conditions/supplementary condition to simplify the governing equations for the recovery of a spacetime-dependent heat source.Then,he employed the Pascal polynomials or the eigenfunctions to expanded the trial solutions.Besides,he also mentioned that the eigenfunction method was slightly better than the polynomial method.Later,Liu[9]proposed a multiple/scale/direction Trefftz expansion method (MSDTM) to solve the 3D Helmholtz equation in an arbitrary domain with an irregular boundary,and the solutions obtained were quite accurate.Later,Liu[10]also utilized a homogenized function technique to solve the initial condition/boundary conditions and supplementary data for the recovery of time/space-dependent heat sources.Although the supplementary data were contaminated by a large noise 20%,their methods are quite simple,stable and accurate.Liu et al.[11]the original multi-quadric radial basis function(MQ-RBF)was modified by introducing the multiple-scale method in the expansion of trial solution,of which the multiple-scale is determined a priori by the collocation points and source points,such that the column norms of the coefficient matrix are equal.Note that the accuracy in the solution of the inverse Cauchy issue in a doubly-connected domain was not as good as that for the simply-connected inverse Cauchy issues.Wang et al.[12]applied a regularized indirect BEM formulation for the solution of 3D inverse heat conduction issues.They claimed that the present method is computationally efficient,robust,accurate,stable with the decreasing noisy level in the input data.Liu et al.[13]developed a quite simple MSDTM to solve the inverse Cauchy issues of 3D modified Helmholtz equation in an arbitrary bounded area,which offered quite accurate solution.Although for the highly ill-posed inverse Cauchy issues in the 3D irregular area,the MSDTM performed well to retrieve the unknown boundary conditions despite a high level of noise.Liu et al.[14]resolved an inverse geometry problem(IGP)of the Poisson equation in an arbitrary doubly-connected plane area to retrieve an unknown inner boundary.However,the proposed homogenization/boundary function algorithm was limited to tackle the IGP with analytic boundary value functions,which were given explicitly.Later,Liu et al.[15]solved the highly ill-posed inverse Cauchy problems of the steady-state diffusion-convection-reaction equation by using the energy RBF.They also mentioned the weighting factors played the regularization role as the right pre-conditioner to diminish the ill-posed behavior of the inverse Cauchy issue against large noises being imposed on the data.

    For inverse Cauchy issues of nonlinear elliptic equations,Essaouini et al.[16]utilized a numerical iterative boundary element approach to solve a class of nonlinear elliptic inverse issue.The scheme was implemented with various relaxation parameters.After that,Liu et al.[17]employed a variable transformation and the mixed group-preserving scheme(MGPS)to retrieve the missing information on the top side very well for a nonlinear inverse Cauchy issue.Later,Yeih et al.[18]proposed the double iteration process to cope with the Cauchy inverse issue of a nonlinear heat conduction equation.Numerical results show that this scheme is efficient and can acquire accurate enough results for a nonlinear ill-posed inverse issue.Liu [19]solved the nonlinear inverse Cauchy issue defined in an arbitrary doubly connected domain with a simple direct integration algorithm without requiring of any iteration.Apart from that,Zhang et al.[20]used a filtering function method to solve a Cauchy problem for semi-linear elliptic equation.Finally,they computed the regularization solution by constructing an iterative algorithm and obtained some stable and feasible results;however,this approach was complicated.Then,Tran et al.[21]addressed a regularization scheme to a quasi-linear elliptic Cauchy issue.They stressed that the regularized problem is well-posed,and its solution converged to the exact solution strongly inL2where some a priori assumptions were pondered.Nevertheless,they did not show how to choose the optimal regularization parameter.After that,Liu et al.[22]tackled the nonlinear inverse Cauchy issue of the nonlinear elliptic type equation in an arbitrary doubly-connected plane area to retrieve the unknown inner boundary data.Liu et al.[23]tackled the Cauchy issues of the 3D nonlinear elliptic equations in cuboids by employing the superposition of homogenization functions method (SHFM).Upon comparing with the MGPS,they revealed that the SHFM can tackle the Cauchy issue in a large size of the cuboid,and furthermore,the SHFM was more accurate than the MGPS.Later,Liu et al.[24]addressed a simple and effective numerical skill,which aims to accurately and quickly deal with the thin plate bending issues.On the basis of the given boundary data,they established the thin plate homogenization function and derived a family of two-parameter homogenization functions.Liu et al.[25]solved the 3D inverse Cauchy problems of the elliptic type linear PDEs in the closed walled shells to retrieve the unknown inner boundary conditions.Several examples of the Laplace equation,the Helmholtz equation,the modified Helmholtz equation,the Poisson equation,a strong convection diffusion equation and a varying coefficient elliptic equation,confirmed the efficiency and accuracy of the presented numerical scheme.Liu et al.[26]coped with two Stefan problems.The first problem retrieved an unknown moving boundary by specifying the Cauchy boundary conditions on a fixed left-end.The second problem revealed a time-dependent heat flux on the left-end,such that a desired moving boundary can be achieved.Numerical instances,including non-smooth ones,confirm that the new approaches were simple and robust against large noise.Lin et al.[27]resolved the parameters identification issue in a nonlinear heat equation with homogenization functions as the bases.The proposed methods did not require iteration and solving nonlinear equations because the unknown heat conductivities were recovered from the solutions of linear systems.About the recent developments in the field of numerical simulation and stability as well as its applications,Mahdy and his coworkers have used many new methods to deal with those problems,such as the timefractional Fokker-Planck equation [28],the isoperimetric variational problems [29],the nonlinear biochemical reaction model and nonlinear Emden-Fowler system[30],the fractional-order biological systems[31],the dynamical behaviors of nonlinear Coronavirus(COVID-19)model[32],a nonlinear fractional tumor-immune model [33],the fractional order Klein-Gordon equation [34],the Rubella ailment disease model[35],and the fractional nonlinear rubella ailment disease model[36].After that,Iqbal and his coworkers have utilized three approaches to tackle three issues,such as the second order coupled nonlinear Schr?dinger equations[37],nonlinear waves propagation and stability analysis for planar waves[38],and time fractional Black-Scholes model[39].

    The current study owns a novelty by establishing a new 3D homogenization functions to demolish the boundary conditions on a partial portion of the cuboid,which is not published in the literature.In addition,the new homogenization functions scheme does not require to tackle the highly nonlinear equations and regularization.This article is organized as follows.Section 2 illustrates a formation skill from the low-dimensional homogenization function to the high-dimensional homogenization function.Then,in Section 3 we display the shape functions into the 3D homogenization function so that we can produce a family of 3D homogenization functions as the foundations of the solution of the 3D highly nonlinear Cauchy issue.Four numerical experiments of the Cauchy issues of the 3D highly nonlinear elliptic equations are shown in Section 4.At last,some conclusions are drawn in Section 5.

    2 A New Homogenization Function

    One kind Cauchy issue of the non-homogeneous and nonlinear elliptic equation is addressed in a 3D cuboidΩ:={(x,y,z)∈(0,d)×(0,e)×(0,f)}by utilizing the 3D homogenization functions of varied orders as the foundations,which is described as

    whereFis a first-order nonlinear operator,andHis another first-order nonlinear operator.

    Nevertheless,the Neumann datavz(x,y,0)=g7(x,y)is over-specified in order to retrieveg6(x,y):=v(x,y,f)so that the total boundary data are entire in Eqs.(1)and(2)the datav(x,y,f)are not defined.It is one kind of the Cauchy issues for the cuboid.

    To establish the 3D homogenization function,we employ a sequential formation skill by beginning from the 1D boundary value problem(BVP):

    whereFis a second-order nonlinear differential operator.

    Let

    whereg1andg2are constants and note that

    Indicate

    The BVP with homogeneous boundary data are shown as follows:

    Then,we ponder the 2D BVP:

    Letting

    which supersedes the constantsg1andg2inD(x)above by the functionsg1(y)andg2(y).After that,

    Denote

    and in accordance with the following compatibility conditions:

    we can certify

    Hence,we can generate the 2D homogenization function for the 2D BVP:

    Because ofD(x,y),we can convert the primordial 2D BVP with non-homogeneous boundary data to a one with the homogeneous boundary data:

    with the aid of the variable conversion fromv(x,y)tow(x,y)=v(x,y)-D(x,y).

    3 A New Scheme

    As well,we can establish the 3D homogenization function by beginning from the 2D homogenization function.We present a new scheme of the 3D highly nonlinear Cauchy issues by utilizing the superposition of the 3D homogenization functions.

    Note that the given functionsgi,i=1,...,5 in Eq.(6)gratify the consistent data as follows:

    The first four boundary data are functions of(y,z)and(x,z)as demonstrated in Eq.(2).Therefore,we can present the partial homogenization function as follows by supersedingg1(y),g2(y),g3(x)andg4(x)in Eq.(17)byg1(y,z),g2(y,z),g3(x,z)andg4(x,z)and employingD0in place ofD

    which gratifies the first four boundary data in Eq.(2):

    in which the compatible conditionsg1(0,z)=g3(0,z),g1(e,z)=g4(0,z),g2(0,z)=g3(d,z)and we also utilizedg2(e,z)=g4(d,z)in Eq.(20).

    We employ the normalized coordinates to obtain a generalization of Eq.(21):

    and thepth order shape functions:

    in which the minimal prerequisites ofτpare

    we use the simplest ones:

    Hence,thekth order partial homogenization function can be shown as follows:

    Utilizing the characters in Eq.(25),we can verify that the aboveD0(p,x,y,z)gratifies the boundary data in Eq.(22).

    We can produce thepth order 3D homogenization function to fit the last two Cauchy datav(x,y,0)=g5(x,y),vz(x,y,0)=g7(x,y)in Eq.(2)by

    and we can justify

    The first four properties can be verified employing other consistent data in Eq.(20) and the following consistent data when the last two properties forthright track from Eq.(28):

    Hence,assuming that

    we can acquire the simplest solution of the 3D highly nonlinear Cauchy issue in the cuboid,of whichv(x,y,z)completely gratifies all the boundary data in Eq.(2).dp,p=1,...,carecunknown coefficients to be decided

    Eq.(32)is accustomed to promise thatv(x,y,z)can gratify the given data.

    We can inquire Eq.(31) to gratify the governing Eq.(1) and assume at theqinterior points ofThen,we can cope with an over-determined linear system and Eq.(32),to decided?:

    where in the nonlinear portion,we can use the average

    as its argument.cis the highest order of the homogenization functions andq=q1×q2×q3withxi=id/(q1+1),yj=je/(q2+1)andzk=kf/(q3+1).Therefore,we obtainccoefficientsd?to be dealt with from the aboveq+1 linear equations.

    Advantages of this proposed algorithm are no iteration,against large noise,for large domain and no need of regularization to deal with the 3D highly nonlinear Cauchy issue.In addition,the computational complications of the current approach are aboutO(n).

    4 Numerical Experiments of Highly Nonlinear Cauchy Problems

    Since the Neumann datavz(x,y,0)=g7(x,y)are over-specified to retrievev(x,y,f):=g6(x,y).Suppose that the given information is contaminated by a random noise:

    whererdenotes the intensity of noise andK(i,j)∈[-1,1]indicate random numbers.

    In addition,the often utilized absolute error and relative error,we ponder a root-mean-squareerror defined by

    to estimate the accuracy of numerically retrieved boundary datumg6H (x,y)on the planez=f,in which we compare the exact oneg6and the numerically retrievedg6HatH×Hgrid pointsi,j=1,...,H.

    Let (xi,yj),i=1,...,N1,j=1,...,N2be the points on the planez=f,where we compare the exact solutionto the numerical solutionat thenth iteration.Then,we define the root-mean-square-error(RMSEn)as follows:

    The numerically computed order of convergence(COC)is approximated by

    All the computational schemes were implemented to the Fortran code on the Microsoft Developer Studio platform in OS Windows 10(64 bit)with i3-4160 3.60 GHz CPU and 16 GB memory.

    4.1 Example 1

    We ponder a highly nonlinear one with

    where the exact solution is

    and thus,Q(x,y,z)is computed by inserting Eq.(40)into Eq.(39).For this highly nonlinear Cauchy issueF[v]=0 andH[v]=v6(x,y,z)+v6x(x,y,z)+v6z(x,y,z).

    We utilizeH×Hgrid pointsi,j=1,...,HwithH=50 to compare the numerically recoveredand the exact oneto evaluate the maximum error.

    We draw the maximum errors of the numerical results ofv(x,y,z)on the planez=12 by utilizing the proposed method in Fig.1a,where we usec=3,q=1 andr=0.99.The new scheme shows an accurate result with the maximum error being 0.112,which is smaller than the maximum value 291.85 ofvon the planez=12 with the large domain.Note that the numerical result is very close to the exact one in Figs.1b and 1c.For this example,the CPU time is less than 0.2 s.

    Figure 1:For example 1 of the 3D Cauchy issue of highly nonlinear equation,(a)displaying maximum errors with large noise effect,(b)exact solution and(c)numerical solution with large noise effect

    In Tab.1,When we useq=1 andr=0.99,the maximum error (ME),the maximum relative error(MRE),and the RMSE are listed for various values ofc.Note that whencchooses a suitable value,for examplec=3,the accuracy is the best.

    Table 1:For example 1 the accuracy comparison for various values of c

    4.2 Example 2

    We deliberate another highly nonlinear one with

    where the exact solution is assumed to be

    and hence,Q(x,y,z)is estimated by inserting Eq.(42)into Eq.(41).For this highly nonlinear Cauchy issueF[v]=10 exp[v3(x,y,z)]andH[v]=v9(x,y,z)+v9x(x,y,z).

    We sketch the maximum errors of the numerical results ofv(x,y,z)on the planez=2.5 by employing the HFM under the following parametersc=3,q=1 andr=0.9 in Fig.2a.The approach demonstrates an accurate result with the maximum error being 1.89×10-1,which is smaller than the maximum value 11.79 ofvon the planez=2.5.Note that the numerical solution is very close to the exact one in Figs.2b and 2c.For this instance,the CPU time is also less than 0.2 s.

    Figure 2:For example 2 of the 3D Cauchy issue of highly nonlinear equation,(a)displaying maximum errors with large noise effect,(b)exact solution and(c)numerical solution with large noise effect

    In Tab.2,the ME,the MRE and the RMSE are listed for various values ofq,when we takec=3 andr=0.9.When we takeq=1,note that the HFM is the best.

    Table 2:For example 2 the accuracy comparison for various values of q

    4.3 Example 3

    We consider a highly nonlinear one with

    where the exact solution is

    and therefore,Q(x,y,z)is calculated by introducing Eq.(44)into Eq.(43).For this highly nonlinear Cauchy issueF[v]=-15v3(x,y,z)andH[v]=expv4(x,y,z)-v12(x,y,z)-,y,z)-,y,z).

    Under the following parametersc=3,q=1 andr=1.0,we draw the maximum errors of the numerical results ofv(x,y,z)on the planez=4 in Fig.3a by utilizing the HFM,which displays an accurate result with the maximum error being 1.99×10-2,which is much smaller than the maximum value 2.01 ofvon the planez=4 with the moderate domain.Note that the numerical solution is very close to the exact one in Figs.3b and 3c.

    Figure 3:For example 3 of the 3D Cauchy issue of highly nonlinear equation,(a)displaying maximum errors with large noise effect,(b)exact solution and(c)numerical solution with large noise effect

    In Tab.3,the ME,the MRE and the RMSE are listed for various values ofc,when we takeq=1 andr=1.0.Note that the HFM can provide accurate solution for all values ofc.

    Table 3:For example 3 the accuracy comparison for various values of c

    4.4 Example 4

    Finally,we contemplate another highly nonlinear one with

    where the exact solution is

    andQ(x,y,z)is estimated by introducing Eq.(46) into Eq.(45).For this highly nonlinear Cauchy issueF[v]=30v4(x,y,z)andH[v]=,y,z)+,y,z)+,y,z)+v18(x,y,z)-20v(x,y,z)v10x (x,y,z).

    Under the following parametersc=1,q=1 and the large intensity of noiser=1101.0,we find that the HFM shows a quite accurate solution with the maximum error is 3.02×10-3,the MRE is 1.91×10-6and the RMSE is 1.55×10-3,which is smaller than the maximum value 11012.64 ofvon the planez=10 with the large area.Note that the numerical solution is very close to the exact one in Figs.4b and 4c.

    Figure 4:For example 4 of the 3D Cauchy issue of highly nonlinear equation,(a)displaying maximum errors with large noise effect,(b)exact solution and(c)numerical solution with large noise effect

    Figure 5:Frame work of 3D fourth-order highly nonlinear steady state PDEs by using the new HFM

    5 Conclusions

    We have addressed a new meshless approach to tackle the Cauchy issues of the 3D nonlinear elliptic equations in cuboids in this article.In the presently proposed homogenization functions method,we could construct the different-order 3D homogenization functions to fit all the specified boundary data,including the Neumann one in the whole area.We put in the average assortment as an approximate solution to the nonlinear operator section,without requiring to deal with nonlinear equations to decide the weighting coefficients since these establishments are owned many data about the true solution.The current scheme merely solving a small scale linear system is the simplest method to tackle the 3D highly nonlinear Cauchy issues,which is correct to reveal the numerical solutions with the errors smaller than the level of noise being placed on the over-specified Neumann data on the bottom of the cuboid.On the basis of those numerical experiments,we demonstrate that the proposed algorithm is applicable to the Cauchy issues of the 3D highly nonlinear elliptic equations in cuboids and very good computational efficient,and even for adding the large random noise up to 50%.The numerical errors of our method are in the order ofO(10-1)-O(10-4).Furthermore,to the author’s best knowledge,there has no report in the literature that the numerical methods for above-mentioned four issues can offer more accurate results than the present one.The present scheme can be extended to cope with the 3D fourth-order highly nonlinear steady state PDEs as shown in Fig.5 and will be worked out in the future.

    Funding Statement:This work was financially supported by the National United University [Grant Numbers T110M20600].

    Conflicts of Interest:The author declares that he has no conflicts of interest to report regarding the present study.

    97人妻天天添夜夜摸| 制服人妻中文乱码| 亚洲情色 制服丝袜| 一级毛片电影观看| 精品久久久精品久久久| 女人爽到高潮嗷嗷叫在线视频| 五月天丁香电影| 婷婷成人精品国产| 亚洲精品一二三| 少妇裸体淫交视频免费看高清 | 亚洲成人免费av在线播放| 又粗又硬又长又爽又黄的视频| 日韩伦理黄色片| 69精品国产乱码久久久| 国产一区二区三区av在线| 欧美日韩成人在线一区二区| 国产精品 国内视频| a级毛片在线看网站| 这个男人来自地球电影免费观看| 欧美精品一区二区大全| a级毛片在线看网站| 两人在一起打扑克的视频| 国产成人av激情在线播放| 黄色视频在线播放观看不卡| 久久精品熟女亚洲av麻豆精品| 夫妻性生交免费视频一级片| 国产欧美日韩综合在线一区二区| 啦啦啦视频在线资源免费观看| 99热全是精品| 18禁国产床啪视频网站| 18在线观看网站| 精品欧美一区二区三区在线| 丝袜美足系列| 国产在线一区二区三区精| 19禁男女啪啪无遮挡网站| 最新的欧美精品一区二区| 啦啦啦在线观看免费高清www| 亚洲中文日韩欧美视频| 99久久人妻综合| 久久鲁丝午夜福利片| 中国美女看黄片| 777米奇影视久久| 好男人视频免费观看在线| 久久久久久久大尺度免费视频| 国产不卡av网站在线观看| 高清黄色对白视频在线免费看| 日韩一卡2卡3卡4卡2021年| 亚洲色图综合在线观看| 999久久久国产精品视频| 国产欧美日韩一区二区三 | 99国产精品一区二区蜜桃av | 国产精品久久久av美女十八| 国产免费现黄频在线看| 午夜老司机福利片| 王馨瑶露胸无遮挡在线观看| 国产野战对白在线观看| 亚洲成色77777| 久9热在线精品视频| 久久午夜综合久久蜜桃| 超碰97精品在线观看| 亚洲视频免费观看视频| 嫁个100分男人电影在线观看 | 亚洲成av片中文字幕在线观看| 麻豆av在线久日| 日韩av免费高清视频| 久久精品亚洲熟妇少妇任你| 一区福利在线观看| 久久精品成人免费网站| 黄片播放在线免费| 少妇粗大呻吟视频| 国产精品.久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜免费鲁丝| 男人舔女人的私密视频| 大陆偷拍与自拍| 18禁黄网站禁片午夜丰满| 久久99热这里只频精品6学生| 建设人人有责人人尽责人人享有的| 午夜免费观看性视频| 国产福利在线免费观看视频| 欧美少妇被猛烈插入视频| a 毛片基地| avwww免费| 在线看a的网站| 狂野欧美激情性xxxx| 一本久久精品| 男女无遮挡免费网站观看| 免费观看av网站的网址| 日本猛色少妇xxxxx猛交久久| 成年人午夜在线观看视频| 国产在线观看jvid| 亚洲av欧美aⅴ国产| 91麻豆av在线| 亚洲三区欧美一区| 国产一区二区三区综合在线观看| 青草久久国产| 黄色a级毛片大全视频| 国产亚洲一区二区精品| 啦啦啦 在线观看视频| 亚洲人成电影观看| 女人精品久久久久毛片| av福利片在线| 亚洲五月色婷婷综合| 久久久精品区二区三区| 国产一区有黄有色的免费视频| 99re6热这里在线精品视频| 最新的欧美精品一区二区| 婷婷丁香在线五月| 久久影院123| 男男h啪啪无遮挡| 性色av一级| 天天躁夜夜躁狠狠躁躁| 欧美人与性动交α欧美软件| 水蜜桃什么品种好| av不卡在线播放| 人人澡人人妻人| 啦啦啦视频在线资源免费观看| 国产激情久久老熟女| 校园人妻丝袜中文字幕| 国产精品久久久久成人av| 国产深夜福利视频在线观看| 国产在线视频一区二区| 中国美女看黄片| 欧美日韩亚洲国产一区二区在线观看 | 一级片免费观看大全| 两性夫妻黄色片| 在线观看免费午夜福利视频| 丰满迷人的少妇在线观看| 美女国产高潮福利片在线看| 国产爽快片一区二区三区| 两个人免费观看高清视频| 亚洲国产精品一区二区三区在线| 两人在一起打扑克的视频| 国产视频首页在线观看| 亚洲国产最新在线播放| 午夜精品国产一区二区电影| 午夜视频精品福利| 午夜福利视频在线观看免费| 捣出白浆h1v1| 国产精品 国内视频| 一级毛片 在线播放| 又粗又硬又长又爽又黄的视频| 夜夜骑夜夜射夜夜干| 三上悠亚av全集在线观看| av视频免费观看在线观看| 亚洲,欧美,日韩| 国产福利在线免费观看视频| 日韩一卡2卡3卡4卡2021年| 国产日韩一区二区三区精品不卡| 亚洲一区中文字幕在线| 国产无遮挡羞羞视频在线观看| 久久亚洲精品不卡| 国产精品久久久人人做人人爽| 成人亚洲欧美一区二区av| 欧美日韩福利视频一区二区| 欧美日韩亚洲国产一区二区在线观看| 成人国产综合亚洲| 看免费av毛片| 12—13女人毛片做爰片一| 欧美一级a爱片免费观看看 | 此物有八面人人有两片| 成年女人毛片免费观看观看9| 十八禁网站免费在线| 国产成人系列免费观看| 国产精品一区二区精品视频观看| 女人被狂操c到高潮| 久久久久久久午夜电影| 国产熟女xx| 久久国产亚洲av麻豆专区| 香蕉丝袜av| 国产高清视频在线播放一区| 亚洲人成网站高清观看| www.精华液| 亚洲成人久久爱视频| 中文字幕人成人乱码亚洲影| 黄色成人免费大全| 窝窝影院91人妻| 午夜免费鲁丝| 久久人妻av系列| www.精华液| 人人澡人人妻人| 亚洲国产日韩欧美精品在线观看 | 国产成人欧美在线观看| 久久人妻福利社区极品人妻图片| 美女高潮喷水抽搐中文字幕| 亚洲激情在线av| 亚洲熟妇中文字幕五十中出| 亚洲av成人av| 亚洲人成77777在线视频| 天天添夜夜摸| 欧美在线一区亚洲| 桃红色精品国产亚洲av| 日本一区二区免费在线视频| 成人国语在线视频| 欧美国产日韩亚洲一区| 人妻丰满熟妇av一区二区三区| 一级毛片高清免费大全| 一本大道久久a久久精品| 亚洲色图av天堂| 欧美三级亚洲精品| 黄色成人免费大全| av免费在线观看网站| 身体一侧抽搐| 日本五十路高清| 中文字幕人成人乱码亚洲影| 免费在线观看完整版高清| 在线免费观看的www视频| 国产免费av片在线观看野外av| 欧美午夜高清在线| 亚洲全国av大片| 又黄又爽又免费观看的视频| 久久久久久久久中文| 成年女人毛片免费观看观看9| 香蕉国产在线看| 成年人黄色毛片网站| 久久久久久久午夜电影| 国产视频一区二区在线看| 国产午夜精品久久久久久| 久久精品91蜜桃| 在线av久久热| 久久国产精品人妻蜜桃| 中文字幕高清在线视频| 免费看十八禁软件| 成熟少妇高潮喷水视频| 91麻豆av在线| 亚洲精品中文字幕一二三四区| 在线看三级毛片| 久久久久九九精品影院| 日韩大码丰满熟妇| 非洲黑人性xxxx精品又粗又长| 亚洲成人久久爱视频| 一区福利在线观看| 一区二区三区精品91| 国产精品免费一区二区三区在线| 久久狼人影院| 女人高潮潮喷娇喘18禁视频| 国产av在哪里看| 亚洲精品中文字幕一二三四区| 天堂影院成人在线观看| 午夜福利在线在线| 中国美女看黄片| 久久青草综合色| 午夜免费成人在线视频| 1024视频免费在线观看| 91老司机精品| 美女大奶头视频| 精品久久久久久久末码| 在线国产一区二区在线| 日韩欧美一区二区三区在线观看| 中文字幕精品亚洲无线码一区 | 超碰成人久久| 黄色女人牲交| 一区二区三区精品91| 精品卡一卡二卡四卡免费| 亚洲片人在线观看| 国产成人一区二区三区免费视频网站| 白带黄色成豆腐渣| 嫩草影院精品99| 午夜福利成人在线免费观看| 男人舔奶头视频| 99久久无色码亚洲精品果冻| 一级毛片高清免费大全| 国产私拍福利视频在线观看| 十分钟在线观看高清视频www| 国产精品99久久99久久久不卡| 波多野结衣高清作品| 亚洲一区高清亚洲精品| 每晚都被弄得嗷嗷叫到高潮| 亚洲黑人精品在线| 看黄色毛片网站| 午夜福利欧美成人| 无人区码免费观看不卡| 国产视频一区二区在线看| 亚洲无线在线观看| 国产aⅴ精品一区二区三区波| 91字幕亚洲| 69av精品久久久久久| 淫妇啪啪啪对白视频| 日韩欧美国产一区二区入口| 午夜免费激情av| 欧美日本视频| 亚洲第一青青草原| 91麻豆av在线| 日韩精品青青久久久久久| 亚洲七黄色美女视频| 亚洲在线自拍视频| 亚洲片人在线观看| av片东京热男人的天堂| 日本黄色视频三级网站网址| 免费女性裸体啪啪无遮挡网站| 成人18禁高潮啪啪吃奶动态图| 日韩免费av在线播放| 欧美在线一区亚洲| 精品高清国产在线一区| 午夜免费观看网址| 女人被狂操c到高潮| 夜夜看夜夜爽夜夜摸| 91成年电影在线观看| 国产久久久一区二区三区| 999久久久国产精品视频| 免费人成视频x8x8入口观看| netflix在线观看网站| 国产91精品成人一区二区三区| 国产亚洲欧美98| 成人特级黄色片久久久久久久| 极品教师在线免费播放| 国产激情欧美一区二区| 在线免费观看的www视频| 成年女人毛片免费观看观看9| 悠悠久久av| 久久久久久久精品吃奶| 久久精品国产综合久久久| 午夜免费观看网址| 日本成人三级电影网站| 18禁美女被吸乳视频| 怎么达到女性高潮| 少妇被粗大的猛进出69影院| 亚洲一区高清亚洲精品| 国产精品久久久久久亚洲av鲁大| 久9热在线精品视频| 美女国产高潮福利片在线看| 成在线人永久免费视频| 亚洲 欧美一区二区三区| av在线播放免费不卡| 亚洲成人久久爱视频| 国产视频一区二区在线看| 男女之事视频高清在线观看| 一级毛片精品| 在线免费观看的www视频| 成人三级做爰电影| av中文乱码字幕在线| 午夜福利视频1000在线观看| 精品福利观看| 国产成人精品无人区| 看片在线看免费视频| 国产91精品成人一区二区三区| 精品久久蜜臀av无| 婷婷精品国产亚洲av在线| 久久久久九九精品影院| 国产精品免费视频内射| 一夜夜www| 久久久久久久久中文| 欧美黑人欧美精品刺激| 国产av一区在线观看免费| 国产野战对白在线观看| 黄色片一级片一级黄色片| 精品国产超薄肉色丝袜足j| 国产精品久久久久久人妻精品电影| 热re99久久国产66热| 国产精品,欧美在线| 欧美一级毛片孕妇| 国产三级在线视频| 黄色片一级片一级黄色片| 亚洲精品在线美女| 在线观看免费日韩欧美大片| 国产精品一区二区精品视频观看| 一夜夜www| netflix在线观看网站| 久久精品影院6| 久久午夜综合久久蜜桃| 久热这里只有精品99| 最新在线观看一区二区三区| 此物有八面人人有两片| 无人区码免费观看不卡| 日韩免费av在线播放| 给我免费播放毛片高清在线观看| 黑人巨大精品欧美一区二区mp4| 欧美成人性av电影在线观看| 不卡av一区二区三区| 日韩视频一区二区在线观看| 在线国产一区二区在线| 黑丝袜美女国产一区| 日日爽夜夜爽网站| 久久久水蜜桃国产精品网| 淫妇啪啪啪对白视频| 国产精品免费一区二区三区在线| 最近最新中文字幕大全电影3 | 三级毛片av免费| 丝袜在线中文字幕| 一级作爱视频免费观看| 老汉色∧v一级毛片| 又大又爽又粗| 女同久久另类99精品国产91| 十八禁人妻一区二区| 欧美黑人巨大hd| 亚洲最大成人中文| 亚洲黑人精品在线| 国产精品免费视频内射| 99riav亚洲国产免费| 少妇 在线观看| cao死你这个sao货| 曰老女人黄片| 中国美女看黄片| 国产精品免费视频内射| 国产成人影院久久av| 欧美精品亚洲一区二区| 夜夜爽天天搞| 国产精品98久久久久久宅男小说| 国产精品 国内视频| 精品福利观看| 亚洲精品久久国产高清桃花| 亚洲电影在线观看av| 又大又爽又粗| 亚洲精品国产区一区二| 操出白浆在线播放| 久久精品人妻少妇| 免费在线观看亚洲国产| 无遮挡黄片免费观看| 首页视频小说图片口味搜索| 成人国产一区最新在线观看| 中文字幕精品亚洲无线码一区 | 亚洲精华国产精华精| 激情在线观看视频在线高清| 男女视频在线观看网站免费 | 男人舔女人下体高潮全视频| 99热这里只有精品一区 | 国产亚洲精品一区二区www| 一个人免费在线观看的高清视频| 亚洲国产日韩欧美精品在线观看 | 欧美日本视频| 精品免费久久久久久久清纯| 亚洲色图av天堂| 中亚洲国语对白在线视频| 欧美国产精品va在线观看不卡| a级毛片a级免费在线| 啦啦啦韩国在线观看视频| 男女床上黄色一级片免费看| 美女扒开内裤让男人捅视频| 亚洲精品中文字幕在线视频| 男女之事视频高清在线观看| 99精品在免费线老司机午夜| 一a级毛片在线观看| 久久午夜亚洲精品久久| 老司机深夜福利视频在线观看| 欧美黄色片欧美黄色片| 中出人妻视频一区二区| 色哟哟哟哟哟哟| 午夜福利免费观看在线| 国产精品 欧美亚洲| 国产一级毛片七仙女欲春2 | 夜夜躁狠狠躁天天躁| 波多野结衣高清无吗| 一个人观看的视频www高清免费观看 | 亚洲国产毛片av蜜桃av| 99riav亚洲国产免费| 成人精品一区二区免费| 久久婷婷人人爽人人干人人爱| 久9热在线精品视频| 欧美国产精品va在线观看不卡| 中文字幕人妻丝袜一区二区| 狂野欧美激情性xxxx| 亚洲专区国产一区二区| 亚洲av电影在线进入| 亚洲国产中文字幕在线视频| 18禁观看日本| 欧美成人一区二区免费高清观看 | 国产精品久久久av美女十八| 99在线视频只有这里精品首页| 欧美乱色亚洲激情| 99热只有精品国产| 免费看日本二区| av天堂在线播放| 无人区码免费观看不卡| 国产亚洲精品第一综合不卡| 亚洲成国产人片在线观看| 日本免费一区二区三区高清不卡| 一夜夜www| 首页视频小说图片口味搜索| 狠狠狠狠99中文字幕| 国产片内射在线| 99国产极品粉嫩在线观看| 日韩成人在线观看一区二区三区| 日本免费a在线| 最新美女视频免费是黄的| 亚洲一区二区三区色噜噜| 亚洲av电影在线进入| 欧洲精品卡2卡3卡4卡5卡区| 精品国产超薄肉色丝袜足j| 欧美激情高清一区二区三区| 熟女少妇亚洲综合色aaa.| 男人舔奶头视频| 18美女黄网站色大片免费观看| 亚洲av中文字字幕乱码综合 | 91av网站免费观看| 欧美久久黑人一区二区| 午夜影院日韩av| 亚洲一卡2卡3卡4卡5卡精品中文| 变态另类成人亚洲欧美熟女| 日韩欧美免费精品| 50天的宝宝边吃奶边哭怎么回事| 村上凉子中文字幕在线| 18美女黄网站色大片免费观看| 国产伦一二天堂av在线观看| 在线天堂中文资源库| 美女扒开内裤让男人捅视频| 最好的美女福利视频网| 午夜福利在线观看吧| 国产亚洲精品综合一区在线观看 | 久久国产精品影院| av在线天堂中文字幕| 久久伊人香网站| 日本五十路高清| 亚洲成av人片免费观看| 女人爽到高潮嗷嗷叫在线视频| 99在线人妻在线中文字幕| 精品久久久久久久久久久久久 | 国产亚洲精品久久久久5区| 中文字幕高清在线视频| 黄色视频不卡| 日本一本二区三区精品| 欧美午夜高清在线| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产看品久久| 国产97色在线日韩免费| 男女下面进入的视频免费午夜 | 美女免费视频网站| 精品久久久久久久久久久久久 | 欧美中文综合在线视频| 少妇 在线观看| 国产成人精品无人区| 亚洲 欧美 日韩 在线 免费| 老司机午夜十八禁免费视频| 一区二区日韩欧美中文字幕| 啦啦啦韩国在线观看视频| 欧美激情高清一区二区三区| 在线观看免费视频日本深夜| 免费在线观看黄色视频的| 国产精品久久久av美女十八| 最近最新中文字幕大全电影3 | 亚洲av电影不卡..在线观看| 亚洲成人国产一区在线观看| 在线国产一区二区在线| 母亲3免费完整高清在线观看| 久久精品91蜜桃| 国产日本99.免费观看| 国产不卡一卡二| 男女那种视频在线观看| 叶爱在线成人免费视频播放| 亚洲五月色婷婷综合| 无人区码免费观看不卡| 欧美黑人精品巨大| 黄色毛片三级朝国网站| 亚洲aⅴ乱码一区二区在线播放 | 亚洲av美国av| 9191精品国产免费久久| 男女视频在线观看网站免费 | 国产精品永久免费网站| 国产在线观看jvid| 成年人黄色毛片网站| 国产亚洲精品av在线| 亚洲片人在线观看| 日本一区二区免费在线视频| 曰老女人黄片| 亚洲精品粉嫩美女一区| 法律面前人人平等表现在哪些方面| 亚洲成人久久性| 国产成人精品无人区| 国产激情欧美一区二区| 国内揄拍国产精品人妻在线 | 99热6这里只有精品| 国语自产精品视频在线第100页| 一二三四社区在线视频社区8| 久久国产精品人妻蜜桃| 亚洲国产欧洲综合997久久, | 久久中文看片网| 九色国产91popny在线| 深夜精品福利| 黄色毛片三级朝国网站| 国产精品自产拍在线观看55亚洲| 搞女人的毛片| 亚洲国产欧美一区二区综合| 日韩中文字幕欧美一区二区| 久久香蕉激情| 大型黄色视频在线免费观看| 十分钟在线观看高清视频www| 精华霜和精华液先用哪个| 午夜成年电影在线免费观看| 久久人人精品亚洲av| 真人一进一出gif抽搐免费| 婷婷精品国产亚洲av| 国产精品av久久久久免费| 亚洲五月婷婷丁香| 久久精品国产99精品国产亚洲性色| 亚洲成人精品中文字幕电影| 最新在线观看一区二区三区| 亚洲成人精品中文字幕电影| 欧美一级毛片孕妇| 一区二区日韩欧美中文字幕| 中文字幕最新亚洲高清| 免费电影在线观看免费观看| 怎么达到女性高潮| 久久久国产精品麻豆| 亚洲一区二区三区不卡视频| 亚洲精品中文字幕一二三四区| 国产黄片美女视频| 国产色视频综合| 91字幕亚洲| 国产精品亚洲av一区麻豆| 巨乳人妻的诱惑在线观看| 色尼玛亚洲综合影院| 18禁国产床啪视频网站| 国产99久久九九免费精品| 国产精品爽爽va在线观看网站 | 午夜两性在线视频| 亚洲成国产人片在线观看| 久久精品影院6| 欧美精品亚洲一区二区| 99久久精品国产亚洲精品| 亚洲第一青青草原| 国产精品乱码一区二三区的特点| 1024手机看黄色片| 男女做爰动态图高潮gif福利片| 在线观看舔阴道视频| 1024手机看黄色片| 男女做爰动态图高潮gif福利片|