• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bio-Inspired Numerical Analysis of COVID-19 with Fuzzy Parameters

    2022-08-24 07:00:56AllehianyFazalDayanAlHarbiNesreenAlthobaitiNaumanAhmedMuhammadRafiqAliRazaandMawahibElamin
    Computers Materials&Continua 2022年8期

    F.M.Allehiany,Fazal Dayan,F.F.Al-Harbi,Nesreen Althobaiti,Nauman Ahmed,Muhammad Rafiq,Ali Raza and Mawahib Elamin

    1Department of Mathematical Sciences,College of Applied Sciences,Umm Al-Qura University,Makkah,21955,Saudi Arabia

    2Department of Mathematics and Statistics,University of Lahore,Lahore,Pakistan

    3Department of Mathematics,School of Science,University of Management and Technology,Lahore,Pakistan

    4Department of Physics,College of Science,Princess Nourah Bint Abdulrahman University,Riyadh,11671,Saudi Arabia

    5Department of Mathematics and Statistics,College of Science,Taif University,Taif,21944,Saudi Arabia

    6Department of Mathematics,Faculty of Sciences,University of Central Punjab,Lahore,Pakistan

    7Department of Mathematics,Govt.Maulana Zafar Ali Khan Graduate College Wazirabad,Punjab Higher Education Department(PHED),Lahore,54000,Pakistan

    8Department of Mathematics,College of Science and Arts,Qassim University,Riyadh Al Khabra,Saudi Arabia

    Abstract: Fuzziness or uncertainties arise due to insufficient knowledge,experimental errors,operating conditions and parameters that provide inaccurate information.The concepts of susceptible,infectious and recovered are uncertain due to the different degrees in susceptibility,infectivity and recovery among the individuals of the population.The differences can arise,when the population groups under the consideration having distinct habits,customs and different age groups have different degrees of resistance,etc.More realistic models are needed which consider these different degrees of susceptibility infectivity and recovery of the individuals.In this paper,a Susceptible,Infected and Recovered(SIR)epidemic model with fuzzy parameters is discussed.The infection,recovery and death rates due to the disease are considered as fuzzy numbers.Fuzzy basic reproduction number and fuzzy equilibrium points have been derived for the studied model.The model is then solved numerically with three different techniques,forward Euler,Runge-Kutta fourth order method(RK-4) and the nonstandard finite difference (NSFD) methods respectively.The NSFD technique becomes more efficient and reliable among the others and preserves all the essential features of a continuous dynamical system.

    Keywords: Fuzzy parameters;SIR model;NSFD scheme;fuzzy equilibrium points;fuzzy stability analysis

    1 Introduction

    The novel Covid-19 belongs to a large class of deadly viruses that have infected millions of people worldwide and seriously challenged not only their individual lifestyles but also the economies and GDPs of the countries themselves.Like many other research questions regarding Covid-19 disease,reliable estimation of transmission dynamics is an important part of the research.The novel Covid-19 is still a huge panic for people around the world.Various approaches are being considered to combat this deadly disease[1-12].Noor et al.examined a Stochastic Susceptible,Exposed,Infected and Recovered (SEIR) model of the novel coronavirus by applying various computational methods such as Euler Maruyama,Euler Stochastic and Runge Kutta Stochastic to study the dynamics of the mentioned model [13].Afzal et al.examined the clustering of Covid-19 data with the c-Means(cM) and Fuzy c-Means (Fc-M) algorithms [14].Danane et al.examined the dynamics of a Covid-19 stochastic model with an isolation strategy and the white noise and Lévy jump disturbances are contained in all compartments of the proposed model[15].Hussain et al.examined a stochastic model to study the transmission dynamics of Covid-19[16].Singh et al.proposed a fractional-order Covid-19 model based on the principle of the domain and memory discretization[17].Baba et al.developed a mathematical model that takes into account the imposition of lockdown in Nigeria [18].Nisar et al.developed a Susceptible,Infected,Recovered and Death (SIRD) model of Caputo’s Covid-19 disease in fractional order and examined its reproduction number and stability analysis.The Adams-Bashforth fractional method is used for the model[19].Shaikh et al.studied a Covid-19 model of bathost-reservoir-human fractional order transmission[20].Raza et al.presented a Susceptible,Exposed,Infected,Quarantined and Recovered(SEIQR)non-linear delayed coronavirus pandemic model and examined Routh-Hurwitz criterion,Volterra-Lyapunov function,Lasalle invariance principle and reproductive number[21].Ghorui et al.developed a fuzzy analytical hierarchy process to determine weights and finally hesitant fuzzy sets (HFS) using a similarity-based order preference technique to determine the primary risk factor identification of Covid-19 [22].Ahmad et al.proposed a fuzzy model with a fractional order in the sense of Caputo using the Laplace fuzzy method and the Adomian decomposition transformation [23].Zamir et al.have developed a model that focuses on the elimination and control of Covid-19 infection[24].Fuzzy set theory was introduced by Zadeh in 1965 [25].Diagnosis of infectious diseases has been studied by using fuzzy theory.Barros et al.[26]proposed a new approach to integrating an ecological model with fuzzy criteria into the differential equations describing a dynamic system.Barros et al.[27]and Mondal et al.[28]have studied the epidemic models having the transmission coefficient as a fuzzy set.Verma et al.[29]have studied the fuzzy epidemic model and performed comparative studies of the equilibrium points of the disease for the classical and fuzzy models.In addition,the reproduction number of the classic and the fuzzy system were compared.The obtained analytical results were supported by some numerical simulations.Mishra et al.[30]have developed a fuzzy Susceptible-Infectious-Recovered-susceptible(SIRS)model for the transmission of worms in a computer network.The low,medium and high cases of the epidemic control of worms in the computer network were analyzed for a better understanding of the worms’attack which may also control them.Some numerical methods were used for the solution of the developed model.Ortega et al.[31]employed the fuzzy logic for the prediction in the epidemiology related problems in the infectious disease.A model of rabies among the partially vaccinated dogs was discussed.A comparison between the fuzzy linguistic rules and classical differential equations was also done.Verma et al.[32]have studied the dynamics of Ebola virus disease by employing fuzziness in all biological parameters.Some mathematical models were prosed for the transmission trajectories of the Ebola outbreak.The existence of the equilibria and their stability were studied by employing triangular fuzzy numbers.The stability of the equilibria was related to the basic reproduction number which was calculated with the help of the next generation matrix and the numerical methods were used to support theoretical work.Das and Pal developed an SIR model with imprecise biological parameters[33].The existence of equilibrium points and their feasibility criteria were discussed and the numerical simulation was done to support the analytical results.Sadhukhan et al.[34]studied about food chain model with optimal harvesting in a fuzzy environment.Jafelice et al.introduced a model for the evolution of the positive Human Immunodeficiency Virus (HIV) population and the manifestation of Acquired Immunodeficiency Syndrome(AIDS)[35].Since each community changes with the evolution of the environment,even the biological parameters used in mathematical models are not always fixed [36].The change in temperature also affects the rate of transmission of the virus in the population.Irfan et al.investigated the relationship between temperature and COVID-19 transmission in different provinces of Pakistan [37].Low-temperature provinces were found to have strong associations between temperature and COVID-19 transmissibility.In this sense,fuzzy mathematical models are more meaningful than crisp models.

    Micken’s introduced the NSFD scheme [38].Cresson et al.[39]studied the construction of the NSFD numerical scheme and discussed its different properties like convergence and stability etc.Some numerical examples were solved and a comparison with Euler,RK method of order 2 and 4 was done.Anguelov et al.[40]developed an NSFD scheme and discussed its stability analysis and dynamics preserving for a malaria model.The parameters used in existing SIR epidemic models employ crisp numbers,whereas uncertainty in parameters and heterogeneity in the population is very likely to occur.To make the model more realistic,the use of fuzzy parameters is very important.Abdy et al.presented an SIR model considering the vaccination,treatment and implementation of health protocols as fuzzy numbers and studied their effects on the spread of COVID-19 [41].We have extended the work by presenting the comparative numerical analysis of the model using Euler,RK-4 and NSFD schemes.We started with a system of differential equations and calculated the fuzzy basic reproduction number and fuzzy equilibrium points for the proposed model.We have developed Euler,RK-4 and NSFD schemes for the studied model.Furthermore,we studied the fuzzy stability for the proposed NSFD scheme at disease-free(DF)and endemic equilibrium(EE)points respectively.Moreover,we have presented the simulation results of the developed schemes.The remaining of this article has been divided into various segments.Section 2 lays down some basic definitions related to this study.A fuzzy SIR mathematical model and its fuzziness are discussed in Section 3.The fuzzy basic reproductive number and the fuzzy equilibrium points are also computed in this section.Section 4 contains numerical modeling of the studied model.Section 5 is devoted to numerical results and discussions.This article is concluded in Section 6.

    2 Preliminaries

    In this section,we mention some basic definitions which will be useful for this study[42,43].

    2.1 Definition 1

    A fuzzy subsetAof the universe setXis represented by the membership functionμA(x):X→[0,1],whereμA(x)indicates the degree of membership ofxin the fuzzy setA.

    2.2 Definition 2

    A fuzzy subsetAinRis called fuzzy number when:

    ? Allδ-levelsofAare non-empty,with 0 ≤δ≤1,that is,Amust be normal.

    ? Allδ-levels ofAare closed intervals of R.

    ? The support ofA,that is,supportA=x∈R:A(x)>0 is bounded.

    2.3 Definition 3

    The numberA=(l,m,n)is a triangular fuzzy number if its membership function is

    wherel≤m≤n.

    2.4 Definition 4

    A fuzzy numberB=(k,l,m,n)is said to be trapezoidal if its membership function has the form of a trapezoid and is given by

    wherek≤l≤m≤n.

    2.5 Definition 5

    The expected value of a TFNAis given by

    2.6 Definition 6

    The fuzzy basic reproductive numberRcfis defined as

    3 SIR Epidemic Model for COVID-19 Spread with Fuzzy Parameters

    In this section,we study the fuzzy basic reproduction number and the fuzzy equilibrium points respectively for the fuzzy SIR model.We considered the fuzzy SIR numerical model that has been talked about by Abdy et al.

    withS+I+R=1.The parametersS,IandRdenote proportions of susceptible,infected and recovered individuals respectively.The detail of the remaining model parameters is given in Tab.1.

    Table 1:Detail of the model parameters

    The presence or absence of the virus in epidemiology is essential to distinguish infected persons from susceptible persons.We take into account the heterogeneity of the model by considering the infection in each individual as a function of the virus-load.We assume that all infected persons do not have the same contribution to the disease transmission process and each individual has a different degree of infectivity which depends on the quantity of virus.Suppose the number of new infections is proportional to the number of encounters between infected and susceptible people,since the probability of transmission is uncertain,although it increases as infected people become more contagious.By considering the virus load of each individual,the parametersβ(ζ),γ(ζ)andμc(ζ)can be displayed as a function of the coronavirus infection loadζ.The greatest chance of disease transmission is when the coronavirus infection loadζis at its highest,the disease transmission will be negligible when the coronavirus infection loadζis low andζmis the minimum virus-load required for disease transmission to occur.The transmission rate is maximum at a certain pointζ0where it is equal to(1-?)(1-?).The membership function of theβ(ζ)is shown in Fig.1 and it is defined as

    Figure 1:The membership function of β(ζ)

    The recovery rateγ=γ(ζ)is also assumed to be a fuzzy number.The membership function ofγ(ζ)is given by

    where the lowest recovery rate isγ0>0.The membership function ofγ(ζ)is shown in Fig.2.The higher the coronavirus infection loadζ,the more it will take to recuperate from it.

    Figure 2:The membership function of γ(ζ)

    The Covid-19 induced death rateμccan also be assumed as a fuzzy number and its membership functionμc(ζ)is given by(depicted in Fig.3):

    Figure 3:The membership function of μc(ζ)

    The lowest death rate isμ0c(0<μ0c<1) andvis the effectiveness of immunity power and availability of medicine,etc.The maximum death rate is(1-v) (1-θ)+θμ0cand it may not reach the maximum value 1 due to immunity power and availability of medicine,etc.

    Since the amount of virus is different for each group of individuals.To make the model more realistic,we consider only the human individuals in a given groupNwith classification(weak,medium and strong)given by some expert which can be seen as a linguistic variable with membership functionΓ(ζ)and is given by

    3.1 Fuzzy Basic Reproduction Number

    We find the value ofR0by incorporating the next generation matrix (NGM) method.LetX=[S,I]t,then=f(x)-g(x),where

    The Jacobeans off(x)andg(x)denoted by N and M are given below.

    SinceR0(ζ)is a function of the amount of virusζ,we analyze it for different amounts of virus.

    Case 1:Ifζ<ζm,β(ζ)=0,γ(ζ)>0,μc (ζ)>0,thenR0(ζ)=0.

    Case 2:Ifζm≤ζ≤ζ0,β(ζ)=(1-?)(1-?),γ(ζ)>0 andμc (ζ)>0,thenR0(ζ)=

    Case 3:Ifζ0<ζ<ζM,β(ζ)=1,γ(ζ)>0 andμc (ζ)>0,thenR0(ζ)=

    The basic reproduction numberR0(υ)is an increasing function of the parasitic virus loadυand it is well-defined as a fuzzy variable.Consequently,the expected value ofR0(ζ)is well-defined and it can be expressed as a triangular fuzzy number as:

    whereβ*(ζ)=(1-?)(1-?).

    Now we find the fuzzy basic reproduction number as follows

    whereβ*(ζ)=(1-?)(1-?).

    3.2 Fuzzy Equilibrium Points

    Case 1:Ifζ<ζm,thenβ(ζ)=0,γ(ζ)>0 andμc (ζ)>0.From system (1),we getS=

    which is the disease-free equilibrium point.It is the situation when there is no virus in the population.Biologically,when the amount of virus is less than a minimum amount required in the population for disease transmission,the disease will die out.

    Case 2:Ifζm≤ζ≤ζ0,thenβ(ζ)=(1-?)(1-?),γ(ζ)>0 andμc (ζ)>0.From system(1),we obtain,

    Case 3:Ifζ0<ζ<ζM,thenβ(ζ)=1,γ(ζ)>0 andμc (ζ)>0.From system(1),we obtain

    The equilibrium pointsC*(S*,I*,R*)andC**(S**,I**,R**)are called endemic equilibrium points.These equilibriums occur when the virus is greater than the minimum amount required and it persists in the population.

    4 Numerical Modeling

    In this section,we will construct three numerical schemes,i.e.,Euler,RK-4 and NSFD to solve the system of differential equations corresponding to the fuzzy SIR model.Furthermore,we will discuss the fuzzy stability of the NSFD scheme for the fuzzy SIR model at DFE pointand EE pointsC*(S*,I*,R*)andC**(S**,I**,R**)respectively.

    4.1 Forward Euler Method

    Forward Euler strategy is a notable time forward finite difference scheme which is expressed in nature.This finite difference method is produced for the above system as,

    where,his the step at any time.

    4.2 Runge-Kutta Method

    RK-4 is also a notable time forward explicit finite difference scheme.To develop an explicit RK-4 method we again consider the above the above system,we have

    The final results of RK-4 are

    4.3 Non-Standard Finite Difference Method

    Now we will build NSFD scheme for the fuzzy SIR model,based on Micken’s theory.To develop an explicit NSFD scheme we again consider the system(1),we have

    where,his the step at any time.

    4.4 Fuzzy Stability of the NSFD Scheme

    To check the stability of the NSFD scheme of the fuzzy SIR model at DFE pointand EE pointsC*(S*,I*,R*)andC**(S**,I**,R**)respectively,let Jacobean matrix of Eqs.(14)to(16)is

    Case 1:Ifζ<ζm,thenβ(ζ)=0,γ(ζ)>0,andμc (ζ)>0.

    Jacobean at the DFE pointC0(S0,I0,R0)=is

    The above numerical scheme will be unconditionally convergent if the absolute eigenvalue of the above Jacobean matrix at the DFE point is less than unity,i.e.,|λi|<1,i=1,2,3.From above Jacobean matrix J0we obtain the eigenvaluesand

    Case 2:Ifζm≤ζ≤ζ0,thenβ(ζ)=(1-?)(1-?),γ(ζ)>0 andμc (ζ)>0.

    Jacobean at the pointC*(S*,I*,R*)is given as

    From above Jacobean matrix we obtain the eigenvalueThe other eigenvalues can be obtained from the following matrix

    The largest eigenvalue has been plotted by using the MATLAB database and shown in Fig.4a.

    Figure 4:Eigen values of the Jacobean at the endemic equilibrium points(a)Case 2(b)Case 3

    Case 3:Ifζ0<ζ<ζM,β(ζ)=1,γ(ζ)>0 andμc (ζ)>0,thenR0(ζ)=

    Jacobean at the pointC**(S**,I**,R**)is given as

    From above Jacobean matrix,we obtain the eigenvalueThe other eigenvalues can be obtained from the following matrix

    Again the largest eigenvalue has been plotted by using the MATLAB database and shown in Fig.4b.

    5 Numerical Simulation

    In this segment we present the simulation results of our findings and the comparative analysis of the Euler,RK-4 and NSFD methods for the studied model.

    We can examine the behavior of the fuzzy SIR epidemic model for COVID-19 spread in the above graphs.The behavior of the graphs is investigated for various values ofh.Fig.5 shows the positive behavior and convergence of Euler’s method at small step sizes 0.1 and 1 respectively but diverges at step size 10.From this,we conclude that Euler’s method cannot illustrate the actual behavior of the disease dynamics.In Fig.6,the RK-4 method shows positive behavior and convergence at step sizes 0.1 and 1 but starts divergence and shows negative behavior at large step size 10.Again,we conclude that this method is also not a reliable tool for reflecting the actual behavior of the model.In Fig.7,the NSFD method is converging to the same equilibrium points at step sizes 0.1,1 and 10 respectively.The results show that this technique converges towards the equilibrium solution for each of the observed values ofh,using step sizes 0.1,1 and 10 with little computational effort.In this sense,this method is more robust and reliable than the standard approaches used for comparison purposes.Fig.8,represents a comparison of Euler,RK-4 and NSFD methods at step sizes 0.1,1 and 10 respectively.It is clear from the graphs that the NSFD method is stable,converging to equilibria and also containing positivity at all step sizes while the classical Euler and RK-4 show positivity and convergence solution at small step size only.

    Figure 5:Portion of infected population by using Euler scheme at different step sizes (a) Infected population at h=0.1,(b)Infected population at h=1(c)Infected population at h=10

    Figure 6:Portion of infected population by using RK-4 scheme at different step sizes (a) Infected population at h=0.1,(b)Infected population at h=1(c)Infected population at h=10

    Figure 7:Portion of infected population by using NSFD scheme at different step sizes (a) Infected population at h=0.1,(b)Infected population at h=1(c)Infected population at h=10

    Figure 8:Comparison of Euler,RK-4 and NSFD schemes at different step sizes(a)Infected population at h=0.1,(b)Infected population at h=1(c)Infected population at h=10

    6 Conclusion

    In this article,we have presented the numerical analysis of the SIR epidemic model for COVID-19 spread with fuzzy parameters.We assumed that all infected persons do not transmit the disease equally and each individual has a different degree of transfer of disease infectivity which depends on the quantity of virus.Similarly,the recovery rate and disease induced death rate are also not same for each individual.Keeping this in mind,the parametersβ,γandμchave been treated as membership functions of fuzzy numbers which depend directly on the individual’s virus load.These parameters have fixed values in deterministic models and do not depend on the virus load directly.Thus the fuzzy SIR model is more realistic than the corresponding crisp model.Fuzzy equilibrium points of the studied model by considering the amounts of virus in the population have been discussed.A disease-free and two endemic equilibrium points of the fuzzy SIR model have been derived.We calculated the fuzzy basic reproduction number by utilizing next generation matrix method and the expected value of a fuzzy number.The fuzzy stability of the NSFD method has been discussed and it is shown that all of the equilibrium points have the same stability properties for the studied model.Furthermore,three numerical schemes Euler,RK-4 and NSFD are developed for our studied model.The simulation results show that the proposed NSFD technique describes the convergence solution at each time step size.While the classical Euler and RK-4 show positivity and convergence solutions at small step sizes only.The NSFD technique is an explicit numerical scheme therefore easy to implement,shows stable behavior numerically and demonstrates a good agreement with analytic results possessed by continuous model.It describes that NSFD is more reliable as compared to the other two techniques and preserves all the essential features of a continuous dynamical system.The numerical and simulations results presented in this work will provide a tribune for the researchers to compare their studies.

    Acknowledgement:The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project (Grant No.PNURSP2022R55),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    在线精品无人区一区二区三| 99精品久久久久人妻精品| 91精品国产国语对白视频| 欧美日韩精品网址| 在线观看一区二区三区激情| 老司机影院毛片| 91国产中文字幕| 高清av免费在线| 国产av国产精品国产| 不卡av一区二区三区| 老司机靠b影院| 少妇被粗大的猛进出69影院| 在线看a的网站| 亚洲av成人精品一二三区| 国产日韩一区二区三区精品不卡| 女性被躁到高潮视频| 亚洲少妇的诱惑av| 90打野战视频偷拍视频| 午夜av观看不卡| 国产亚洲最大av| 日本欧美国产在线视频| 波多野结衣av一区二区av| 黄色视频不卡| 99精品久久久久人妻精品| 黑人欧美特级aaaaaa片| 妹子高潮喷水视频| 看免费成人av毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 天堂8中文在线网| 欧美精品亚洲一区二区| 美女中出高潮动态图| 19禁男女啪啪无遮挡网站| 最新的欧美精品一区二区| 女人精品久久久久毛片| 欧美乱码精品一区二区三区| 免费黄网站久久成人精品| 搡老岳熟女国产| 国产成人精品在线电影| 十分钟在线观看高清视频www| 男男h啪啪无遮挡| 日韩 亚洲 欧美在线| 高清在线视频一区二区三区| 国产av精品麻豆| 少妇被粗大猛烈的视频| 啦啦啦在线免费观看视频4| 在线免费观看不下载黄p国产| 999久久久国产精品视频| 精品国产超薄肉色丝袜足j| 国产激情久久老熟女| 精品一区在线观看国产| 国产精品女同一区二区软件| 丁香六月欧美| 精品卡一卡二卡四卡免费| 精品久久久精品久久久| 久久 成人 亚洲| 久久久久网色| 久久精品aⅴ一区二区三区四区| 狠狠婷婷综合久久久久久88av| 少妇被粗大猛烈的视频| 99久久99久久久精品蜜桃| 欧美亚洲日本最大视频资源| 国产在线免费精品| 少妇被粗大猛烈的视频| 久久青草综合色| 亚洲av综合色区一区| 亚洲精品一二三| 久久免费观看电影| 制服人妻中文乱码| 国产无遮挡羞羞视频在线观看| 国产又色又爽无遮挡免| 亚洲一区二区三区欧美精品| 欧美精品av麻豆av| 另类精品久久| 久久久国产精品麻豆| 国产熟女午夜一区二区三区| 色播在线永久视频| 午夜福利视频在线观看免费| 香蕉丝袜av| 中国三级夫妇交换| 一区二区三区乱码不卡18| 亚洲伊人色综图| 夫妻性生交免费视频一级片| 日本wwww免费看| 国产成人免费无遮挡视频| 蜜桃国产av成人99| www.av在线官网国产| 免费观看a级毛片全部| 黑人欧美特级aaaaaa片| 久久人人97超碰香蕉20202| 国产欧美亚洲国产| 18禁裸乳无遮挡动漫免费视频| 日韩欧美精品免费久久| 国产精品久久久av美女十八| 日韩av在线免费看完整版不卡| 男女边吃奶边做爰视频| 妹子高潮喷水视频| 叶爱在线成人免费视频播放| 亚洲国产中文字幕在线视频| 如何舔出高潮| 伦理电影大哥的女人| 少妇被粗大猛烈的视频| 国产免费一区二区三区四区乱码| 午夜影院在线不卡| 1024视频免费在线观看| 最近中文字幕高清免费大全6| 建设人人有责人人尽责人人享有的| 久久毛片免费看一区二区三区| 亚洲国产欧美一区二区综合| 黑人欧美特级aaaaaa片| 女人高潮潮喷娇喘18禁视频| 男的添女的下面高潮视频| 男女边吃奶边做爰视频| 女的被弄到高潮叫床怎么办| 国产伦人伦偷精品视频| 欧美日韩亚洲国产一区二区在线观看 | 1024视频免费在线观看| 看免费av毛片| 无遮挡黄片免费观看| 欧美日韩亚洲综合一区二区三区_| 99久久精品国产亚洲精品| 欧美 亚洲 国产 日韩一| 巨乳人妻的诱惑在线观看| 狠狠婷婷综合久久久久久88av| 亚洲av福利一区| 亚洲精品日本国产第一区| 久久精品aⅴ一区二区三区四区| 国产黄色免费在线视频| 男男h啪啪无遮挡| 国产欧美亚洲国产| 人人妻人人澡人人看| 91精品国产国语对白视频| 亚洲伊人色综图| 你懂的网址亚洲精品在线观看| 亚洲av福利一区| 一级a爱视频在线免费观看| 亚洲人成网站在线观看播放| 亚洲精品日韩在线中文字幕| 天堂8中文在线网| 纯流量卡能插随身wifi吗| 亚洲中文av在线| 亚洲国产av影院在线观看| 日韩免费高清中文字幕av| 精品国产一区二区三区四区第35| 又大又爽又粗| 啦啦啦视频在线资源免费观看| 亚洲av成人不卡在线观看播放网 | 熟女av电影| 亚洲色图 男人天堂 中文字幕| 久久热在线av| 国产乱人偷精品视频| 最近中文字幕2019免费版| 日韩制服骚丝袜av| 最近手机中文字幕大全| 日韩欧美一区视频在线观看| 久久精品久久久久久噜噜老黄| 亚洲婷婷狠狠爱综合网| 美女午夜性视频免费| 亚洲精品自拍成人| 美女福利国产在线| 丝袜喷水一区| 亚洲一区二区三区欧美精品| 热re99久久国产66热| 国产成人系列免费观看| 久久天躁狠狠躁夜夜2o2o | 久热爱精品视频在线9| 欧美老熟妇乱子伦牲交| 色婷婷av一区二区三区视频| 欧美成人午夜精品| 国产有黄有色有爽视频| 亚洲av电影在线观看一区二区三区| 久久久精品区二区三区| www.av在线官网国产| 一级毛片 在线播放| 亚洲欧美中文字幕日韩二区| 18禁国产床啪视频网站| 亚洲国产av影院在线观看| 美女国产高潮福利片在线看| 看免费成人av毛片| 多毛熟女@视频| 国产精品蜜桃在线观看| 亚洲国产精品一区二区三区在线| 亚洲精品av麻豆狂野| 97在线人人人人妻| 麻豆av在线久日| 校园人妻丝袜中文字幕| 国产在线一区二区三区精| 免费观看人在逋| 男女边吃奶边做爰视频| 嫩草影视91久久| 国产成人精品无人区| 成人影院久久| 无遮挡黄片免费观看| 男女边摸边吃奶| 精品一区二区三区av网在线观看 | 欧美日韩成人在线一区二区| 少妇猛男粗大的猛烈进出视频| 日本91视频免费播放| av网站免费在线观看视频| 亚洲 欧美一区二区三区| 极品少妇高潮喷水抽搐| 免费人妻精品一区二区三区视频| 一区二区三区乱码不卡18| 久久精品aⅴ一区二区三区四区| 亚洲色图 男人天堂 中文字幕| av电影中文网址| 欧美黑人精品巨大| 欧美日韩一级在线毛片| 国产片特级美女逼逼视频| 欧美老熟妇乱子伦牲交| 成年女人毛片免费观看观看9 | 少妇 在线观看| 亚洲精品美女久久久久99蜜臀 | 精品久久久精品久久久| 亚洲,欧美,日韩| 菩萨蛮人人尽说江南好唐韦庄| 免费日韩欧美在线观看| 九草在线视频观看| 国产精品欧美亚洲77777| 老汉色∧v一级毛片| 99国产综合亚洲精品| 男女国产视频网站| 国产亚洲精品第一综合不卡| 欧美精品一区二区免费开放| 午夜91福利影院| 欧美97在线视频| 黄片无遮挡物在线观看| 国产精品熟女久久久久浪| 国产不卡av网站在线观看| 人人妻人人澡人人看| 亚洲欧美中文字幕日韩二区| 国产男女超爽视频在线观看| 在线观看国产h片| 国产深夜福利视频在线观看| 成人黄色视频免费在线看| 女性被躁到高潮视频| 捣出白浆h1v1| 大片电影免费在线观看免费| 伊人久久大香线蕉亚洲五| 母亲3免费完整高清在线观看| 观看美女的网站| 久久久国产欧美日韩av| 成人黄色视频免费在线看| 午夜福利影视在线免费观看| 不卡视频在线观看欧美| 国产激情久久老熟女| 亚洲精品国产av蜜桃| 午夜日本视频在线| 国产精品嫩草影院av在线观看| 深夜精品福利| 免费av中文字幕在线| 在线亚洲精品国产二区图片欧美| 日韩一本色道免费dvd| 色播在线永久视频| 欧美激情极品国产一区二区三区| 久久综合国产亚洲精品| 男人添女人高潮全过程视频| 午夜老司机福利片| 亚洲精品中文字幕在线视频| 美女大奶头黄色视频| 91精品国产国语对白视频| 日韩欧美一区视频在线观看| 各种免费的搞黄视频| 国产乱来视频区| 99国产综合亚洲精品| 人人澡人人妻人| 天天躁狠狠躁夜夜躁狠狠躁| 99热国产这里只有精品6| 欧美日韩av久久| 亚洲人成77777在线视频| 欧美另类一区| 波多野结衣av一区二区av| 99香蕉大伊视频| 成年人午夜在线观看视频| 捣出白浆h1v1| 日韩,欧美,国产一区二区三区| 日韩中文字幕视频在线看片| 成年av动漫网址| 国产女主播在线喷水免费视频网站| 在线观看免费高清a一片| 午夜免费观看性视频| 少妇人妻久久综合中文| 亚洲av综合色区一区| 人成视频在线观看免费观看| 一本久久精品| 亚洲第一青青草原| 2018国产大陆天天弄谢| videos熟女内射| 两性夫妻黄色片| 曰老女人黄片| 亚洲欧美一区二区三区黑人| 亚洲成人手机| 精品少妇黑人巨大在线播放| 黑人猛操日本美女一级片| av线在线观看网站| 看非洲黑人一级黄片| 欧美日韩精品网址| 大话2 男鬼变身卡| 咕卡用的链子| 亚洲久久久国产精品| 亚洲综合色网址| 熟妇人妻不卡中文字幕| 两性夫妻黄色片| 国产 精品1| 美女脱内裤让男人舔精品视频| 久久综合国产亚洲精品| 亚洲精华国产精华液的使用体验| 国产亚洲午夜精品一区二区久久| 波多野结衣av一区二区av| 亚洲欧美成人综合另类久久久| 久久人人爽人人片av| 黄频高清免费视频| av国产久精品久网站免费入址| 欧美激情 高清一区二区三区| 国产精品免费大片| 成年动漫av网址| 十分钟在线观看高清视频www| 亚洲专区中文字幕在线 | 黑人巨大精品欧美一区二区蜜桃| 99香蕉大伊视频| 韩国高清视频一区二区三区| 这个男人来自地球电影免费观看 | 观看av在线不卡| 国产日韩欧美视频二区| 男女边摸边吃奶| 久久久久精品性色| 男女下面插进去视频免费观看| 亚洲国产最新在线播放| 亚洲人成77777在线视频| 啦啦啦中文免费视频观看日本| 久久av网站| 欧美国产精品一级二级三级| 精品一区二区三卡| 最新在线观看一区二区三区 | 人人妻,人人澡人人爽秒播 | 777米奇影视久久| 丝瓜视频免费看黄片| 青草久久国产| 精品国产超薄肉色丝袜足j| 久久免费观看电影| 欧美精品亚洲一区二区| 伊人亚洲综合成人网| 亚洲欧美清纯卡通| 久久国产精品大桥未久av| 亚洲,一卡二卡三卡| 国产成人午夜福利电影在线观看| 日韩中文字幕视频在线看片| 国产一区有黄有色的免费视频| 精品国产乱码久久久久久小说| 精品国产超薄肉色丝袜足j| 亚洲精品久久久久久婷婷小说| 国产黄色视频一区二区在线观看| 制服丝袜香蕉在线| 在现免费观看毛片| 久久99一区二区三区| 最近手机中文字幕大全| 国产成人精品久久久久久| 亚洲国产最新在线播放| 叶爱在线成人免费视频播放| 亚洲综合精品二区| 大陆偷拍与自拍| 91精品伊人久久大香线蕉| 久久精品国产亚洲av涩爱| 国产人伦9x9x在线观看| avwww免费| 可以免费在线观看a视频的电影网站 | 成人毛片60女人毛片免费| 欧美 亚洲 国产 日韩一| 丝袜美腿诱惑在线| 丰满少妇做爰视频| 你懂的网址亚洲精品在线观看| 亚洲综合精品二区| 男女下面插进去视频免费观看| 国产片特级美女逼逼视频| 纵有疾风起免费观看全集完整版| a级毛片黄视频| 亚洲一码二码三码区别大吗| 亚洲欧美一区二区三区国产| 一区二区三区精品91| 日韩一区二区三区影片| 成人亚洲精品一区在线观看| 激情五月婷婷亚洲| 国产免费一区二区三区四区乱码| 不卡视频在线观看欧美| 卡戴珊不雅视频在线播放| www.av在线官网国产| 久久 成人 亚洲| 人人妻人人澡人人爽人人夜夜| 国产99久久九九免费精品| 亚洲久久久国产精品| 成人18禁高潮啪啪吃奶动态图| 亚洲精品久久成人aⅴ小说| 国产成人精品久久二区二区91 | 亚洲,一卡二卡三卡| 大香蕉久久网| 久久热在线av| 亚洲精品美女久久久久99蜜臀 | 久久综合国产亚洲精品| 19禁男女啪啪无遮挡网站| 欧美中文综合在线视频| 飞空精品影院首页| 亚洲一码二码三码区别大吗| 久久韩国三级中文字幕| 熟女av电影| 亚洲av福利一区| 亚洲熟女毛片儿| 天堂中文最新版在线下载| 亚洲自偷自拍图片 自拍| 五月开心婷婷网| 国产精品一区二区在线不卡| 成年人免费黄色播放视频| av一本久久久久| av在线老鸭窝| 亚洲av男天堂| 女的被弄到高潮叫床怎么办| 91aial.com中文字幕在线观看| 18禁动态无遮挡网站| 汤姆久久久久久久影院中文字幕| 建设人人有责人人尽责人人享有的| 侵犯人妻中文字幕一二三四区| 亚洲精品自拍成人| 亚洲欧美中文字幕日韩二区| 国产精品成人在线| 老司机在亚洲福利影院| 久久99精品国语久久久| 97人妻天天添夜夜摸| 午夜日本视频在线| a 毛片基地| 亚洲av中文av极速乱| 老司机亚洲免费影院| 性高湖久久久久久久久免费观看| 一二三四中文在线观看免费高清| 91精品三级在线观看| 久久国产亚洲av麻豆专区| 欧美黄色片欧美黄色片| 午夜激情久久久久久久| 精品视频人人做人人爽| 精品午夜福利在线看| 精品一品国产午夜福利视频| 国产成人欧美在线观看 | 亚洲精品第二区| 免费高清在线观看视频在线观看| 国产精品免费视频内射| 亚洲欧美一区二区三区黑人| 国产精品国产三级国产专区5o| 纵有疾风起免费观看全集完整版| 女性被躁到高潮视频| 国产精品av久久久久免费| 女人爽到高潮嗷嗷叫在线视频| 人体艺术视频欧美日本| 九色亚洲精品在线播放| 亚洲精品美女久久久久99蜜臀 | av线在线观看网站| 久久鲁丝午夜福利片| bbb黄色大片| 色婷婷久久久亚洲欧美| 国产爽快片一区二区三区| 满18在线观看网站| 亚洲精品在线美女| 免费人妻精品一区二区三区视频| 97人妻天天添夜夜摸| 欧美精品一区二区免费开放| 一区二区三区激情视频| 少妇被粗大猛烈的视频| 三上悠亚av全集在线观看| 久久这里只有精品19| 亚洲精品中文字幕在线视频| 只有这里有精品99| 欧美日韩亚洲高清精品| 亚洲熟女精品中文字幕| 老司机影院成人| 国产伦人伦偷精品视频| 国产亚洲av高清不卡| 精品福利永久在线观看| 国产精品熟女久久久久浪| 国产极品天堂在线| 亚洲三区欧美一区| 69精品国产乱码久久久| 最近的中文字幕免费完整| 国产熟女午夜一区二区三区| 韩国高清视频一区二区三区| 日韩大码丰满熟妇| 亚洲伊人色综图| 免费人妻精品一区二区三区视频| 亚洲国产精品国产精品| 菩萨蛮人人尽说江南好唐韦庄| 免费少妇av软件| 日韩大片免费观看网站| 一区福利在线观看| 国产精品人妻久久久影院| 日日啪夜夜爽| 免费不卡黄色视频| 亚洲伊人色综图| 男女边吃奶边做爰视频| 成人午夜精彩视频在线观看| 国产一区二区 视频在线| 国产精品香港三级国产av潘金莲 | av网站在线播放免费| 国产无遮挡羞羞视频在线观看| av在线观看视频网站免费| 一二三四中文在线观看免费高清| 久久精品国产亚洲av高清一级| 男男h啪啪无遮挡| 人妻一区二区av| 日韩欧美精品免费久久| 黄频高清免费视频| 亚洲成人一二三区av| 亚洲成人av在线免费| 久热爱精品视频在线9| 99精国产麻豆久久婷婷| 亚洲欧美激情在线| 亚洲国产精品999| 国产亚洲欧美精品永久| 亚洲在久久综合| 一级毛片电影观看| 午夜福利,免费看| 丰满迷人的少妇在线观看| 99精国产麻豆久久婷婷| 一区二区三区乱码不卡18| 亚洲精品久久久久久婷婷小说| 欧美成人午夜精品| 少妇人妻久久综合中文| 日本欧美视频一区| 9色porny在线观看| 中文字幕人妻丝袜一区二区 | 亚洲,欧美精品.| 国产片内射在线| 国产爽快片一区二区三区| 国产激情久久老熟女| 日韩精品免费视频一区二区三区| 欧美久久黑人一区二区| 九草在线视频观看| 欧美日韩精品网址| 国产精品久久久久久人妻精品电影 | 亚洲av男天堂| 亚洲成人免费av在线播放| 国产片内射在线| 宅男免费午夜| 日韩免费高清中文字幕av| 中文字幕另类日韩欧美亚洲嫩草| 久久久久久免费高清国产稀缺| 男人操女人黄网站| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品亚洲av一区麻豆 | 精品一品国产午夜福利视频| 久久韩国三级中文字幕| 国产高清不卡午夜福利| 国产精品熟女久久久久浪| av免费观看日本| av线在线观看网站| 成人18禁高潮啪啪吃奶动态图| 精品国产露脸久久av麻豆| 夫妻午夜视频| 欧美人与善性xxx| 国产av国产精品国产| 老司机在亚洲福利影院| av在线app专区| 国产成人免费观看mmmm| 国产精品久久久久久精品古装| 亚洲欧美一区二区三区黑人| 国产精品一区二区在线不卡| 欧美精品高潮呻吟av久久| 日韩一卡2卡3卡4卡2021年| 韩国av在线不卡| 亚洲av国产av综合av卡| 亚洲精品av麻豆狂野| 欧美激情 高清一区二区三区| 久久人人爽av亚洲精品天堂| 男人添女人高潮全过程视频| 自拍欧美九色日韩亚洲蝌蚪91| 高清在线视频一区二区三区| 一本色道久久久久久精品综合| 三上悠亚av全集在线观看| 性少妇av在线| 熟妇人妻不卡中文字幕| 一级毛片 在线播放| 老熟女久久久| av又黄又爽大尺度在线免费看| 十八禁高潮呻吟视频| 国产精品亚洲av一区麻豆 | 亚洲欧美精品自产自拍| 午夜日韩欧美国产| 国产有黄有色有爽视频| 日本猛色少妇xxxxx猛交久久| 国产成人系列免费观看| 亚洲av福利一区| 国产精品国产av在线观看| 亚洲精品乱久久久久久| 国产黄色免费在线视频| 啦啦啦啦在线视频资源| 欧美日韩成人在线一区二区| 日本欧美视频一区| 亚洲综合色网址| 人妻一区二区av| 久久久久精品性色| 亚洲国产精品一区二区三区在线| 黄网站色视频无遮挡免费观看| 一本色道久久久久久精品综合| 久热这里只有精品99| 一区二区三区乱码不卡18| 最近中文字幕2019免费版| 老司机靠b影院| 精品一区在线观看国产| 男女之事视频高清在线观看 | 婷婷色综合大香蕉| 亚洲国产毛片av蜜桃av| 亚洲欧美成人综合另类久久久| 欧美97在线视频| 国产一区亚洲一区在线观看| 久久久久久人妻| 各种免费的搞黄视频| 久久久国产欧美日韩av| 国产精品三级大全| 蜜桃国产av成人99| 亚洲美女视频黄频| 男女无遮挡免费网站观看|