• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhanced Artificial Intelligence-based Cybersecurity Intrusion Detection for Higher Education Institutions

    2022-08-24 06:59:58AbdullahALMalaiseALGhamdiMahmoudRagabandMahaFaroukSabir
    Computers Materials&Continua 2022年8期

    Abdullah S.AL-Malaise AL-Ghamdi,Mahmoud Ragaband Maha Farouk S.Sabir

    1Information Systems Department,Faculty of Computing and Information Technology,King Abdulaziz University,Jeddah,21589,Saudi Arabia

    2Information Technology Department,Faculty of Computing and Information Technology,King Abdulaziz University,Jeddah,21589,Saudi Arabia

    3Centre of Artificial Intelligence for Precision Medicines,King Abdulaziz University,Jeddah,21589,Saudi Arabia

    4Mathematics Department,Faculty of Science,Al-Azhar University,Naser City,11884,Cairo,Egypt

    Abstract: As higher education institutions (HEIs) go online,several benefits are attained,and also it is vulnerable to several kinds of attacks.To accomplish security,this paper presents artificial intelligence based cybersecurity intrusion detection models to accomplish security.The incorporation of the strategies into business is a tendency among several distinct industries,comprising education,have recognized as game changer.Consequently,the HEIs are highly related to the requirement and knowledge of the learner,making the education procedure highly effective.Thus,artificial intelligence(AI) and machine learning (ML) models have shown significant interest in HEIs.This study designs a novel Artificial Intelligence based Cybersecurity Intrusion Detection Model for Higher Education Institutions named AICIDHEI technique.The goal of the AICID-HEI technique is to determine the occurrence of distinct kinds of intrusions in higher education institutes.The AICID-HEI technique encompasses min-max normalization approach to preprocess the data.Besides,the AICID-HEI technique involves the design of improved differential evolution algorithm based feature selection(IDEA-FS)technique is applied to choose the feature subsets.Moreover,the bidirectional long short-term memory (BiLSTM) model is utilized for the detection and classification of intrusions in the network.Furthermore,the Adam optimizer is applied for hyperparameter tuning to properly adjust the hyperparameters in higher educational institutions.In order to validate the experimental results of the proposed AICID-HEI technique,the simulation results of the AICIDHEI technique take place by the use of benchmark dataset.The experimental results reported the betterment of the AICID-HEI technique over the other methods interms of different measures.

    Keywords: Higher education institutions;deep learning;machine learning;cybersecurity;intrusion detection

    1 Introduction

    Owing to the benefits provided by the Internet,business has become more open to supporting Internet driven enterprises like extranet collaboration,customer care,and e-commerce.Academic institution is considered resource limited and thus lot of times is needed to have this resource distributed among the students,lecturers,part time staff,and permanent.Additionally,students include postgraduate,Diplomas,and undergraduate students at distinct stages of education [1].Likewise,full-time and part time lecturers need distinct network access stages.Several internet websites like pornographic and those that offer immediate solutions to online examination might need to be restricted or controlled.This will enhance bandwidth utilization and network security[2].Many times,Students become so intrusive to explore all the areas of the network,and therefore it was necessary to defend network with crucial data,and part time staff needn’t be trusted with this network resource.This emphasizes the requirement for a proper scheme to identify illegal accessing to this resource on quantified section beforehand experiencing severe damage.The organization is struggling to preserve availability,confidentiality,and integrity of the network resource and various technologies have been applied for guarding against network intrusions[3].Fig.1 illustrates the different modules contained in cybersecurity.

    Figure 1:Different components involved in cybersecurity

    Intrusion prevention systems (IPS) techniques work by surveilling system action and network traffics for the sign of malicious activities namely intrusion [4].Mostly,IPS technique depends on signature detection technique which consults a dataset of well-known attack flags and patterns.Once the IPS identifies the matching,it chooses an automatic response from a collection of choices,ranging from alerting an administrator and logging the activity to manually blocking the traffics to preventing network intrusion.In a standard IPS positioning,the organization place devoted IPS network devices in line with the external internet access.This needs a device which is able to keep up with the scale of the institution network traffics[5].Then,the device checks all the network packets when it blocks and passes suspected activity beforehand it accesses the network.This technique provides automated,rapid responses to security threats on campus networks.That move the event response posture from the reactive method utilized while examining a suspicious event to a proactive method which blocks the incidents from taking place primarily.

    Machine learning (ML) and Artificial intelligence (AI) development help individuals exceed classical computers to surpass and simulate human intelligence.The advancement of this technology has considerably modified the educational system,providing students a collaborative learning environment and further knowledge in the HEI with greater implications for the upcoming days[6].Mostly,reputable higher education institution has realized that ML and AI represent the future and present in education and the world advanced evolution.This technology provides advanced and interactive education knowledge to the student[7].The result is remarkable:65%of university in the America supports AI-and ML-enabled learning.Furthermore,this system provides essential support to lecturers and teachers in the schools,facilitating and improving learning in different manners[8].Kumar has proven that AI and ML are enhancing and efficient security of the institutions,providing an accessible,peaceful,and flexible computing platform for the study and developing skills amongst students[9],and collaborative learning environments in the HEI reinforce the significance of ML and AI to increase customized learning.

    This study designs a novel Artificial Intelligence based Cybersecurity Intrusion Detection Model for Higher Education Institutions named AICID-HEI technique.The AICID-HEI technique encompasses min-max normalization approach to pre-process the data.In addition,the AICID-HEI technique involves the design of improved differential evolution based feature selection (IDEAFS) technique is applied to choose the feature subsets.Followed by,the bidirectional long short term memory (BiLSTM) model is utilized for the detection and classification of intrusions in the network.Finally,the Adam optimizer is applied for hyperparameter tuning to properly adjust the hyperparameters in higher educational institutions.In order to validate the experimental results of the proposed AICID-HEI technique,the simulation results of the AICID-HEI technique take place by the use of benchmark dataset.

    2 Related Works

    DeCusatis et al.[10]introduced the implementation and design of a cyber-security framework for a Linux community public cloud assisting research and education.The method integrates packet authentication and transport layer access control gateway for blocking fingerprints of key network resources.Stimulation outcomes are provided for the connected data centres in New York.They demonstrate that our technique is capable of blocking Denial of Service(DoS)attacks and network scanners,and offer geo-location attribution based syslog classification.

    Aggrey [11]adapt an intrusion detection system (IDS) for academic institutions to prevent network intrusion and provide early detection.The concept is to offer a combined scheme which reduces the weakness of the intrusion prevention technique.They determine IDS,discuss the various IDS architecture,types,compare distinct IDSs,and investigate an efficient execution approach.Othman et al.[12]present Spark-Chi-support vector machine(SVM)method for detecting intrusions.In this method,we employed ChiSqSelector for selecting features and constructed an IDS by utilizing SVM classifiers on Apache Spark Big Data.They utilized KDD99 for training and testing the models.In this work,we presented a comparison among Chi-logistic regression(LR)and Chi-SVM classifiers.

    Yahia et al.[13]examined the various kinds of network intrusion data sets and highlight the fact that students could simply generate a network intrusion data set i.e.,illustrative of the network.Intrusion is in form of network signature or anomaly;the student could not grasp each type but they must have the capability of detecting malicious packets with this network.Gao et al.[14]take benchmark dataset as the object of research,analyzed the existing problems and latest progress in the fields of IDS,and presented an adoptive ensemble learning model.By altering the amount of trained information and setting up various decision trees (DTs),we constructed a MultiTree approach.For improving the entire detection effects,we select many base classifications and developed an ensemble adoptive voting method.

    In Mishra et al.[15],a comprehensive analysis and investigation of different ML methods were conducted to find the reason for problems related to different ML methods in intrusion activity detection.Attack mapping and classification of the attack feature are given to all the attacks.Problems that are associated with lower-frequency attack detection using network attack data set are considered and feasible methodologies are recommended for development.

    3 The Proposed Model

    This study has designed an effective AICID-HEI technique is to determine the occurrence of distinct kinds of intrusions in higher education institutes.The AICID-HEI technique encompasses min-max normalization based pre-processing,IDEA-FS based election of features,BiLSTM based classification,and Adam optimizer based hyperparameter tuning.The choice of IDEA-FS and Adam optimizer assist to enhance the intrusion detection performance in higher educational institutions.

    3.1 Data Pre-Processing

    Primarily,the input data is transformed into a meaningful format by the use of min-max normalization approach.It is generally utilized for reducing the diversifying scaling of the dimensionality.The normalization process converts the data in a particular range by performing the linear conversion on the input data.The dimensionality of the data can be transformed in the interval of[0,1]by the use of min-max normalization.It carries out the conversion process using Eq.(6):

    wheretindicates transformed datavin dimensiond,implies the actual lower value and maxddenotes the actual higher value of the dimensiond.Likewise,tran-minddefines the converted lower value andtran-maxdindicates the converted higher value of the dimensiond.

    3.2 Design of IDEA-FS Technique

    During the feature selection process,the normalized data is fed into the IDEA-FS technique and derive a useful subset of features.DEA technique is assumed as population based search method that is primary established by Storn et al.[16].

    During this phase of the current analysis,a 3 phases altering method was established utilizing the DE approach for resolving an optimized issue.For implementing this task,a particular amount of solution vectors were arbitrarily initialized afterward upgraded iteratively utilizing genetic operators(mutation as well as crossover) and selective operators.A primary step,the mutation operators are executed utilizing 3 distinct arbitrarily chosen solution vectors(represented asr1,r2,andr3vectors)in the DE population.Afterward,the variance amongst 2 vectors(r2andr3)multiplied by scaling factor

    (F)has added to the primary vector(r1).Therefore,all the target solutionsis changed as to mutant solution vectoras follows.

    In the secondary phase,the crossover operator was implemented for calculating a trial vectorit is implemented by integrating the destination solution vector with mutated vector dependent upon the subsequent technique.

    wherej=1,2,...,D,rand(j)∈[0,1]denotes thejthestimation of uniform arbitrary generator number.CRindicates the crossover probability that is an arbitrary vector range in[0-1].r and n(i)∈{1,2,...,D}signifies the arbitrary value that makes sureobtains one or more elements inelse no novel parent vector was created,and so the population remains unchanging.Fig.2 illustrates the flowchart of DE technique.

    Figure 2:Flowchart of differential evolution

    Lastly,in selective sections if and only if the trial vectorsproduces an optimum FF value related to,thenis fixed to.Else,the old vectorhas reserved.The selective method is as follows[17].

    During the IDEA,the Cauchy mutation operators are utilized that typical DEA of enhancements from solution diversity.Its purpose is for enhancing the exploration capability and solution diversity of raw DEA from the previous phases of operation with the combination of incorporate Cauchy mutation operators.Also,the Cauchy distribution was executed to perform Cauchy variation on solution that doesn’t converge fromc isfollowing rounds.The basic method is that its influence stuck with local optimum and so,an exterior association was needed and so the search procedure moved from the direction of exploration procedure.During this case,all dimensions an arbitrary parameter of Cauchy distribution,the density function is signified as follows:

    whereσ=1 indicates the traditional Cauchy distribution.

    The FS technique is represented asNsized vectors whereNrefers to the feature counts.At this point,all place of vector is assumed the values aszeroor one wherezeroimplies the feature that is unselective and one refers to the selective features.Based on the above-mentioned,the fitness function(FF)is to define solution in this state crated to obtain a balance among 2 purposes:

    ΔR(D)stands for the classifying error rate.|Y| denotes the size of subsets that this technique selects and|T|whole amount of features contained in the present datasets.αdetermines the parameter∈[0,1]relating to the weight of error rate of classification correspondingly howeverβ=1-αrefers the importance of reducing feature.

    3.3 Hyperparameter Tuned BiLSTM Based Classification Model

    At the time of data classification,the features are passed into the BiLSTM model to carry out the classification process.The long short term memory (LSTM) network is a kind of recurrent neural network (RNN) primarily structured for solving the vanishing gradient issue of RNNs if concerning long orders [18].The LSTM network structure has of layer of LSTM unit afterward a typical feedforward network.In a general viewpoint,an LSTM unit functions as follows:assumextbe the present input at timet,the resultant of input gate as:

    whereWixandWihimplies the weight matrices,ht-1represents the preceding hidden state of units,andbirefers the bias vector.The functionσ(x)∈(0,1)has sigmoid function utilized to gate.

    Likewise,the resultant of forget gatefthas estimated as:

    Eventually,the resultants of output gate otand cell statectare as follows:

    where ⊙refers the Hadamard product.The BiLSTM has 2 parallel LSTM layers such as forward and backward directions.As the input was treated twice,BiLSTM remove further data in the input.Therefore,an enhancing contextual data for making optimum forecasts than LSTM.So,BiLSTMs current has faster convergence and accuracy than LSTM.The BiLSTM structure containing 2 LSTM layers,maintains past as well as future context at whenever of order [19].The output of all LSTMs was integrated based on the subsequent formula:

    For optimally altering the hyperparameters of the BiLSTM model,the Adam optimizer can be utilized and thereby boost the classification outcomes.

    Adam is another widely utilized technique that alters the rate of learning adaptive to all the parameters.The Adam is a group of distinct gradient optimized techniques.Besides is an exponentially decaying average of past squared gradient calculated namely Adadelta,along with Adam gets an exponentially decaying average of past gradients that is same as Momentum.

    whereβ1andβ2implies the decay rate that is suggested to follow the default value.MtandGtare determined for estimating the mean of past gradients(a primary moment)and uncentered difference of past gradients(the secondary moment)correspondingly[20].Since the decay rates generally cause any bias issue,it can be essential to perform the bias-correction work.

    So,the upgrade value of Adam was determined as:

    The gradient part of △θtalso is determined as:

    In Eq.(16),it could be established that every function was dependent upon past gradient of present parameter that has no connection to rate of learning.Therefore,Adam is an optimum efficiency with the support of learning rate techniques.

    4 Performance Validation

    The simulation analysis of the AICID-HEI technique takes place using the KDDCup99 dataset,which contains a set of 41 attributes where 39 among them are numerical records and rest of them are symbolic records.The dataset comprises two major classes namely normal and anomaly.Besides,the anomaly class includes four kinds of attacks namely DoS,R2l,Probe,and U2r attacks.The best cost analysis of the IDEA-FS technique with recent approaches is carried out in Tab.1 and Fig.3.The IDEA-FS technique has chosen the feature subset of(1,5,6,7,9,11,13,15,16,19,26,28,31,37,40).The experimental values proved that the ant colony optimization (ACO)-FS,butterfly optimization algorithm(BOA)-FS,and particle swarm optimization (PSO)-FS techniques have reached to higher best cost(BC)of 0.0008754,0.0009467,and 0.0009865 respectively.

    Table 1:Best cost analysis of IDEA-FS with other FS techniques

    Figure 3:Best cost analysis of AICID-HEI technique

    The intrusion detection results obtained by the AICID-HEI technique under various types of attacks are provided in Tab.2 and Figs.4-5.The experimental values reported that the AICID-HEI technique has identified all the class labels effectively.

    Table 2:Result analysis of proposed model

    Figure 4:Result analysis of AICID-HEI technique with different measures

    Figure 5:Accuracy analysis of AICID-HEI technique with distinct attacks

    For instance,under DoS attack,the AICID-HEI technique has attainedsensy,specy,accuy,Fmeasure,and kappa of 99.020%,99.300%,98.540%,97.480%,and 97.300%respectively.Besides,under Probe attack,the AICID-HEI approach has achievedsensy,specy,accuy,Fmeasure,and kappa of 99.100%,99.410%,99.020%,98.750%,and 98.350% correspondingly.In addition,under Normal attack,the AICID-HEI methodology has reachedsensy,specy,accuy,Fmeasure,and kappa of 99.390%,99.750%,99.380%,99.440%,and 99.240%correspondingly.Average result analysis of the AICID-HEI technique under all kinds of attacks.The experimental results reported the betterment of the AICID-HEI technique with averagesensy,specy,accuy,Fmeasure,and kappa of 99.014%,99.540%,99.018%,98.822%,and 98.478%respectively.

    Fig.6 illustrates the accuracy analysis of the AICID-HEI technique on the test dataset.The results outperformed that the AICID-HEI system has accomplished higher performance with superior training and validation accuracy.It can be stated noticed that the AICID-HEI technique has gained improved validation accuracy over the training accuracy.

    Figure 6:Accuracy graph analysis of AICID-HEI technique

    Fig.7 showcases the loss analysis of the AICID-HEI approach on the test dataset.The outcomes established that the AICID-HEI technique has resulted in a proficient outcome with the reduced training and validation loss.It can be clear that the AICID-HEI technique has offered reduced validation loss over the training loss.

    The detailed comparative study of the AICID-HEI technique with recent methods takes place in Tab.3 and Fig.8[21,22].The experimental results stated that the RBF Network and Random(RAND)Forest models have obtained lower intrusion detection performance.At the same time,the Random Tree and Decision Tree models have attained slightly increased intrusion detection outcomes.In line with,the logistic regression (LOGR) technique has accomplished somewhat acceptable intrusion detection outcomes.However,the AICID-HEI technique has outperformed the other methods with the increasedsensy,specy,accuy,Fmeasure,and kappa of 99.014%,99.540%,99.018%,98.822%,and 98.478%respectively.From the above mentioned tables and figures,it is ensured that the AICID-HEI technique has resulted in effective classification performance and accomplishes security.

    Figure 7:Loss graph analysis of AICID-HEI technique

    Table 3:Performance analysis of various methods with proposed AICID-HEI model

    Figure 8:Comparative analysis of AICID-HEI technique with existing approaches

    5 Conclusion

    This study has designed an effective AICID-HEI technique is to determine the occurrence of distinct kinds of intrusions in higher education institutes.The AICID-HEI technique encompasses min-max normalization based pre-processing,IDEA-FS based election of features,BiLSTM based classification,and Adam optimizer based hyperparameter tuning.The choice of IDEA-FS and Adam optimizer assist to enhance the intrusion detection performance in higher educational institutions.In order to validate the experimental results of the proposed AICID-HEI technique,the simulation results of the AICID-HEI technique take place by the use of benchmark dataset.The experimental results reported the betterment of the AICID-HEI technique over the other methods interms of different measures.As a part of future extensions,clustering techniques can be included to boost the detection rate.

    Acknowledgement:The authors extend their appreciation to the Deputyship for Research &Innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number(IFPRC-154-611-2020)and King Abdulaziz University,DSR,Jeddah,Saudi Arabia.

    Funding Statement:This project was supported financially by Institution Fund projects under Grant No.(IFPRC-154-611-2020).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    91久久精品国产一区二区成人 | 亚洲成人中文字幕在线播放| 90打野战视频偷拍视频| 成人无遮挡网站| 狂野欧美激情性xxxx| 免费一级毛片在线播放高清视频| 亚洲成人免费电影在线观看| 久久亚洲精品不卡| 欧美zozozo另类| 国产精品亚洲av一区麻豆| 日日夜夜操网爽| 亚洲成人免费电影在线观看| 丰满的人妻完整版| 亚洲国产欧美一区二区综合| 亚洲avbb在线观看| 国产毛片a区久久久久| 午夜影院日韩av| 90打野战视频偷拍视频| 免费在线观看亚洲国产| 91老司机精品| 日本黄色视频三级网站网址| 97超视频在线观看视频| 后天国语完整版免费观看| 一本精品99久久精品77| 午夜福利在线观看免费完整高清在 | 欧美国产日韩亚洲一区| 精品福利观看| 国产精品一及| 欧美成人一区二区免费高清观看 | 天堂动漫精品| 一本一本综合久久| 一级毛片女人18水好多| 亚洲一区二区三区色噜噜| 色吧在线观看| 亚洲欧美日韩高清专用| 国产1区2区3区精品| 999精品在线视频| 岛国视频午夜一区免费看| 18禁裸乳无遮挡免费网站照片| 国产精品永久免费网站| 成年女人看的毛片在线观看| 国产成人福利小说| 熟女人妻精品中文字幕| 男人舔奶头视频| 香蕉av资源在线| 色精品久久人妻99蜜桃| 国产又黄又爽又无遮挡在线| 国产极品精品免费视频能看的| 免费电影在线观看免费观看| 欧美成人一区二区免费高清观看 | 色综合站精品国产| 女警被强在线播放| 国产伦一二天堂av在线观看| 亚洲自拍偷在线| 偷拍熟女少妇极品色| 国产成人一区二区三区免费视频网站| 中文资源天堂在线| 日韩 欧美 亚洲 中文字幕| 亚洲欧美日韩卡通动漫| 日本三级黄在线观看| 亚洲色图av天堂| 草草在线视频免费看| 国产精品久久久久久人妻精品电影| 特大巨黑吊av在线直播| 在线观看66精品国产| 国产免费av片在线观看野外av| 麻豆av在线久日| 黄色丝袜av网址大全| 一级黄色大片毛片| 成人国产一区最新在线观看| 免费在线观看影片大全网站| 精品久久久久久久久久免费视频| 色综合婷婷激情| 黄色日韩在线| 精品电影一区二区在线| 国内少妇人妻偷人精品xxx网站 | 精品熟女少妇八av免费久了| 老司机午夜福利在线观看视频| 日日夜夜操网爽| 国语自产精品视频在线第100页| 亚洲精品在线美女| 国产一区二区在线观看日韩 | 一二三四在线观看免费中文在| 9191精品国产免费久久| 12—13女人毛片做爰片一| 啦啦啦免费观看视频1| 九色成人免费人妻av| 少妇裸体淫交视频免费看高清| 丝袜人妻中文字幕| 女警被强在线播放| 精品国产乱子伦一区二区三区| 久久久久国产精品人妻aⅴ院| 国产乱人视频| 国产真人三级小视频在线观看| 亚洲18禁久久av| 91久久精品国产一区二区成人 | 免费观看精品视频网站| 色在线成人网| 一个人观看的视频www高清免费观看 | av天堂中文字幕网| 床上黄色一级片| 久久这里只有精品19| 9191精品国产免费久久| 国产伦精品一区二区三区视频9 | 亚洲精品456在线播放app | 别揉我奶头~嗯~啊~动态视频| 免费一级毛片在线播放高清视频| 美女大奶头视频| 亚洲黑人精品在线| 国内精品久久久久精免费| 大型黄色视频在线免费观看| 国产成人精品无人区| www.熟女人妻精品国产| 色哟哟哟哟哟哟| 国产亚洲欧美在线一区二区| av片东京热男人的天堂| 日本成人三级电影网站| 亚洲中文av在线| 美女高潮的动态| 老熟妇乱子伦视频在线观看| 老汉色av国产亚洲站长工具| 99久国产av精品| 精品福利观看| 97超视频在线观看视频| 成人鲁丝片一二三区免费| 精品福利观看| 色综合站精品国产| 色尼玛亚洲综合影院| 亚洲精品在线美女| 国产黄色小视频在线观看| 日本在线视频免费播放| 男人舔女人的私密视频| 欧美成人性av电影在线观看| 黄色丝袜av网址大全| 黄色 视频免费看| 亚洲av电影在线进入| 色视频www国产| 欧美不卡视频在线免费观看| 久久精品综合一区二区三区| 色尼玛亚洲综合影院| 日本黄大片高清| a级毛片a级免费在线| 久久久久国产一级毛片高清牌| 小说图片视频综合网站| 国产一区二区在线av高清观看| aaaaa片日本免费| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av免费在线观看| 三级毛片av免费| 日本熟妇午夜| 变态另类丝袜制服| 国产精品 欧美亚洲| 国产一区二区三区视频了| a级毛片a级免费在线| 亚洲av电影不卡..在线观看| 国内少妇人妻偷人精品xxx网站 | 成人国产一区最新在线观看| 麻豆av在线久日| 美女被艹到高潮喷水动态| 久久久国产欧美日韩av| 麻豆国产av国片精品| 亚洲国产欧美网| avwww免费| 亚洲欧美日韩高清专用| 激情在线观看视频在线高清| 视频区欧美日本亚洲| 色综合欧美亚洲国产小说| 国产精品亚洲一级av第二区| 久久中文字幕一级| 亚洲男人的天堂狠狠| 1000部很黄的大片| 视频区欧美日本亚洲| 免费在线观看亚洲国产| 午夜成年电影在线免费观看| 免费在线观看影片大全网站| 夜夜爽天天搞| 午夜日韩欧美国产| 精品乱码久久久久久99久播| 久久久久国产一级毛片高清牌| 亚洲熟女毛片儿| 亚洲av电影在线进入| 亚洲精品乱码久久久v下载方式 | 日本精品一区二区三区蜜桃| 一边摸一边抽搐一进一小说| www国产在线视频色| 一级毛片高清免费大全| 国产午夜福利久久久久久| 国产精品一及| 俄罗斯特黄特色一大片| 久99久视频精品免费| 久久人妻av系列| 欧美日韩精品网址| 19禁男女啪啪无遮挡网站| 精品久久蜜臀av无| 亚洲 国产 在线| 一个人观看的视频www高清免费观看 | 日韩欧美 国产精品| 亚洲精品中文字幕一二三四区| 男女那种视频在线观看| 欧美在线黄色| x7x7x7水蜜桃| 国产一区二区三区视频了| 日本免费a在线| 日本在线视频免费播放| 欧美av亚洲av综合av国产av| 欧美日韩一级在线毛片| 亚洲熟女毛片儿| 听说在线观看完整版免费高清| 精品久久久久久久久久久久久| 久久久久亚洲av毛片大全| 中亚洲国语对白在线视频| 亚洲中文日韩欧美视频| 99热只有精品国产| 蜜桃久久精品国产亚洲av| 午夜视频精品福利| 男女视频在线观看网站免费| 韩国av一区二区三区四区| 久久久成人免费电影| 国产麻豆成人av免费视频| 国产精品一区二区精品视频观看| 欧美日韩乱码在线| 人人妻人人看人人澡| 他把我摸到了高潮在线观看| 国产亚洲欧美98| 亚洲人成网站在线播放欧美日韩| 狠狠狠狠99中文字幕| 国产在线精品亚洲第一网站| 国产精品av视频在线免费观看| 欧美日韩福利视频一区二区| 成年女人看的毛片在线观看| 91久久精品国产一区二区成人 | 婷婷亚洲欧美| 国产精品女同一区二区软件 | 国内毛片毛片毛片毛片毛片| 看片在线看免费视频| 精品国产三级普通话版| 免费看日本二区| 麻豆久久精品国产亚洲av| 欧美成人性av电影在线观看| 日日摸夜夜添夜夜添小说| 日本 av在线| 三级毛片av免费| 国产视频一区二区在线看| 听说在线观看完整版免费高清| 国产在线精品亚洲第一网站| 国产精品久久久久久精品电影| 国产97色在线日韩免费| 久久精品人妻少妇| tocl精华| 国产视频一区二区在线看| 搡老妇女老女人老熟妇| 9191精品国产免费久久| 十八禁网站免费在线| 欧美一级毛片孕妇| 国产男靠女视频免费网站| 欧美成狂野欧美在线观看| 国产精品国产高清国产av| 成年女人永久免费观看视频| 午夜精品一区二区三区免费看| 男人舔女人下体高潮全视频| 老司机午夜福利在线观看视频| 欧美一区二区精品小视频在线| 久久精品91无色码中文字幕| 亚洲一区二区三区不卡视频| 精品久久久久久久毛片微露脸| 久久热在线av| 精品国产美女av久久久久小说| 首页视频小说图片口味搜索| 午夜福利在线在线| 可以在线观看的亚洲视频| 熟女电影av网| cao死你这个sao货| 国产亚洲精品av在线| 免费高清视频大片| 久久久久久久久免费视频了| 一进一出好大好爽视频| 国产成人啪精品午夜网站| 最好的美女福利视频网| 很黄的视频免费| 国内精品美女久久久久久| 国产精品 国内视频| 无限看片的www在线观看| 国产一区二区激情短视频| 国产综合懂色| 国产免费av片在线观看野外av| 性欧美人与动物交配| 精品电影一区二区在线| 成人性生交大片免费视频hd| 999精品在线视频| 中国美女看黄片| 国产伦一二天堂av在线观看| 欧美性猛交黑人性爽| 亚洲人成网站高清观看| 国产精品免费一区二区三区在线| 高清在线国产一区| 国产蜜桃级精品一区二区三区| 精品久久蜜臀av无| 丁香欧美五月| 国产v大片淫在线免费观看| 人人妻,人人澡人人爽秒播| 久久久色成人| 国内精品美女久久久久久| 丝袜人妻中文字幕| 九九在线视频观看精品| 午夜福利在线观看吧| 国产免费男女视频| 偷拍熟女少妇极品色| 99国产精品99久久久久| 久久久久久国产a免费观看| 久久久精品大字幕| 亚洲国产欧洲综合997久久,| 亚洲在线自拍视频| 美女高潮喷水抽搐中文字幕| 99热这里只有是精品50| 日本精品一区二区三区蜜桃| 久久久精品大字幕| 国产欧美日韩精品亚洲av| 天堂影院成人在线观看| 精品国产美女av久久久久小说| 亚洲av电影不卡..在线观看| avwww免费| 精品久久蜜臀av无| 成人三级黄色视频| 桃色一区二区三区在线观看| 亚洲真实伦在线观看| 操出白浆在线播放| 嫩草影视91久久| 99精品久久久久人妻精品| 精品一区二区三区视频在线观看免费| 美女cb高潮喷水在线观看 | 热99re8久久精品国产| 999精品在线视频| 日本一二三区视频观看| 黑人巨大精品欧美一区二区mp4| 母亲3免费完整高清在线观看| 欧美绝顶高潮抽搐喷水| 成在线人永久免费视频| 国产成+人综合+亚洲专区| 欧美成狂野欧美在线观看| 免费av不卡在线播放| 69av精品久久久久久| 不卡av一区二区三区| 国产精品精品国产色婷婷| 中文字幕av在线有码专区| 久久精品综合一区二区三区| 在线国产一区二区在线| 久久中文字幕人妻熟女| 久久精品亚洲精品国产色婷小说| 日本a在线网址| 国产免费男女视频| av视频在线观看入口| 老司机深夜福利视频在线观看| 国产成人福利小说| 校园春色视频在线观看| 悠悠久久av| 色综合站精品国产| 久久久久国产一级毛片高清牌| 国产精品久久久久久久电影 | 精品99又大又爽又粗少妇毛片 | 国产成人av激情在线播放| 97超视频在线观看视频| 一级毛片女人18水好多| 久久久久久国产a免费观看| 日日摸夜夜添夜夜添小说| 国产午夜精品久久久久久| 啦啦啦观看免费观看视频高清| 亚洲18禁久久av| 亚洲在线自拍视频| 国产一区二区在线av高清观看| 国产精品电影一区二区三区| 九九热线精品视视频播放| 久久久久久久久中文| 久久久久久大精品| 国产亚洲精品一区二区www| 国产精品精品国产色婷婷| 国产亚洲精品一区二区www| 九九热线精品视视频播放| 九色国产91popny在线| 中文亚洲av片在线观看爽| 国内精品美女久久久久久| 免费大片18禁| 级片在线观看| 人人妻,人人澡人人爽秒播| 久9热在线精品视频| 久久久久国产精品人妻aⅴ院| 日韩欧美三级三区| 91麻豆av在线| 久久久久久人人人人人| 成人无遮挡网站| 天天一区二区日本电影三级| 国产精品九九99| www.熟女人妻精品国产| 亚洲 国产 在线| 亚洲aⅴ乱码一区二区在线播放| 国产在线精品亚洲第一网站| 在线视频色国产色| 午夜激情福利司机影院| 国产精品98久久久久久宅男小说| 国产一区二区激情短视频| 久久国产精品人妻蜜桃| av国产免费在线观看| 久久这里只有精品19| 老熟妇仑乱视频hdxx| 亚洲国产欧美一区二区综合| 91九色精品人成在线观看| 亚洲精品色激情综合| 国产高清三级在线| 一进一出好大好爽视频| 亚洲国产精品久久男人天堂| 亚洲av成人不卡在线观看播放网| 欧美日韩福利视频一区二区| av在线蜜桃| 久久性视频一级片| 99视频精品全部免费 在线 | 亚洲av成人一区二区三| 国产av不卡久久| 两个人看的免费小视频| 91麻豆精品激情在线观看国产| 国产精品亚洲av一区麻豆| 国产乱人视频| 国产淫片久久久久久久久 | e午夜精品久久久久久久| 久久久久亚洲av毛片大全| 99久久国产精品久久久| 久久精品人妻少妇| 黄色片一级片一级黄色片| 日本黄色视频三级网站网址| 久久久国产精品麻豆| 亚洲欧美日韩高清在线视频| 国产免费av片在线观看野外av| www国产在线视频色| 成人三级黄色视频| 久久久久国产一级毛片高清牌| 在线视频色国产色| 欧美3d第一页| 欧美av亚洲av综合av国产av| www国产在线视频色| 精品电影一区二区在线| 日本一二三区视频观看| 亚洲成人免费电影在线观看| 男插女下体视频免费在线播放| 国产三级黄色录像| 99精品久久久久人妻精品| 国产一区二区三区视频了| 真人一进一出gif抽搐免费| av天堂中文字幕网| 色精品久久人妻99蜜桃| 成人高潮视频无遮挡免费网站| 两个人视频免费观看高清| 在线十欧美十亚洲十日本专区| 久久中文字幕一级| 亚洲午夜理论影院| 19禁男女啪啪无遮挡网站| 高潮久久久久久久久久久不卡| 欧美黑人欧美精品刺激| 一级毛片女人18水好多| 哪里可以看免费的av片| 久久久精品大字幕| 亚洲精品粉嫩美女一区| 国产1区2区3区精品| 国产一区二区激情短视频| 国产精品一区二区免费欧美| 国产又色又爽无遮挡免费看| 成年女人毛片免费观看观看9| 国产精品久久久av美女十八| 91麻豆av在线| 久久国产乱子伦精品免费另类| 亚洲人与动物交配视频| 亚洲国产高清在线一区二区三| 国产黄色小视频在线观看| 国产亚洲精品综合一区在线观看| 国产高清视频在线观看网站| 欧美大码av| 久久久成人免费电影| 欧美另类亚洲清纯唯美| 18禁黄网站禁片免费观看直播| 美女高潮的动态| 亚洲美女黄片视频| 非洲黑人性xxxx精品又粗又长| 18禁观看日本| 熟女人妻精品中文字幕| 国产高潮美女av| 欧美乱妇无乱码| 动漫黄色视频在线观看| 久久久久九九精品影院| 久久国产精品影院| 欧美成人一区二区免费高清观看 | 一个人免费在线观看的高清视频| 国产欧美日韩精品一区二区| 九色成人免费人妻av| 99热精品在线国产| 淫秽高清视频在线观看| 黄色日韩在线| 18禁黄网站禁片午夜丰满| 精华霜和精华液先用哪个| 久久热在线av| 国产精品女同一区二区软件 | 免费在线观看成人毛片| 噜噜噜噜噜久久久久久91| www日本在线高清视频| 国产亚洲av嫩草精品影院| 日本五十路高清| 色尼玛亚洲综合影院| 亚洲国产欧美人成| 免费无遮挡裸体视频| 精品一区二区三区视频在线 | 日韩av在线大香蕉| 亚洲一区二区三区色噜噜| 成人鲁丝片一二三区免费| 色吧在线观看| 国产伦在线观看视频一区| a在线观看视频网站| 亚洲av成人不卡在线观看播放网| 欧美国产日韩亚洲一区| 午夜福利免费观看在线| 黑人操中国人逼视频| 欧美性猛交╳xxx乱大交人| 国产高清三级在线| 久久精品亚洲精品国产色婷小说| 综合色av麻豆| 看黄色毛片网站| 国产精品日韩av在线免费观看| 可以在线观看毛片的网站| 国产精品九九99| 看黄色毛片网站| 亚洲九九香蕉| 亚洲欧美日韩东京热| 亚洲黑人精品在线| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精华国产精华精| 九九在线视频观看精品| 两性夫妻黄色片| 99久久久亚洲精品蜜臀av| 国产成人av教育| 日本五十路高清| 亚洲第一欧美日韩一区二区三区| 日韩 欧美 亚洲 中文字幕| svipshipincom国产片| 免费av毛片视频| 亚洲av成人精品一区久久| 久久久水蜜桃国产精品网| 久久久久久久久中文| 国产精品女同一区二区软件 | 国产精品综合久久久久久久免费| 精品日产1卡2卡| 国产午夜精品久久久久久| 成年版毛片免费区| 在线免费观看不下载黄p国产 | 精品久久久久久久人妻蜜臀av| 亚洲黑人精品在线| 97碰自拍视频| 欧美大码av| 制服丝袜大香蕉在线| 身体一侧抽搐| 午夜福利成人在线免费观看| 欧美一区二区国产精品久久精品| 麻豆成人av在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲激情在线av| 韩国av一区二区三区四区| 国产亚洲精品久久久com| 亚洲成人精品中文字幕电影| 日韩大尺度精品在线看网址| 99国产精品一区二区蜜桃av| 好男人电影高清在线观看| 国产人伦9x9x在线观看| 观看美女的网站| 成人av一区二区三区在线看| 欧美中文综合在线视频| 成在线人永久免费视频| 欧美日韩黄片免| 熟女少妇亚洲综合色aaa.| 九九热线精品视视频播放| 中文亚洲av片在线观看爽| 成年女人毛片免费观看观看9| 变态另类丝袜制服| 三级男女做爰猛烈吃奶摸视频| 97超级碰碰碰精品色视频在线观看| 精品乱码久久久久久99久播| 成人高潮视频无遮挡免费网站| 国产麻豆成人av免费视频| 国产91精品成人一区二区三区| 欧美乱色亚洲激情| 欧美日韩福利视频一区二区| 国产欧美日韩一区二区三| 老司机深夜福利视频在线观看| 欧美日韩一级在线毛片| 欧美午夜高清在线| 特级一级黄色大片| 国产精品美女特级片免费视频播放器 | 99久久国产精品久久久| 免费电影在线观看免费观看| 欧美日韩瑟瑟在线播放| 午夜激情福利司机影院| 欧美黑人欧美精品刺激| 老司机在亚洲福利影院| 桃色一区二区三区在线观看| 天堂√8在线中文| 亚洲欧美精品综合一区二区三区| 亚洲一区高清亚洲精品| 国产一区二区在线av高清观看| 国产亚洲av高清不卡| 婷婷丁香在线五月| 噜噜噜噜噜久久久久久91| 色哟哟哟哟哟哟| 丰满人妻熟妇乱又伦精品不卡| 国产伦人伦偷精品视频| 久久精品人妻少妇| 国产精品一区二区免费欧美| 国产精品久久久久久人妻精品电影| 亚洲精品一区av在线观看| 啦啦啦观看免费观看视频高清| 中国美女看黄片| 美女午夜性视频免费| 亚洲成av人片在线播放无|