• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis and Assessment of Wind Energy Potential of Almukalla in Yemen

    2022-08-24 07:00:38MuradAlmekhlafiFahdAlWesabiMajdyEltahirAnwerMustafaHilalAminElKustabanAbdelwahedMotwakelIshfaqYaseenandManarAhmedHamza
    Computers Materials&Continua 2022年8期

    Murad A.A.Almekhlafi,Fahd N.Al-Wesabi,Majdy M.Eltahir,Anwer Mustafa Hilal,Amin M.El-Kustaban,Abdelwahed Motwakel,Ishfaq Yaseen and Manar Ahmed Hamza,*

    1Department of Electrical Engineering-Communication Engineering,Sana’a University,Yemen

    2Department of Computer Science,King Khalid University,Muhayel,Aseer,Saudi Arabia

    3Faculty of Computer and IT,Sana’a University,Sana’a,Yemen

    4Department of Information Systems,King Khalid University,Muhayel,Aseer,Saudi Arabia

    5Department of Computer and Self Development,Preparatory Year Deanship,Prince Sattam bin Abdulaziz University,AlKharj,Saudi Arabia

    6Electronic Department,Faculty of Engineering,University of Science and Technology,Sana’a,Yemen

    Abstract: Energy is an essential element for any civilized country’s social and economic development,but the use of fossil fuels and nonrenewable energy forms has many negative impacts on the environment and the ecosystem.The Republic of Yemen has very good potential to use renewable energy.Unfortunately,we find few studies on renewable wind energy in Yemen.Given the lack of a similar analysis for the coastal city,this research newly investigates wind energy’s potential near the Almukalla area by analyzing wind characteristics.Thus,evaluation,model identification,determination of available energy density,computing the capacity factors for several wind turbines and calculation of wind energy were extracted at three heights of 15,30,and 50 meters.Average wind speeds were obtained only for the currently available data of five recent years,2005-2009.This study involves a preliminary assessment of Almukalla’s wind energy potential to provide a primary base and useful insights for wind engineers and experts.This research aims to provide useful assessment of the potential of wind energy in Almukalla for developing wind energy and an efficient wind approach.The Weibull distribution shows a perfect approximation for estimating the intensity of Yemen’s wind energy.Depending on both the Weibull model and the results of the annual wind speed data analysis for the study site in Mukalla,the capacity factor for many turbines was also calculated,and the best suitable turbine was selected.According to the International Wind Energy Rating criteria,Almukalla falls under Category 7,which is,rated“Superb”most of the year.

    Keywords: Almukalla;energy potential;Rayleigh distribution;Weibull distribution;wind power density;wind speed

    1 Introduction

    In any civilized country,energy is a basic element of social and economic development,and over the past several decades,demand for fossil fuels has increased,particularly with the increasing population,number of factories,and so on.In fact,global demand exceeds limited available resources,but the use of fossil fuels and other nonrenewable energy has many negative effects on the environment and our ecosystem [1,2].The conflict that raged in the Republic of Yemen in early 2015 has had a devastating impact on its infrastructure.Energy supply shortages in Yemen escalated at the beginning of the conflict.Even so,energy supply had already been a major developmental dilemma that plagued Yemen for decades.Sana’a,Yemen’s largest city of about two million,completely lacks an electricity network.As part of the second phase of Yemen’s damage and needs assessment report,six of every ten cities surveyed in mid-2017 by the World Bank had no access to public electricity.In comparison,in the remaining four cities,electricity is available only a few hours a day.Fuel shortages and high prices caused a 77% drop in electricity generation from fuel in 2014 and 2015 [3,4].In the same period,emissions of night lights from Yemen decreased by two-thirds.Critical infrastructure facilities,including hospitals,water wells,sewage treatment plants,banking systems,and telephone networks were severely affected.People lost their livelihoods,including in the agriculture and irrigation that constitute about 80%of the Yemeni economy.

    Although prioritizing food,health,and water is essential,careful attention must be paid to a stable,clean energy supply for Yemen.This would contribute vitally to raising the population’s standard of living and is necessary for economic development and the implementation of humanitarian aid.

    International funding dedicated to improving the solar energy sector can simultaneously pave the way for poverty reduction and socioeconomic development and climate protection.Otherwise,the power system threatens to revert to earlier-used energy sources(coal,oil derivatives)that are not financially advantageous and often increase global difficulties in combating climate change [4].For example,losing this opportunity of using new energy sources could permanently damage people’s confidence in renewable energy.In this respect,long-term sustainable development goals can be easily linked to short-term goals.

    Geographically,Yemen is situated between 13-16 N latitude and 43.2-53.2 longitude in southwest Asia,surrounded by the ocean,that is,the Red Sea on the west and the Indian Ocean(the Arab Sea)on the south.Yemen’s area is 527,970 km2,and its population was 26,687,000 million in 2016.Yemen has a high potential for renewable energy sources,namely solar,wind,and geothermal.

    The literature [5-9]and other countries and regions of the world highly emphasize the Weibull function as suitable for wind speed data,that is,useful for distributing much statistical data and presented as continuous distribution for further analysis.Some publications cited here [10-15]and others are related to renewable energy in Yemen,despite their general scarcity in the field.

    The literature [16-19]have been presented some studies of renewable energy solutions in the Republic of Yemen.The presented studies involved a hybrid energy solution of many renewable energy sources such as solar,wind,and geothermal energy.Solar irradiance ranges between 5.2-6.8 kWh/m2/day,and the average annual sunshine is between 7.3 and 9.1 h/day,even in winter.The average daily solar hours are between 8 and 16 h per day[20].

    Since no similar studies have been conducted for this area.This study examined the potential of installing turbines for harvesting wind energy in the city of Mukalla by analyzing and evaluating wind features,determining density of the total energy,calculating the capacity factor to compare several famous turbines,and calculating the extracted wind energy at different altitudes(10,30,50 m).

    2 System Model

    The basic elements of the proposed model are shown in Fig.1.Two common functions were used to fit the probability distribution of the measured wind velocity at a given location over a given time,namely Weibull and Rayleigh distributions.Weibull distribution parameters and wind speed characteristics of several well-known wind turbines have also been used in calculating the capacity factor for each of these turbines.

    Figure 1:Overall structure of the proposed model

    This section uses statistical analysis of distributions to find an appropriate model for application in the second section,which analyzes wind energy evaluation to extrapolate wind speed,wind power density,and energy density for three heights(10,30,and 50 m).

    3 Main Calculations

    3.1 Study the Location

    The location of Almukalla area has been studied to support the calculations of the proposed system model.As the third most important Yemeni city (after Sana’a and Aden),Almukalla is located in southern Hadramaut,at longitude 49.10 degrees and latitude 14.33 degrees,with an area of 1963.05 km2as illustrated in Fig.2.The weather is hot in summer and mild in winter,and it has semimonsoon rains.It is surrounded by medium-rise mountains,and several valleys run along its coasts.The city overlooks the Arab Sea,and its population is more than half a million,according to the latest statistics (2005).With unique characteristics that appeal to tourists,Almukalla is an excellent draw for investments.Its people’s sophistication and attendance were the most crucial factors enabling it to emerge as a stable,secure cultural and tourist destination.

    Figure 2:Location of Almukalla

    3.2 Frequency Distribution of Wind Speed

    The probability of density function for Weibull distribution is given by Eq.(1)[8,9].

    where f(v) refers to the probability of wind speed;v and k are the dimensionless Weibull shape parameter;c refers to the Weibull scale parameter with units equal to wind speed unit.

    The consistent cumulative probability function of the Weibull distribution[8]is given by Eq.(2).

    The Rayleigh distribution is a distinct case of the Weibull distribution in which k parameter takes the value 2.0.From Eq.(1),the Rayleigh distribution can be computed as shown in Eq.(3).

    The two k and c parameters can be related to mean wind speed Vmand standard deviationσby Eqs.(4)and(5)[8,9].

    The k parameter carries the value 2.0.From Eq.(1),the probability density function can be computed as shown in Eq.(6)[8,9].

    where C refers to Rayleigh distribution value.

    The mean value Vm and standard deviationσof the Weibull distribution can then be calculated as shown in Eqs.(7)and(8)[8]and[9].

    whereΓis the gamma function and using the stirling approximation the gamma function of(x)can be formulated by Eq.(9)below.

    3.3 Statistical Analysis of the Distributions

    The square of the correlation coefficient (R2),chi-square (x2),and root mean square error analysis(RMSE)are used to evaluate performances of Weibull and Rayleigh distributions[19].These parameters can be calculated by Eqs.(10),(11),and(12)below.

    3.4 Wind Speed Variation with Height

    The variation of wind speed was calculated by Eq.(13)[9].

    where Ws1 is the real wind speed documented at height h1 (m),(m/s);Ws2is the wind speed at the targeted height h2(m),(m/s);and exponentαdepends on surface irregularity and atmospheric stability.

    3.5 Wind Power Density Function

    The power of wind at speed Ws(m/s)through a blade sweep area A(m2)increases as the cube of its velocity and is given by Eq.(14)below[8]and[9].

    The wind power density predictable annually or monthly per unit area of a site based on function of Weibull probability density can be computed as shown in Eq.(15).

    The density of total wind power P/A can be given by Eq.(16).

    where n refers to the days in a month.

    3.6 Wind Energy Calculation

    The electrical energy produced by a turbine over the year is expressed by Eq.(17)[8]:

    The available mean wind power density Pd,and the overall density of wind energy Ed,of a wind turbine for a while T can be computed as shown in Eqs.(18),and(19)[8]and[9].

    3.7 Wind Turbine Output Model

    Wind turbine manufacturers are keen to include power curves in their technical notes.This makes it easy to estimate the power output of any wind turbine when a series of measurements are made at the site studied.The power output of wind turbines can be expressed as shown in Eq.(20)[20].

    wheref(Ws)is the Weibull distribution given by Eq.(1),Pwis the electrical power output of the turbine.

    The curve can be divided into two areas,the first is confined between Wsciand Wsr,and the second is confined between Wsrand Wsco.

    Fig.3 shows a curve of the relationship between electrical power and the wind speed of a wind turbine.

    Figure 3:Wind turbine electric power/wind speed relationship curve

    Note that the curve increases quasi-linearly,starting with the cut speed Wsci(the smallest value of the wind speed at which the turbine starts to spin),then steady at the rated wind velocity v_r needed for the turbine to generate the rated electrical powerPr,and the curve ends at the cut speed Wsco(the maximum value of the speed The wind at which a turbine stops generating power).Therefore,the model for electrical power outputPwof the wind turbine is defined as shown in Eq.(21)[21,22].

    Substituting Eqs.(1)and(21)into Eq.(20)yields Eq.(22)below[20]and[21].

    3.8 Capacity Factor of Turbine(CF)

    The capacity factor of wind turbines describes the gap between nominal and realistic power production of a wind turbine at a certain location over some time.It is the ratio of the wind turbine’s actual power output to its nominal or maximum power output as shown in Eq.(23).

    From Eq.(22),we can calculate the capacity factor as given by Eq.(24)below.

    It is observed that the amplitude factor is proportional to scale parameter C and inversely to shape parameter k and when the values of C and k are fixed,we see that CF is proportional to the slope of the quasi-linear portion of the curve.

    In conclusion,that it is preferable to choose a turbine with a lower cut-in speed Wsci,but if two turbines are of equal cut-in speed,it is better to choose a turbine with a lower-rated speed Wsr.

    4 Result and Discussion

    4.1 Monthly Mean for Weather Elements

    We obtained recorded wind speed data for our current research from the Civil Aviation and Meteorological Authority only for the five years 2005-2009,due to war and the political situation in Yemen’s capital,Sana’a.Tab.1 shows a sample of data we obtained for Almukalla for 2009.

    Table 1:Monthly averages for weather elements at Almukalla,Yemen,for 2009

    A rotating cup type of anemometer was used,and stations were positioned at 10 m above ground in open spaces free of obstacles.Wind speeds taken every 10 s were averaged over 5 min and stored in a data logger.The 5-min averaged data were further averaged over 1 h.Based on these data,wind speeds were analyzed using statistical and computer software.Wind speed trends were also obtained for each month for five years as shown in tabular form in Tab.2 and illustrated graphicly in Fig.4.

    Table 2:Wind speed trends in Almukalla,Yemen,2005-2009

    Figure 4:Windrows of Almukalla(2005-2009)

    4.2 Monthly Mean Wind Speed

    From five-year monthly mean wind speeds as shown in Tab.3,the average was 6.62 m/s.Wind speed for the whole year had the maximum monthly value of 8.15 m/s,which appears in July,while the minimum value was 5.67 m/s,which occurs in April.Fig.5 clearly shows the average wind speed each month for five years.We find that the maximum wind speed occurs in May,June,July,and August,and the minimum in October,November,March,and February.Note that the smaller the value’s standard deviation,the smaller the velocity samples.This indicates that the current region is very suitable for wind power.

    Table 3:Monthly mean wind speeds at 10 m and standard deviations in Almukalla,2005-2009

    Table 3:Continued

    Figure 5:Monthly mean wind speed in Almukalla,Yemen,2005-2009

    The wind log for one full year can specify parameters that can be used as a Weibull probability distribution function to evaluate wind energy potential.Previous studies show wind characteristics’statistical results[5,8]and[9].

    4.3 Probability Density and Cumulative Distributions

    Using Eqs.(4) and (5),Weibull parameters can be computed for the available data as shown in Tab.4.Statistically,wind velocities can be described using the Weibull intensity function as a widely recognized standard approach for evaluating local wind probabilities.

    Tab.4 displays annual and mean Weibull parameters calculated analytically from data available for five years.The table clearly shows that while scale parameters differ from 6.83 (2005) to 7.03(2009),shape parameters range from 5.1(2005)to 4.27(2009).The mean five-year values for scale and shape parameters are 7.27 and 4.43,respectively.As is well known,several functions of distribution describe the wind speed frequency curve.Fig.6 shows the annual wind velocity probability density and cumulative probability distributions derived from Almukalla’s measured data for whole years.

    Table 4:Monthly shape parameters k and scale parameters c in Almukalla,Yemen,2005-2009

    Figure 6:Yearly probability density and cumulative distributions derived from measured data of Almukalla,Yemen,for whole years

    The Weibull approximation of probability density distribution of wind speeds is shown in Fig.7.

    4.4 Statistical Analysis of Distributions

    Because the RMSE method is considered the most accurate monitoring,since it is a fast method of obtaining minimum values,it was selected for our study’s analysis.Fig.8 shows correlation coefficient values from fitting actual probability density distributions with Weibull and Rayleigh functions.

    When comparing the Weibull distribution and the Rayleigh distribution through the previous analysis,we find that the Weibull distribution fits the domain data better than the five-year Rayleigh distribution when the most-distributed function has the highest value of R2 and the lowest RMSE and x2.The Weibull distribution shows a very good approximation for estimating wind energy density in Yemen.Moreover,the monthly distribution of wind velocity probability density and cumulative probability derived from Almukalla area data measured for a full five years is shown in Figs.9 and 10.

    Figure 7:Weibull and Rayleigh approximations of the actual probability distribution of wind speeds for Almukalla,Yemen,2005-2009

    Figure 8:Correlation coefficient actual probability density distributions with Weibull and Rayleigh functions

    Figure 9:The density distribution probability of wind speed given monthly of Almukalla,Yemen,for all years

    Results in Fig.11 show the Weibull probability density distributions analysis for each of the five years.

    For results in Figs.9-11,the wind velocity slope is proportional to all curves concerning cumulative density and probability density.Fig.8 for the Almukalla region corresponds to annual probability density distributions obtained from the Weibull model,with yearly measured data distributions.

    Figure 10:The cumulative distribution probability of wind speed given monthly of Almukalla,Yemen,for all years

    Figure 11:Yearly Weibull probability density distributions for Almukalla,Yemen,2005-2009

    4.5 Wind Speed Extrapolation

    Wind speed changes with altitude,so actual wind turbines are commonly placed at variable heights,more than 10 meters from ground cover,including the appropriate height for the wind turbine and the monthly average wind speed.Annual wind speeds are equal to various heights(10,30,and 50 meters)using Eq.(13).This is the first step for using this data to calculate and evaluate wind energy within the specified location.At these heights,the average annual wind velocity became 6.6 m/s at 10 m,10.3 m/s at 30 m,and 12.6 m/s at 50 m,respectively as illustrated in Fig.12.

    Figure 12:Monthly average mean wind speeds(m/s)at 10,30,and 50 meters

    4.6 Wind Power Density

    Calculations of the average monthly wind power per unit of the turbine’s cross-section,where the air density of 1.225 kg/m3 energy density is calculated at different heights(10,30,and 50 m)as shown in Tab.5 and illustrated in Fig.13.

    Table 5:Monthly average wind power density(W/m2)at 10,30,and 50 m heights

    Figure 13:Average wind power density profile at 10 m and extrapolation to 30 and 50 m

    Wind energy density is proportional to the wind speed cube,which means that a slight difference in wind speed leads to the massive difference in wind energy density as shown in Tab.6.

    According to the standard of international wind power classification,Almukalla falls into class 7,that is,“Superb”for most of the year.The city has an average wind power density of 1283.1 W/m2at 50 m height and an average wind speed of 12.6 m/s at 50 m height.The research area(Al-Mukalla)is a coastal area where the amount of wind is abundant with the lack of solar frequently.Therefore,the option of using wind in this area represents an effective option for generating energy as an alternative or supportive option to generate it using solar energy.

    Table 6:International wind power classification

    4.7 Energy Density

    Using Eqs.(17)and(18),we can calculate the average monthly and annual wind energy per unit of the turbine’s cross-section.Thus,Almukalla wind energy was estimated at different heights:10,30,and 50 m as shown in Tab.7 and illustrated Fig.14.

    Table 7:Monthly and annual energy density at 10,30,and 50 m heights

    Figure 14:Average annual energy density profile at 10 m and extrapolation to 30 and 50 m

    Since wind power is proportional to the axis’s height,the average annual wind energy density is 1629.4 KWh/m2/year at 10 m,6080.3 KWh/m2/year at 30 m,and 11240 KWh/m2/year at 50 m,respectively.Obviously,variation of the wind energy intensity pattern follows average wind velocity.

    5 Conclusion

    In this study,the wind energy potential of Almukalla,Yemen,was analyzed based on sequential wind speed data,currently available only for the five years 2005-2009 due to war and the political situation.Data and Weibull and Rayleigh distribution functions were also calculated compared to five-year field data probability distributions.The analysis found that the Weibull distribution fits domain data better than the Rayleigh distribution for the entire period.Wind energy intensity from the site was studied based on Weibull and Rayleigh’s functions.The Weibull distribution shows a perfect approximation for estimating the intensity of Yemen’s wind energy.Depending on both the Weibull model and the results of the annual wind speed data analysis for the study site in Mukalla,the capacity factor for many turbines was also calculated,and the best suitable turbine was selected.

    The city of Almukalla falls into “Class 7” or “Superb” wind power for most of the year.The current work is a preliminary study to assess only the potential of wind energy to provide useful insights to engineers and experts dealing with wind energy.For the future,we will present a new hybrid investigation of solar and wind energy’s potential in Almukalla area in order to improve the living conditions and powering services of local residents.

    Funding Statement:The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number (RGP.1/172/42).www.kku.edu.sa.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    深爱激情五月婷婷| 亚洲四区av| 一区二区三区高清视频在线| 成人精品一区二区免费| 一进一出抽搐动态| 亚洲精品一区av在线观看| 亚洲中文日韩欧美视频| 韩国av在线不卡| 色精品久久人妻99蜜桃| 精品乱码久久久久久99久播| 国产一级毛片七仙女欲春2| 国产亚洲精品综合一区在线观看| 亚洲男人的天堂狠狠| or卡值多少钱| 精华霜和精华液先用哪个| 成人国产一区最新在线观看| 搡老熟女国产l中国老女人| 成人二区视频| 久久九九热精品免费| a在线观看视频网站| 午夜福利在线观看吧| 亚洲四区av| 国产精品一区www在线观看 | 亚洲成a人片在线一区二区| 99riav亚洲国产免费| 性插视频无遮挡在线免费观看| 最近最新免费中文字幕在线| 免费搜索国产男女视频| 啪啪无遮挡十八禁网站| 久久久久久久精品吃奶| 国产国拍精品亚洲av在线观看| 色哟哟·www| 欧美日韩中文字幕国产精品一区二区三区| 99热只有精品国产| 亚州av有码| 国产精品,欧美在线| 99久久精品热视频| 日韩欧美三级三区| 精品久久久久久久久亚洲 | 在线免费十八禁| 免费观看的影片在线观看| 色精品久久人妻99蜜桃| 中国美女看黄片| 99精品久久久久人妻精品| 欧美成人一区二区免费高清观看| 色综合站精品国产| 一级毛片久久久久久久久女| 欧美成人性av电影在线观看| 少妇猛男粗大的猛烈进出视频 | 乱系列少妇在线播放| 狂野欧美白嫩少妇大欣赏| av女优亚洲男人天堂| 午夜免费激情av| 免费人成视频x8x8入口观看| 亚洲黑人精品在线| 亚洲最大成人手机在线| 中亚洲国语对白在线视频| 毛片女人毛片| 在现免费观看毛片| 久久久久性生活片| 无人区码免费观看不卡| 国产精品久久久久久久久免| 蜜桃亚洲精品一区二区三区| 国产中年淑女户外野战色| 极品教师在线视频| 免费黄网站久久成人精品| 国产精品久久电影中文字幕| 午夜福利成人在线免费观看| 一个人观看的视频www高清免费观看| 久久午夜福利片| 给我免费播放毛片高清在线观看| 久久久久九九精品影院| 男人的好看免费观看在线视频| av女优亚洲男人天堂| 能在线免费观看的黄片| 99久久精品国产国产毛片| 最近最新免费中文字幕在线| 在线观看午夜福利视频| 偷拍熟女少妇极品色| 欧美日韩中文字幕国产精品一区二区三区| 亚洲一级一片aⅴ在线观看| 国产精品久久久久久精品电影| 日韩欧美 国产精品| 身体一侧抽搐| 午夜福利在线观看免费完整高清在 | 超碰av人人做人人爽久久| 变态另类丝袜制服| 91久久精品国产一区二区成人| 成人性生交大片免费视频hd| 中文字幕久久专区| 亚洲一区二区三区色噜噜| 国产精品久久久久久精品电影| 久久亚洲真实| 欧美极品一区二区三区四区| 久久久久久久久久成人| 亚洲欧美日韩无卡精品| 亚洲精品粉嫩美女一区| 麻豆成人午夜福利视频| 久久久久久久久久久丰满 | 我的老师免费观看完整版| 国产精品一及| videossex国产| av黄色大香蕉| av福利片在线观看| 18禁黄网站禁片免费观看直播| 欧美性感艳星| 一级黄片播放器| 99久久精品一区二区三区| 两个人的视频大全免费| 亚洲自偷自拍三级| 毛片女人毛片| 成人美女网站在线观看视频| 国产视频一区二区在线看| 久久这里只有精品中国| 亚洲aⅴ乱码一区二区在线播放| 成年女人毛片免费观看观看9| 亚洲性久久影院| 国产三级在线视频| 嫩草影院精品99| 中文字幕精品亚洲无线码一区| 国产精品野战在线观看| 国产精品综合久久久久久久免费| 国产一区二区在线av高清观看| 国内精品宾馆在线| 久久精品国产鲁丝片午夜精品 | 精品免费久久久久久久清纯| 国产精品久久久久久久久免| 搞女人的毛片| 黄色配什么色好看| 欧美日韩国产亚洲二区| 九九在线视频观看精品| 国产免费av片在线观看野外av| 啪啪无遮挡十八禁网站| 国产精品人妻久久久影院| 精品免费久久久久久久清纯| 国产v大片淫在线免费观看| 内射极品少妇av片p| 午夜福利在线在线| 五月伊人婷婷丁香| 观看美女的网站| 精品午夜福利视频在线观看一区| 不卡视频在线观看欧美| eeuss影院久久| 毛片一级片免费看久久久久 | 在线a可以看的网站| 久久久久久伊人网av| 性色avwww在线观看| 国产精品久久久久久久电影| 国产免费av片在线观看野外av| 国产成人影院久久av| 精品久久久噜噜| av在线蜜桃| 九色成人免费人妻av| 成人性生交大片免费视频hd| 免费av观看视频| 人人妻人人澡欧美一区二区| 美女xxoo啪啪120秒动态图| 蜜桃亚洲精品一区二区三区| 国产白丝娇喘喷水9色精品| 最新中文字幕久久久久| 乱人视频在线观看| 啦啦啦啦在线视频资源| 两性午夜刺激爽爽歪歪视频在线观看| 国产一区二区在线观看日韩| 久久天躁狠狠躁夜夜2o2o| 国产精品永久免费网站| 国产成人a区在线观看| 久久久久久久久中文| 日韩,欧美,国产一区二区三区 | 一本久久中文字幕| 午夜久久久久精精品| 变态另类成人亚洲欧美熟女| 男女啪啪激烈高潮av片| 免费看美女性在线毛片视频| 久久精品国产99精品国产亚洲性色| 久久久久久久久久成人| 精品国产三级普通话版| 久久久久九九精品影院| 国产精品电影一区二区三区| 精品人妻偷拍中文字幕| 国产一区二区在线av高清观看| 久久久久性生活片| 黄色配什么色好看| 99久久中文字幕三级久久日本| 99在线视频只有这里精品首页| 国产精品野战在线观看| 色在线成人网| 国产精品久久久久久av不卡| 九色国产91popny在线| 久久久久久九九精品二区国产| 国产一区二区三区在线臀色熟女| 蜜桃亚洲精品一区二区三区| av福利片在线观看| 国产国拍精品亚洲av在线观看| x7x7x7水蜜桃| 伊人久久精品亚洲午夜| 成人国产麻豆网| www.www免费av| 可以在线观看毛片的网站| 国产精品久久久久久亚洲av鲁大| 嫩草影院新地址| 久久精品国产鲁丝片午夜精品 | 18禁黄网站禁片午夜丰满| 国产亚洲精品综合一区在线观看| 3wmmmm亚洲av在线观看| 99久久无色码亚洲精品果冻| 国内精品宾馆在线| 联通29元200g的流量卡| 亚洲成人精品中文字幕电影| 亚洲精华国产精华精| av黄色大香蕉| 中文字幕av成人在线电影| 嫩草影院精品99| 亚洲美女搞黄在线观看 | 色综合色国产| 麻豆久久精品国产亚洲av| 精品人妻1区二区| 欧美bdsm另类| 春色校园在线视频观看| 天堂av国产一区二区熟女人妻| 村上凉子中文字幕在线| 亚洲黑人精品在线| 中文字幕久久专区| 亚洲成人精品中文字幕电影| 午夜老司机福利剧场| 精品国内亚洲2022精品成人| 熟女电影av网| 国内揄拍国产精品人妻在线| 嫁个100分男人电影在线观看| 99热这里只有是精品在线观看| 欧美精品啪啪一区二区三区| 久久精品国产亚洲av香蕉五月| 亚洲国产色片| 成人欧美大片| 欧美日本亚洲视频在线播放| 亚洲av第一区精品v没综合| 欧美国产日韩亚洲一区| 三级国产精品欧美在线观看| 国产精品日韩av在线免费观看| 亚洲成人久久爱视频| 久久精品国产亚洲av涩爱 | 在线国产一区二区在线| 午夜福利欧美成人| 日韩亚洲欧美综合| 看黄色毛片网站| 精品久久久久久久久久免费视频| 国产精品1区2区在线观看.| 亚洲 国产 在线| 久久精品国产清高在天天线| 国产美女午夜福利| 国产午夜精品论理片| 国产精品乱码一区二三区的特点| 亚洲一级一片aⅴ在线观看| 99热这里只有是精品在线观看| 日本成人三级电影网站| 亚洲18禁久久av| xxxwww97欧美| 亚洲中文字幕日韩| 亚洲内射少妇av| 免费在线观看成人毛片| 日韩国内少妇激情av| 天堂动漫精品| aaaaa片日本免费| 亚洲午夜理论影院| 国产精品无大码| 久久6这里有精品| 又爽又黄无遮挡网站| 久久精品国产亚洲av涩爱 | 亚洲最大成人中文| 男女做爰动态图高潮gif福利片| 日本 欧美在线| 国产欧美日韩精品一区二区| 一区福利在线观看| 亚洲国产色片| 一个人看视频在线观看www免费| 欧美+亚洲+日韩+国产| 少妇丰满av| 精品不卡国产一区二区三区| 亚洲综合色惰| 麻豆成人午夜福利视频| 免费人成在线观看视频色| 亚洲一区二区三区色噜噜| 99在线人妻在线中文字幕| 午夜激情福利司机影院| 一级黄色大片毛片| 国产精品一区二区三区四区久久| 久久精品国产99精品国产亚洲性色| 欧美三级亚洲精品| 91在线精品国自产拍蜜月| 亚洲av成人精品一区久久| 人人妻人人澡欧美一区二区| 99久久精品国产国产毛片| 天天一区二区日本电影三级| 国产精品国产三级国产av玫瑰| 一级av片app| 国产极品精品免费视频能看的| 69人妻影院| 精品一区二区三区av网在线观看| 亚洲国产精品sss在线观看| 亚洲国产色片| 成人高潮视频无遮挡免费网站| 国产精品,欧美在线| 亚洲一区高清亚洲精品| 精品福利观看| 国产黄a三级三级三级人| 1024手机看黄色片| 啦啦啦韩国在线观看视频| 搡女人真爽免费视频火全软件 | 变态另类丝袜制服| 麻豆成人午夜福利视频| 人妻制服诱惑在线中文字幕| 亚洲18禁久久av| 精品99又大又爽又粗少妇毛片 | 真人一进一出gif抽搐免费| 久久人妻av系列| 久久国产乱子免费精品| 欧美zozozo另类| 国产精品一区二区免费欧美| 在线观看一区二区三区| 国产精品美女特级片免费视频播放器| 日韩国内少妇激情av| 少妇的逼好多水| 女人被狂操c到高潮| 身体一侧抽搐| 亚洲国产精品成人综合色| 日韩在线高清观看一区二区三区 | 啪啪无遮挡十八禁网站| 精品久久久久久久久久久久久| 看免费成人av毛片| av天堂在线播放| 成人特级av手机在线观看| 久久精品国产99精品国产亚洲性色| 亚洲人成网站在线播放欧美日韩| 18禁在线播放成人免费| 欧美成人免费av一区二区三区| 中文字幕av成人在线电影| 一本久久中文字幕| 日韩精品中文字幕看吧| 国产精品爽爽va在线观看网站| 黄色丝袜av网址大全| 欧美日本亚洲视频在线播放| 能在线免费观看的黄片| 全区人妻精品视频| 久久6这里有精品| av在线亚洲专区| 国产av不卡久久| 久久久久性生活片| 黄色日韩在线| 中文字幕熟女人妻在线| 大又大粗又爽又黄少妇毛片口| 日本 av在线| xxxwww97欧美| 99久久久亚洲精品蜜臀av| 嫩草影院入口| 不卡视频在线观看欧美| 琪琪午夜伦伦电影理论片6080| 午夜福利成人在线免费观看| 久久久午夜欧美精品| 在线免费十八禁| 国产视频一区二区在线看| 亚洲黑人精品在线| 亚洲,欧美,日韩| 久久精品综合一区二区三区| 久久人妻av系列| 久久人人精品亚洲av| 狂野欧美白嫩少妇大欣赏| 国产一区二区三区视频了| 性插视频无遮挡在线免费观看| 久久久久精品国产欧美久久久| 又紧又爽又黄一区二区| av在线蜜桃| 嫩草影院新地址| 国内久久婷婷六月综合欲色啪| 夜夜看夜夜爽夜夜摸| 国产精品av视频在线免费观看| 日韩亚洲欧美综合| 欧美+日韩+精品| 国产蜜桃级精品一区二区三区| 成人av在线播放网站| 中国美白少妇内射xxxbb| 亚洲国产精品sss在线观看| 性色avwww在线观看| 精品一区二区三区av网在线观看| 日韩精品有码人妻一区| 日韩亚洲欧美综合| 三级男女做爰猛烈吃奶摸视频| 丝袜美腿在线中文| 国产伦在线观看视频一区| 国产av不卡久久| 精品久久久噜噜| 日韩欧美一区二区三区在线观看| 成年女人毛片免费观看观看9| 91午夜精品亚洲一区二区三区 | 国产探花极品一区二区| 美女免费视频网站| 亚洲七黄色美女视频| 午夜视频国产福利| 3wmmmm亚洲av在线观看| 啦啦啦啦在线视频资源| 国产精品电影一区二区三区| 男人舔奶头视频| 免费观看的影片在线观看| 黄色配什么色好看| 哪里可以看免费的av片| 极品教师在线视频| 日韩一本色道免费dvd| 欧美xxxx黑人xx丫x性爽| 午夜视频国产福利| 国内揄拍国产精品人妻在线| aaaaa片日本免费| 在线观看av片永久免费下载| 午夜福利在线观看吧| 伊人久久精品亚洲午夜| 久久精品综合一区二区三区| 亚洲第一电影网av| av中文乱码字幕在线| 午夜精品在线福利| 精品福利观看| 久久久精品欧美日韩精品| 精品久久久噜噜| 搡老岳熟女国产| 久久99热6这里只有精品| 国内少妇人妻偷人精品xxx网站| 欧美zozozo另类| 亚洲av电影不卡..在线观看| 亚洲色图av天堂| 精品免费久久久久久久清纯| 欧美日韩国产亚洲二区| 欧美性猛交黑人性爽| 十八禁国产超污无遮挡网站| 香蕉av资源在线| 女的被弄到高潮叫床怎么办 | 狠狠狠狠99中文字幕| 真人做人爱边吃奶动态| 久久精品国产清高在天天线| 久久久国产成人精品二区| 欧美最新免费一区二区三区| or卡值多少钱| 十八禁国产超污无遮挡网站| 精品久久久久久,| 亚洲精华国产精华精| 可以在线观看毛片的网站| 色综合亚洲欧美另类图片| 黄片wwwwww| 国产精华一区二区三区| .国产精品久久| 男女视频在线观看网站免费| 国语自产精品视频在线第100页| 一级毛片久久久久久久久女| 搞女人的毛片| 精品免费久久久久久久清纯| 亚洲,欧美,日韩| 日本爱情动作片www.在线观看 | 婷婷精品国产亚洲av| 一个人观看的视频www高清免费观看| 亚洲色图av天堂| 欧美zozozo另类| 网址你懂的国产日韩在线| 一区二区三区四区激情视频 | 韩国av在线不卡| 亚洲精品在线观看二区| 99热这里只有是精品在线观看| 日本五十路高清| 能在线免费观看的黄片| 亚洲专区中文字幕在线| 午夜激情福利司机影院| av天堂在线播放| 桃色一区二区三区在线观看| 无遮挡黄片免费观看| 99热这里只有是精品在线观看| 无遮挡黄片免费观看| 精品日产1卡2卡| 成人三级黄色视频| 老司机福利观看| 国产一区二区在线观看日韩| 久久草成人影院| 91午夜精品亚洲一区二区三区 | 欧美日韩黄片免| 男插女下体视频免费在线播放| 亚洲av二区三区四区| 五月伊人婷婷丁香| 久久精品国产亚洲网站| 精品人妻偷拍中文字幕| 麻豆成人午夜福利视频| 国产免费一级a男人的天堂| 性色avwww在线观看| 又黄又爽又免费观看的视频| 免费电影在线观看免费观看| 人妻久久中文字幕网| 最新中文字幕久久久久| 亚洲av电影不卡..在线观看| 免费看a级黄色片| 无人区码免费观看不卡| 老熟妇仑乱视频hdxx| 久久久色成人| av天堂中文字幕网| 校园人妻丝袜中文字幕| 日韩在线高清观看一区二区三区 | 午夜激情欧美在线| 亚洲美女黄片视频| aaaaa片日本免费| 嫩草影视91久久| 久久久国产成人精品二区| 搡老岳熟女国产| 直男gayav资源| 免费不卡的大黄色大毛片视频在线观看 | 最近最新免费中文字幕在线| 亚洲经典国产精华液单| 男插女下体视频免费在线播放| 不卡一级毛片| 乱系列少妇在线播放| 国产三级在线视频| 色视频www国产| 午夜a级毛片| 亚洲天堂国产精品一区在线| 88av欧美| 久久久久久久久中文| 一夜夜www| 一个人看的www免费观看视频| 日本一二三区视频观看| 永久网站在线| av女优亚洲男人天堂| 大型黄色视频在线免费观看| 精品无人区乱码1区二区| 一级a爱片免费观看的视频| 亚洲人成网站在线播| 婷婷六月久久综合丁香| 亚洲在线自拍视频| 男女边吃奶边做爰视频| 日日摸夜夜添夜夜添av毛片 | 看十八女毛片水多多多| 性色avwww在线观看| 成人毛片a级毛片在线播放| 亚洲欧美激情综合另类| 黄片wwwwww| 九色国产91popny在线| 国产成人福利小说| 伦精品一区二区三区| 亚洲黑人精品在线| 熟女电影av网| 国产精品一区www在线观看 | 欧美3d第一页| 国产伦精品一区二区三区视频9| 欧美一级a爱片免费观看看| 美女免费视频网站| 亚洲美女搞黄在线观看 | 日韩欧美一区二区三区在线观看| 老师上课跳d突然被开到最大视频| 亚洲18禁久久av| 91在线观看av| 国产高清有码在线观看视频| 小说图片视频综合网站| 久99久视频精品免费| 此物有八面人人有两片| 成人亚洲精品av一区二区| 国产精品一及| a级一级毛片免费在线观看| 搡老妇女老女人老熟妇| 国产乱人伦免费视频| 嫁个100分男人电影在线观看| 国产免费一级a男人的天堂| 一级黄片播放器| 久久精品夜夜夜夜夜久久蜜豆| 国产色爽女视频免费观看| 天堂√8在线中文| 亚洲国产日韩欧美精品在线观看| 久久久久久久精品吃奶| 波野结衣二区三区在线| 男人和女人高潮做爰伦理| 日韩一本色道免费dvd| 亚洲av不卡在线观看| 我的女老师完整版在线观看| 日韩大尺度精品在线看网址| 免费大片18禁| 国产乱人伦免费视频| a在线观看视频网站| 日韩精品青青久久久久久| 国产精品久久久久久久久免| 免费av毛片视频| 人妻丰满熟妇av一区二区三区| 欧美黑人欧美精品刺激| av在线老鸭窝| 色哟哟·www| 国产精品人妻久久久久久| 69人妻影院| 亚洲人成网站在线播放欧美日韩| 国产人妻一区二区三区在| 日日啪夜夜撸| 免费黄网站久久成人精品| 九色成人免费人妻av| 搞女人的毛片| 国产亚洲精品久久久com| 久久人人精品亚洲av| 国内久久婷婷六月综合欲色啪| 久久精品综合一区二区三区| 黄色配什么色好看| 久久午夜亚洲精品久久| 91午夜精品亚洲一区二区三区 | 香蕉av资源在线| 看片在线看免费视频| 91久久精品国产一区二区成人| 精品一区二区三区人妻视频| 国产日本99.免费观看| 久久这里只有精品中国| 国产精品电影一区二区三区| 午夜亚洲福利在线播放| 成年女人看的毛片在线观看| 成人鲁丝片一二三区免费| 久久精品国产清高在天天线| netflix在线观看网站| 在线观看午夜福利视频| 嫩草影视91久久| 黄色丝袜av网址大全| 噜噜噜噜噜久久久久久91| 免费无遮挡裸体视频|