• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Metaheuristics with Deep Learning Empowered Biomedical Atherosclerosis Disease Diagnosis and Classification

    2022-08-24 06:59:52AreejMalibariSiwarBenHajHassineAbdelwahedMotwakelandManarAhmedHamza
    Computers Materials&Continua 2022年8期

    Areej A.Malibari,Siwar Ben Haj Hassine,Abdelwahed Motwakel and Manar Ahmed Hamza,*

    1Department of Industrial and Systems Engineering,College of Engineering,Princess Nourah Bint Abdulrahman University,Riyadh,11671,Saudi Arabia

    2Department of Computer Science,College of Science and Arts,King Khalid University,Mahayil,Asir,Saudi Arabia

    3Department of Computer and Self Development,Preparatory Year Deanship,Prince Sattam bin Abdulaziz University,Al-Kharj,16278,Saudi Arabia

    Abstract: Atherosclerosis diagnosis is an inarticulate and complicated cognitive process.Researches on medical diagnosis necessitate maximum accuracy and performance to make optimal clinical decisions.Since the medical diagnostic outcomes need to be prompt and accurate,the recently developed artificial intelligence(AI)and deep learning(DL)models have received considerable attention among research communities.This study develops a novel Metaheuristics with Deep Learning Empowered Biomedical Atherosclerosis Disease Diagnosis and Classification (MDL-BADDC) model.The proposed MDL-BADDC technique encompasses several stages of operations such as pre-processing,feature selection,classification,and parameter tuning.Besides,the proposed MDL-BADDC technique designs a novel Quasi-Oppositional Barnacles Mating Optimizer(QOBMO)based feature selection technique.Moreover,the deep stacked autoencoder(DSAE)based classification model is designed for the detection and classification of atherosclerosis disease.Furthermore,the krill herd algorithm(KHA)based parameter tuning technique is applied to properly adjust the parameter values.In order to showcase the enhanced classification performance of the MDL-BADDC technique,a wide range of simulations take place on three benchmarks biomedical datasets.The comparative result analysis reported the better performance of the MDL-BADDC technique over the compared methods.

    Keywords: Atherosclerosis disease;biomedical data;data classification;machine learning;disease diagnosis;deep learning

    1 Introduction

    Cardiovascular disease (CVD) is a common term for a multitude of heart illness conditions and disorders.There is another form of CVD,particularly coronary artery disease(CAD),so called atherosclerosis[1].The number of persons are impacted by heart disease,particularly atherosclerosis.This disease is the major cause of mortality in many nations as per the World Health Organization(WHO).For clinical diagnoses,automatic extraction of data from individual records is problematic[2].Henceforth,the significance of developing and establishing a Medicinal Diagnostic Support Scheme (MDSS) for automating patients’prediction and classification of CVD.But healthcare diagnoses study needs higher efficiency and accuracy for making a better medical decision.Although classical MDSS has demonstrated the ability to cover many diagnosis problems,they provide a low precision rate and could not offer accurate diagnoses [3].In the past few decades,clinical therapy and diagnoses schemes utilizing Machine Learning (ML) and artificial intelligence (AI) techniques have received much recognition.Therefore,this study topic has influenced academic fields namely applied sciences,finances,medical,and biology applications.Subsequently,various studies were introduced for developing MDSS to classify or predict patients with CVD to enhance healthcare[4].The abovementioned methods predict the existence of disease by using statistical models that need tested objects which should meet the precondition of the models,like logistic regression,time series models,etc.for evaluating the occurrence of disease[5].

    Current researches have employed machine learning(ML)methods for diagnosing distinct CVD issues and making a calculation.Fig.1 illustrates the applications involved in computer aided healthcare.A main challenge of ML is the higher dimension of the data set[6].The study of various features needs a massive number of storage and results in over-fitting;hence the weighting feature decreases processing time and unwanted information,therefore enhancing the efficiency of the model [7].Finding a smaller set of features describes distinct diseases of medical images,health management,IoT,and genome expression.Reduction Dimension employs feature extraction to simplify and transform information,whereas feature selection decreases the data set by eliminating unwanted features.

    Figure 1:Applications of computer aided healthcare

    He et al.[8]presented an evolutionary classification method.The fundamental of the predictive method is a kernel extreme learning machine(KELM)enhanced using salp swarm algorithm(SSA).For getting a good set of features and parameters,the space transformation method is presented from the optimization for improving SSA to obtain an optimum KELM method.Terrada et al.[9]determined an MDSS of CAD disease.This method is capable of giving heart disease predictions via the patient medical information.This MDSS is depending on ML methods like k-means clustering and K-medoids for K-Nearest Neighbor(KNN),classification,and Artificial Neural Network(ANN)for forecasting the absence and presence of Atherosclerosis diseases.

    Terrada et al.[10]apply KNN and ANN for predicting patients with or without CVD disease.The method is authorized on Hungarian,Cleveland heart disease,Long Beach VA,and Switzerland datasets.This MDSS is depending on supervised ML models.Munger et al.[11]aim at the present application of ML for providing insights into the atherosclerotic plaque formation and good understanding of atherosclerotic plaque evolution in patients with CVD.

    Zhao et al.[12]presented an automated multiclass coronary atherosclerosis plaque classification and detection architecture.First,recovered the transverse cross section and centrelines from the CT angiography.Next,extract the ROI according to the coarse segmentation.Then,extract a random radius symmetry(RRS)feature vector that integrates various determinations into a random approach and significantly increases the trained data.Lastly,fed the RRS feature vectors to the multiclass coronary plaque classifiers.

    Parameswari et al.[13]aims at decreasing the disease independent variation without damaging data-based variances among the atherosclerotic eyes and images of healthy.The presented approach allows improvement of illumination in the blood vessel,via renovating them.Lastly,Enhanced Bayesian Arithmetic Classifier(EBAC)is executed for efficient classifier.Cherradi et al.[14]presented a CAD scheme based on KNN and ANN models.Next,employed K-fold cross-validation for splitting the datasets and attaining the optimal method with greater precision and lesser results.

    This study develops a novel Metaheuristics with Deep Learning Empowered Biomedical Atherosclerosis Disease Diagnosis and Classification(MDL-BADDC)model.The proposed MDLBADDC technique designs a novel Quasi-Oppositional Barnacles Mating Optimizer(QOBMO)based feature selection technique.In addition,the deep stacked autoencoder (DSAE) based classification model is designed for the detection and classification of atherosclerosis disease.Finally,the krill herd algorithm(KHA)based parameter tuning technique is applied to properly adjust the parameter values.To showcase the enhanced classification performance of the MDL-BADDC approach,a wide range of simulations take place on three benchmarks biomedical datasets.

    2 The Proposed Model

    In this study,a novel MDL-BADDC technique has been developed for atherosclerosis disease diagnosis and classification.The MDL-BADDC technique incorporates pre-processing,QOBMO based feature selection,DSAE based classification,and KHA based parameter tuning.The application of KHA helps to properly tune the parameters contained in the DSAE model and thereby enhances the detection outcomes.Fig.2 illustrates the overall process of MDL-BADDC technique.

    Figure 2:Overall process of MDL-BADDC technique

    2.1 Data Pre-Processing

    At first,the preprocessing method takes place for the conversion of non-traditional data set into traditional data set for improving the performance of the presented method.For this,min-max normalization method is performed.NN training is developed an effective on the achievement of preprocessing phase on the network targets inputs.The normalization process for raw input has a better result on making the data that suitable for training[15].Generally,the feature is being rescaled to be in the interval of[0,1]or from[-1,1].

    In which(ymax-ymin)=0;when(xmax-xmin)=0 to a feature,it designates a constant rate for that feature in the data.When the feature value is identified with a constant value,it should be unconcerned since it doesn’t transport any data to NNs.After the min-max normalization has been performed,all the features would be in the novel range of value that remains unchanged.

    2.2 Design of QOBMO Based Feature Selection

    At this stage,the pre-processed biomedical data is passed into the QOBMO algorithm to choose an optimum subset of features.A barnacle is a microorganism that attaches itself to object in the water.The mating groups comprise each neighbor and competitor within reach of the penis.BMO is stimulated by the mating procedure.With simulates initialization,selection,and reproduction processes the realtime optimization issue was resolved[16]:First,considered the candidate solution is barnacle,in which the matrix of the population is formulated by Eq.(2).The calculation of population and sorting procedure are performed for locating the optimal solution atX.

    WhereasNrepresent the barnacle population count,nindicates the amount of control parameters andbarnacle-dandbarnacle-mrepresent the parent that mated.As there is no certain equation to derive the reproduction method of barnacles,BMO emphasizes the genotype frequency of parent to yield of springs according to the Hardy-Weinberg principles.It is noteworthy that the length of the penis(pl)plays a significant part in defining the exploration and exploitation methods[17].

    whereasprepresent the random distribution numbers from the range of zero and one,q=(1-p),andrepresents the variable ofDadand Mum barnacles.pandqdenote the genotype frequency ofDadand Mum barnacles.When barnacle #1 chooses barnacle #8,it is over the limit.Therefore,the mating procedure doesn’t take place.Now,the offspring are generated by the sperm cast method.

    In which rand()denotes the arbitrary values from the range of zero and one.The new offspring is generated by Mum’s barnacles because it attains the sperm that is released into the water by other barnacles.In the iteration,the location of the barnacles is upgraded.At last,the BMO is determined for approximating the global optimum for optimization problems.

    The OBL is fundamentally established to the drive of decreasing the computational time and enhancing the convergence capabilities of distinct EA [18].With assuming every of the present population and its opposite population dependent upon OBL,the candidate solution was enhanced.This method is easy and simple for implementing that creates it appropriate for enhancing the efficiency of BMO technique.So,the primary population of this technique was created dependent upon the QOBL technique.Since,the outcome of this comparative,an optimum amongst novel and quasi-opposite solutions was retained from the primary populations.It can improve the variety and exploration of created primary population.Therefore,the technique is typically converged to global optimal with faster rate.The definition of opposite point,opposite number,quasi-opposite point,and quasi-opposite number are provided as follows[19]:

    To some arbitrary numberχ∈[a,b],their opposite numberχ0has provided as:

    But,the opposite-point to multi-dimension search space(ddimensional)was demonstrated as:

    and the quasi-opposite numberxqoof some arbitrary numberχ∈[a,b]is provided as:

    Likewise,the quasi-opposite point to multi-dimension search space(d-dimension)has determined as:

    2.3 Design of Optimal DSAE Based Classification

    During classification process,the optimal DSAE model is utilized for the detection and classification of atherosclerosis disease.The AE is an axisymmetric single hidden-layer neural network(SLNN).The AE encodes as input data by utilizing the hidden layer,approximating the minimal error,and attaining the optimal-feature hidden-state[20].For instance,the AE doesn’t learn realtime features by inputting and copying memory into implicit layer,even though it could recreate input data with higher accuracy.In order to adhesion state of locomotive,kset of monitored information{x1,x2,x3,...,xn}exists,that is recreated into aN×Mdataset{x(1),x(2),x(3),..,x(N)},x(i)∈RM.This data is utilized as input matrix X.In this work,the activation functions of AE are sigmoid,that is developed for attaining a good depiction of input:h(X,W,b)=σ(WX+b).The enforcing sparsity purpose is to reduce the unwanted activation.aj(x)is fixed as thejthactivation values.During the feature learning procedure,the activation values of hidden neuron are formulated bya=sigmoid(WX+b),in whichbindicates the deviation matrix andWrepresent the weight matrix.

    The hidden state was retained at a low value to make sure that average activation values of sparse variable are determined byρ,and the penalty term was utilized for preventingρjfrom deviating inρparameter[21].The KL divergence was employed as the base of punishment.

    Ifρjdoesn’t deviation inρparameter,the KL divergence value was zero;or else,the KL divergence value would rise progressively with the deviation.

    In whichS2indicates the amount of neurons andβdenotes the weight of sparse penalty.Afterward,the sparse penalty was determined,the sparse expression is attained by reducing the sparse cost function.

    Antarctic krill is the leading animal species on Earth.The capability to generate huge swarm is most important feature of this species.An individual krill move from the herd if predators like whales,seal,and some another species attacked the herds.This attack decreases the density of KH.The improvement of KH then predation was caused by several parameters.An important purpose of the herd performance of the krill individual is improving krill density and attaining food.KH technique utilizes this multi-objective herd to resolve global optimized issues[22].To determine food(maximum food focus)and density dependent attractiveness of krill’s were utilized as objective.Thus the outcome,a krill individual transfers near-optimum results once it explores to maximum densities of herd and food.This performance generates a KH about the global minimal of optimized issue.

    The time-dependent place of individual krill’s from 2Dsurfaces has been led by the subsequent 3 important essential performances.

    1.Progress induced by another krill individual;

    2.Foraging motion

    3.Physical or arbitrary diffusion

    The subsequent Lagrangian method was generalizing to n dimension decision space:

    whereNirefers the motion induced by another krill’s individual;Fistands for the foraging motion;andDisignifies the physical diffusion ofithkrill’s individual.

    The progress of all krill’s individual is determined as:whereNmaksstands for the maximal induced speed,and based on the measured value,it could be obtained as 0.01(m/s).ωndefines the inertia weights of motion induced from the range of zero and one.represents the local effects offered by the neighbors,targetimplies the target way effects offered as an optimum krill’s individual andstands for the final motion-induced.ωn,the inertia weight has equivalent to 0.9 initially optimized.Afterward,it can be linearly reduced to 0.1.

    The effects of neighbors are considered as an attraction or repulsion tendency amongst the individuals to a local search.,the target way effects offered by an optimum krill’s individual are determined as[23]:

    whereCbestrefers the coefficient of influences and determined as under.

    whererandimplies the arbitrarily created number amongst zero and one,Irefers the actual iteration number andImakssignifies the maximal amount of iterations.

    3 Performance Validation

    The experimental result analysis of the proposed technique takes place using three medical datasets namely Cleveland dataset,Hungarian dataset,and Z-Alizadeh Sani dataset.

    The Cleveland dataset has 76 attributes,of that only 14 features are generally utilized in maximum published research:13 inputs and 1 output.During this case,only 303 instances were utilized by 164 healthy subjects and 139 CAD(coronary artery disease)patients.

    The Hungarian dataset [24]has 14 features 13 inputs and 1 output.During this case,only 294 instances were utilized with 188 healthy subjects and 106 CAD patients.

    Z-Alizadeh Sani dataset[25]is gathered arbitrarily in heart disease patients at Tehran’s Shaheed Rajaei Cardiovascular,Medical and Research Center.This dataset was constructed for CAD diagnosis,having 303 samples by 56 features to all the patients.Classes:71%of patients ensured CAD and 29%were healthy.

    The FS results obtained by the QOBMO technique take place using three datasets[26].The results show that the QOBMO technique has chosen 9,8,and 12 features from the test Cleveland,Hungarian,and Z-Alizadeh datasets respectively.

    3.1 Result Analysis on Cleveland Dataset

    The confusion matrix offered by the MDL-BADDC technique on the test Cleveland dataset is shown in Fig.3.The figure reported that the MDL-BADDC technique has effectually identified the class labels under all epochs.For instance,with 200 epochs,the MDL-BADDC technique has identified 162 samples under Absent class and 135 samples under Present class.In addition,with 600 epochs,the MDL-BADDC method has identified 160 samples under Absent class and 136 samples under Present class.Along with that,with 1000 epochs,the MDL-BADDC approach has identified 163 samples under Absent class and 137 samples under Present class.

    Figure 3:Confusion matrix of MDL-BADDC technique on Cleveland dataset

    Detailed result analysis of the MDL-BADDC technique on the test Cleveland dataset is depicted in Tab.1.The experimental results stated that the MDL-BADDC technique has accomplished effective outcomes under every epoch.

    Table 1:Result analysis of MDL-BADDC technique on Cleveland dataset

    For instance,under 200 epochs,the MDL-BADDC technique has obtainedsensy,specy,accuy,Fscore,and MCC of 99.39%,97.84%,98.68%,98.79%,and 97.35%respectively.Eventually,under 600 epochs,the MDL-BADDC methodology has achievedsensy,specy,accuy,Fscore,and MCC of 98.17%,98.56%,98.35%,98.47%,and 96.68% correspondingly.Meanwhile,under 1000 epochs,the MDLBADDC approach has reachedsensy,specy,accuy,Fscore,and MCC of 99.39%,97.12%,98.35%,98.49%,and 96.69%correspondingly.

    A comparative result analysis of the MDL-BADDC technique takes place with recent methods in Tab.2.The figure shows that the weighted fuzzy rules(WFR),C4.5,and Fast Detection Tree(FDT)techniques have obtained loweraccuyof 64.25%,79.54%,and 78.75%respectively.Along with that,the Hybrid Neural Network-Genetic(HNNG)and NN models have resulted in moderateaccuyof 89.60%and 85.95%respectively.In line with,the ANN,SVM,and C4.5 techniques have obtained reasonableaccuyof 98.10%and 93.56%respectively.However,the MDL-BADDC technique has outperformed the existing methods with the maximumaccuyof 98.28%.

    Table 2:Accuracy analysis of MDL-BADDC technique on Cleveland dataset

    3.2 Result Analysis on Hungarian Dataset

    The confusion matrix presented by the MDL-BADDC method on the test Hungarian dataset is illustrated in Fig.4.The figure stated that the MDL-BADDC methodology has effectually identified the class labels under all epochs.

    Figure 4:Confusion matrix of MDL-BADDC technique on Hungarian dataset

    For instance,with 200 epochs,the MDL-BADDC approach has identified 181 samples under Absent class and 98 samples under Present class.Besides,with 600 epochs,the MDL-BADDC system has identified 183 samples under Absent class and 101 samples under Present class.At last,with 1000 epochs,the MDL-BADDC algorithm has identified 181 samples under Absent class and 98 samples under Present class.

    A comprehensive outcome analysis of the MDL-BADDC approach on the test Hungarian dataset is illustrated in Tab.3.The experimental outcomes referred that the MDL-BADDC method has accomplished effectual outcomes under every epoch.For instance,under 200 epochs,the MDLBADDC methodology has achievedsensy,specy,accuy,Fscore,and MCC 96.28%,92.45%,94.90%,96.02%,88.91% correspondingly.In addition,under 600 epochs,the MDL-BADDC system has achievedsensy,specy,accuy,Fscore,and MCC of 97.34%,95.28%96.60%,97.34%,92.62%respectively.In the meantime,under 1000 epochs,the MDL-BADDC algorithm has obtainedsensy,specy,accuy,Fscore,and MCC 96.28%,92.45%,94.90%,96.02%,88.91%correspondingly.

    Table 3:Result analysis of MDL-BADDC technique on Hungarian dataset

    A brief result analysis of the MDL-BADDC method take place with recent algorithms in Tab.4.The figure outperformed that the WFR,C4.5,and FDT systems have obtained lesseraccuyof 56.93%,79.61%,and 77.53%correspondingly.Likewise,the HNNG and NN methods have resulted to moderateaccuyof 88.60%and 83.84%correspondingly.Besides,the ANN,SVM,and C4.5 techniques have obtained reasonableaccuyof 93.20% and 88.60% correspondingly.Lastly,the MDL-BADDC method has exhibited the existing methods with the maximal 95.51%.

    Table 4:Accuracy analysis of MDL-BADDC technique on Hungarian dataset

    3.3 Result Analysis on Z-Alizadeh Dataset

    The confusion matrix existing by the MDL-BADDC system on the test Z-Alizadeh dataset is depicted in Fig.5.The figure stated that the MDL-BADDC approach has effectually identified the class labels under all epochs.For instance,with 200 epochs,the MDL-BADDC algorithm has identified 214 samples under Absent class and 86 samples under Present class.Furthermore,with 600 epochs,the MDL-BADDC system has identified 214 samples under Absent class and 84 samples under Present class.Moreover,with 1000 epochs,the MDL-BADDC method has identified 213 samples under Absent class and 85 samples under Present class.

    Figure 5:Confusion matrix of MDL-BADDC technique on Z-Alizadeh dataset

    A detailed outcome analysis of the MDL-BADDC technique on the test Z-Alizadeh dataset is depicted in Tab.5.The experimental outcomes stated that the MDL-BADDC system has accomplished effectual outcomes under every epoch.For instance,under 200 epochs,the MDL-BADDC algorithm has achievedsensy,specy,accuy,Fscore,and MCC of 99.07%,98.85%,99.01%,99.30%,97.59% respectively.Likewise,under 600 epochs,the MDL-BADDC technique has attainedsensy,specy,accuy,Fscore,and MCC of 99.07%,96.55%,98.35%,98.85%,95.96% respectively.In addition,under 1000 epochs,the MDL-BADDC approach has reachedsensy,specy,accuy,Fscore,and MCC 98.61%,97.70%,98.35%,98.84%,95.99%correspondingly.

    Table 5:Result analysis of MDL-BADDC technique on Z-Alizadeh dataset

    A comparative outcome analysis of the MDL-BADDC technique take place with recent methods in Tab.6.The figure portrayed that the NN Model,2 Hybrid Feature Selection (HFS),and SVC method have reached lesseraccuyof 86.72%,92.18%,and 91.95% respectively.Along with that,the HNNG and nu-SVM techniques have resulted in moderateaccuyof 94.75%and 93.34%respectively.Similarly,the ANN,SVM,and C4.5 techniques have attained reasonableaccuyof 97.32%and 96.60%correspondingly.Eventually,the MDL-BADDC approach has exhibited the existing algorithms with a higher 98.75%.

    Table 6:Accuracy analysis of MDL-BADDC technique on Z-Alizadeh dataset

    Fig.6 portrays the accuracy and loss analysis of the MDL-BADDC technique on three datasets.The results demonstrated that the MDL-BADDC system has accomplished improved performance with enhanced training and validation accuracy.It can be stated that the MDL-BADDC method has reached improved validation accuracy over the training accuracy.The figure demonstrates loss analysis of the MDL-BADDC technique on three datasets.The outcomes established that the MDLBADDC approach has resulted in a proficient outcome with the minimum training and validation loss.It can be obvious that the MDL-BADDC methodology has offered decreased validation loss over the training loss.

    Figure 6:(Continued)

    Figure 6:Accuracy and Loss graph analysis of MDL-BADDC technique on three datasets

    4 Conclusion

    In this study,a novel MDL-BADDC technique has been developed for atherosclerosis disease diagnosis and classification.The MDL-BADDC technique incorporates pre-processing,QOBMO based feature selection,DSAE based classification,and KHA based parameter tuning.The application of KHA helps to properly tune the parameters involved in the DSAE model and thereby enhances the detection outcomes.To showcase the enhanced classification performance of the MDLBADDC approach,a wide range of simulations take place on three benchmark biomedical datasets.The comparative result analysis reported the better performance of the MDL-BADDC technique over the compared methods.In future,the MDL-BADDC technique can be extended to other disease diagnoses such as lung cancer,brain tumor,etc.

    Funding Statement:The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number(RGP 2/279/43).Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2022R151),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    在线观看午夜福利视频| 日本 av在线| 亚洲电影在线观看av| 欧美绝顶高潮抽搐喷水| 亚洲精品国产精品久久久不卡| 亚洲天堂国产精品一区在线| 成人无遮挡网站| 亚洲av日韩精品久久久久久密| 伊人久久大香线蕉亚洲五| 超碰成人久久| 久久热在线av| 日韩成人在线观看一区二区三区| 好男人电影高清在线观看| 欧美乱码精品一区二区三区| 亚洲欧美精品综合久久99| 欧美zozozo另类| 久久99热这里只有精品18| 伊人久久大香线蕉亚洲五| 精品不卡国产一区二区三区| 黑人欧美特级aaaaaa片| 欧美色欧美亚洲另类二区| 麻豆av在线久日| 日韩欧美一区二区三区在线观看| 欧美大码av| 男插女下体视频免费在线播放| 欧美性猛交╳xxx乱大交人| 久久久久久久久久黄片| 一a级毛片在线观看| 日韩 欧美 亚洲 中文字幕| 国产高清激情床上av| 男人舔女人下体高潮全视频| 国内精品久久久久久久电影| 欧美乱妇无乱码| 后天国语完整版免费观看| 午夜精品久久久久久毛片777| 亚洲成a人片在线一区二区| 99riav亚洲国产免费| 一个人观看的视频www高清免费观看 | 一边摸一边抽搐一进一小说| 丰满的人妻完整版| 在线永久观看黄色视频| 精品国产美女av久久久久小说| 国产伦精品一区二区三区视频9 | 久久精品91蜜桃| 国产99白浆流出| 国内少妇人妻偷人精品xxx网站 | 欧美日韩福利视频一区二区| x7x7x7水蜜桃| 成熟少妇高潮喷水视频| 老司机深夜福利视频在线观看| 欧美乱色亚洲激情| 噜噜噜噜噜久久久久久91| 伦理电影免费视频| 俺也久久电影网| 日本a在线网址| a级毛片a级免费在线| 久久精品综合一区二区三区| 在线免费观看的www视频| 黄色女人牲交| 免费看a级黄色片| 麻豆一二三区av精品| 国产视频内射| 欧美3d第一页| 夜夜夜夜夜久久久久| 中出人妻视频一区二区| 欧美日韩亚洲国产一区二区在线观看| 国产人伦9x9x在线观看| 天堂影院成人在线观看| 夜夜躁狠狠躁天天躁| 国产av麻豆久久久久久久| 国产成+人综合+亚洲专区| h日本视频在线播放| 国产一级毛片七仙女欲春2| 1000部很黄的大片| 婷婷六月久久综合丁香| 欧美日韩乱码在线| 美女 人体艺术 gogo| 国产精品美女特级片免费视频播放器 | 高潮久久久久久久久久久不卡| 国产精品一区二区三区四区免费观看 | 在线观看日韩欧美| 看片在线看免费视频| 九九在线视频观看精品| 男女床上黄色一级片免费看| 亚洲精品久久国产高清桃花| 日本三级黄在线观看| 国产午夜精品论理片| 12—13女人毛片做爰片一| 黄色女人牲交| 这个男人来自地球电影免费观看| 久久久久国产一级毛片高清牌| 国产亚洲精品综合一区在线观看| 色av中文字幕| av女优亚洲男人天堂 | 亚洲av中文字字幕乱码综合| 可以在线观看的亚洲视频| 午夜精品久久久久久毛片777| 黄色片一级片一级黄色片| 无人区码免费观看不卡| 欧美3d第一页| 人妻久久中文字幕网| 一本精品99久久精品77| 欧美一级a爱片免费观看看| 人人妻人人看人人澡| 亚洲欧美日韩东京热| 国产精品亚洲美女久久久| 中文字幕精品亚洲无线码一区| 亚洲av五月六月丁香网| 精品久久久久久久人妻蜜臀av| 人人妻人人看人人澡| 亚洲欧美日韩东京热| 国产黄片美女视频| 免费av不卡在线播放| 亚洲一区二区三区不卡视频| 国产精品久久久久久精品电影| 亚洲一区二区三区色噜噜| 黑人欧美特级aaaaaa片| av女优亚洲男人天堂 | 亚洲国产日韩欧美精品在线观看 | 国产高清视频在线播放一区| 好看av亚洲va欧美ⅴa在| 国产三级中文精品| 国产99白浆流出| 国产爱豆传媒在线观看| 波多野结衣高清无吗| 国产精品影院久久| 最新中文字幕久久久久 | 亚洲狠狠婷婷综合久久图片| 性色avwww在线观看| 狂野欧美白嫩少妇大欣赏| 欧美另类亚洲清纯唯美| 一级毛片女人18水好多| 欧美激情久久久久久爽电影| 色哟哟哟哟哟哟| 色在线成人网| 亚洲国产欧洲综合997久久,| 国产一区二区在线av高清观看| 好男人在线观看高清免费视频| 真实男女啪啪啪动态图| 老汉色∧v一级毛片| 男女床上黄色一级片免费看| 90打野战视频偷拍视频| 成人av一区二区三区在线看| 偷拍熟女少妇极品色| 国产主播在线观看一区二区| 亚洲精品粉嫩美女一区| 日韩av在线大香蕉| 欧美日韩一级在线毛片| 亚洲人成伊人成综合网2020| 久久久久久久久免费视频了| 757午夜福利合集在线观看| 久久精品人妻少妇| 亚洲国产高清在线一区二区三| 欧美不卡视频在线免费观看| 91麻豆av在线| 老司机午夜福利在线观看视频| www.精华液| 成人精品一区二区免费| 三级男女做爰猛烈吃奶摸视频| 国产一级毛片七仙女欲春2| 午夜福利在线在线| 婷婷六月久久综合丁香| 免费观看人在逋| 非洲黑人性xxxx精品又粗又长| 一本精品99久久精品77| 老鸭窝网址在线观看| 麻豆av在线久日| 亚洲欧美激情综合另类| www.精华液| 女人被狂操c到高潮| 日韩av在线大香蕉| 亚洲无线在线观看| 麻豆国产97在线/欧美| 丰满人妻一区二区三区视频av | 亚洲av电影在线进入| 最新中文字幕久久久久 | 国产精品电影一区二区三区| 淫妇啪啪啪对白视频| 可以在线观看毛片的网站| 琪琪午夜伦伦电影理论片6080| 久久久国产精品麻豆| 亚洲aⅴ乱码一区二区在线播放| 久久人人精品亚洲av| 国产一级毛片七仙女欲春2| 最好的美女福利视频网| www日本黄色视频网| 黄色成人免费大全| 97碰自拍视频| 精品人妻1区二区| 大型黄色视频在线免费观看| 老汉色∧v一级毛片| av福利片在线观看| 亚洲国产精品合色在线| 91av网站免费观看| 亚洲五月天丁香| 美女高潮的动态| 欧美日韩一级在线毛片| 欧美黄色淫秽网站| 国产97色在线日韩免费| 国产成人av激情在线播放| 成年女人看的毛片在线观看| 一级黄色大片毛片| 日本五十路高清| 欧美日本亚洲视频在线播放| 成人三级黄色视频| 国产三级在线视频| 亚洲精品色激情综合| 欧美黑人巨大hd| 91在线精品国自产拍蜜月 | 国产免费男女视频| 成在线人永久免费视频| 日韩免费av在线播放| 亚洲熟女毛片儿| 成人高潮视频无遮挡免费网站| 成人欧美大片| 亚洲av电影不卡..在线观看| 日本黄色片子视频| 亚洲欧美日韩高清专用| 亚洲黑人精品在线| 三级男女做爰猛烈吃奶摸视频| 黄色成人免费大全| 国产亚洲精品一区二区www| 啦啦啦观看免费观看视频高清| 国产精华一区二区三区| 国产成人影院久久av| 亚洲精华国产精华精| 亚洲,欧美精品.| 国产av不卡久久| 久久这里只有精品中国| 亚洲成人精品中文字幕电影| 精品久久久久久,| 久久婷婷人人爽人人干人人爱| 精华霜和精华液先用哪个| 国产91精品成人一区二区三区| 99在线人妻在线中文字幕| 综合色av麻豆| 一级毛片高清免费大全| 国产人伦9x9x在线观看| 夜夜夜夜夜久久久久| 亚洲成人久久性| 亚洲成av人片在线播放无| 精品99又大又爽又粗少妇毛片 | 亚洲国产日韩欧美精品在线观看 | 国产精品日韩av在线免费观看| 亚洲成人精品中文字幕电影| 又粗又爽又猛毛片免费看| 亚洲真实伦在线观看| 精品一区二区三区视频在线观看免费| 少妇的逼水好多| 亚洲人成伊人成综合网2020| 亚洲五月天丁香| 精品一区二区三区视频在线 | 男女午夜视频在线观看| 一二三四社区在线视频社区8| av国产免费在线观看| 国产男靠女视频免费网站| 欧美日韩国产亚洲二区| 国内精品一区二区在线观看| 亚洲国产精品合色在线| 亚洲人成网站在线播放欧美日韩| 一二三四在线观看免费中文在| 国产高清视频在线播放一区| 精品电影一区二区在线| 亚洲国产精品合色在线| 免费看光身美女| 少妇丰满av| 舔av片在线| 99热这里只有精品一区 | 国产一区二区在线观看日韩 | 国产精品 欧美亚洲| 国产精品 欧美亚洲| 国产成人aa在线观看| 老司机午夜福利在线观看视频| 狂野欧美激情性xxxx| 在线看三级毛片| 欧美黑人巨大hd| 久久久国产成人精品二区| 啦啦啦韩国在线观看视频| 亚洲va日本ⅴa欧美va伊人久久| 两个人的视频大全免费| 中文字幕人妻丝袜一区二区| 香蕉国产在线看| 午夜福利成人在线免费观看| 亚洲国产精品合色在线| 一进一出抽搐gif免费好疼| 五月玫瑰六月丁香| 99国产精品一区二区蜜桃av| 国产淫片久久久久久久久 | 女生性感内裤真人,穿戴方法视频| 午夜福利欧美成人| 少妇人妻一区二区三区视频| 久久这里只有精品中国| 中文字幕人成人乱码亚洲影| 亚洲国产精品成人综合色| 操出白浆在线播放| 女人被狂操c到高潮| 精品福利观看| 亚洲国产精品成人综合色| aaaaa片日本免费| 熟女少妇亚洲综合色aaa.| 人人妻人人看人人澡| 久久精品亚洲精品国产色婷小说| 全区人妻精品视频| 一区福利在线观看| 久久精品人妻少妇| 午夜福利欧美成人| 亚洲九九香蕉| 天天躁日日操中文字幕| 午夜亚洲福利在线播放| 人妻久久中文字幕网| 制服人妻中文乱码| 岛国在线观看网站| 亚洲电影在线观看av| 婷婷精品国产亚洲av在线| 亚洲精品粉嫩美女一区| 一个人免费在线观看的高清视频| 搡老妇女老女人老熟妇| 成人鲁丝片一二三区免费| 又黄又粗又硬又大视频| 日本成人三级电影网站| 91麻豆精品激情在线观看国产| 国产精品精品国产色婷婷| 国产日本99.免费观看| 人妻久久中文字幕网| 亚洲在线观看片| 色综合婷婷激情| 精品国产亚洲在线| 日韩欧美一区二区三区在线观看| 嫩草影院精品99| 老鸭窝网址在线观看| 国内少妇人妻偷人精品xxx网站 | 亚洲精品在线美女| 身体一侧抽搐| 日本精品一区二区三区蜜桃| 香蕉丝袜av| 最近视频中文字幕2019在线8| 精品一区二区三区四区五区乱码| 色视频www国产| 免费看a级黄色片| 人人妻,人人澡人人爽秒播| 综合色av麻豆| 日本一二三区视频观看| 久久午夜综合久久蜜桃| 日韩大尺度精品在线看网址| 一本综合久久免费| 午夜福利欧美成人| 国产一区二区在线av高清观看| 欧美av亚洲av综合av国产av| 69av精品久久久久久| 男人和女人高潮做爰伦理| e午夜精品久久久久久久| 欧洲精品卡2卡3卡4卡5卡区| 国产人伦9x9x在线观看| 小蜜桃在线观看免费完整版高清| 男人舔奶头视频| 亚洲午夜理论影院| 国产成人精品久久二区二区免费| 国内久久婷婷六月综合欲色啪| 真实男女啪啪啪动态图| 国产精品亚洲一级av第二区| 97碰自拍视频| 国产伦人伦偷精品视频| 麻豆成人午夜福利视频| 免费在线观看成人毛片| 国产精品亚洲美女久久久| 欧美+亚洲+日韩+国产| 国产一区二区在线观看日韩 | 真人一进一出gif抽搐免费| 法律面前人人平等表现在哪些方面| 国产熟女xx| 在线观看一区二区三区| 国产亚洲欧美在线一区二区| 亚洲精华国产精华精| 又黄又粗又硬又大视频| 精品乱码久久久久久99久播| 久久午夜综合久久蜜桃| 精品电影一区二区在线| 免费观看的影片在线观看| 亚洲国产精品合色在线| 亚洲国产欧美人成| 成人欧美大片| 国产精品久久久久久精品电影| 人妻久久中文字幕网| 老汉色∧v一级毛片| 国产亚洲av嫩草精品影院| 久久久久免费精品人妻一区二区| 天天添夜夜摸| 夜夜躁狠狠躁天天躁| 亚洲av免费在线观看| 午夜激情福利司机影院| 三级男女做爰猛烈吃奶摸视频| 性色av乱码一区二区三区2| 精品久久久久久久久久久久久| av国产免费在线观看| 中亚洲国语对白在线视频| 免费看日本二区| 国产视频一区二区在线看| 免费搜索国产男女视频| 日韩精品中文字幕看吧| 露出奶头的视频| 看黄色毛片网站| 色综合亚洲欧美另类图片| 日韩欧美在线二视频| 一个人看的www免费观看视频| av视频在线观看入口| 国产 一区 欧美 日韩| 亚洲美女视频黄频| 麻豆国产av国片精品| 日本黄大片高清| 青草久久国产| 国产乱人伦免费视频| 亚洲七黄色美女视频| 中文字幕久久专区| 久久久久久国产a免费观看| 99久国产av精品| 欧美一区二区精品小视频在线| 国产人伦9x9x在线观看| 亚洲精品在线美女| 国产爱豆传媒在线观看| 99热只有精品国产| 成年免费大片在线观看| 国产精品亚洲美女久久久| 日本精品一区二区三区蜜桃| 久久久国产成人免费| 欧美不卡视频在线免费观看| 国产精品香港三级国产av潘金莲| 真人一进一出gif抽搐免费| 久久久久久久久免费视频了| 日日摸夜夜添夜夜添小说| 男人舔奶头视频| 国产三级黄色录像| 桃色一区二区三区在线观看| 一夜夜www| 色综合站精品国产| 亚洲欧美一区二区三区黑人| 欧美一级毛片孕妇| 小蜜桃在线观看免费完整版高清| 成人永久免费在线观看视频| 亚洲av美国av| 精品欧美国产一区二区三| 一个人看视频在线观看www免费 | 亚洲第一电影网av| 午夜免费成人在线视频| www国产在线视频色| 午夜福利在线观看免费完整高清在 | 91在线精品国自产拍蜜月 | 日本成人三级电影网站| 综合色av麻豆| 亚洲avbb在线观看| 日本五十路高清| 成年免费大片在线观看| 国内少妇人妻偷人精品xxx网站 | 天天一区二区日本电影三级| 欧美日韩乱码在线| 国产精品国产高清国产av| 国产精品日韩av在线免费观看| 99热精品在线国产| avwww免费| 亚洲国产中文字幕在线视频| 成人av一区二区三区在线看| 香蕉国产在线看| 12—13女人毛片做爰片一| 麻豆av在线久日| 久久香蕉精品热| or卡值多少钱| 免费看光身美女| 69av精品久久久久久| 91九色精品人成在线观看| 观看美女的网站| 99国产精品99久久久久| 舔av片在线| 99热这里只有是精品50| 精品久久久久久,| 国产黄色小视频在线观看| 午夜精品一区二区三区免费看| 99在线人妻在线中文字幕| 久久久国产成人精品二区| 日韩欧美 国产精品| 国产精品 国内视频| 一个人看视频在线观看www免费 | 99视频精品全部免费 在线 | 1000部很黄的大片| 狂野欧美白嫩少妇大欣赏| 久久人人精品亚洲av| 91麻豆av在线| 丰满的人妻完整版| xxxwww97欧美| 成人三级黄色视频| 色尼玛亚洲综合影院| 久久精品国产清高在天天线| 啦啦啦韩国在线观看视频| 90打野战视频偷拍视频| 国产毛片a区久久久久| 麻豆av在线久日| 国产99白浆流出| 这个男人来自地球电影免费观看| av在线蜜桃| 亚洲无线在线观看| 熟妇人妻久久中文字幕3abv| 欧美在线一区亚洲| 成人永久免费在线观看视频| 亚洲欧美日韩卡通动漫| 中文亚洲av片在线观看爽| 老鸭窝网址在线观看| 不卡一级毛片| 夜夜爽天天搞| h日本视频在线播放| 欧美激情在线99| 成人18禁在线播放| av欧美777| 国产aⅴ精品一区二区三区波| 国产欧美日韩精品亚洲av| 国产 一区 欧美 日韩| 国产亚洲欧美在线一区二区| 亚洲一区二区三区不卡视频| av在线天堂中文字幕| 色老头精品视频在线观看| 巨乳人妻的诱惑在线观看| 亚洲人成伊人成综合网2020| 欧美绝顶高潮抽搐喷水| АⅤ资源中文在线天堂| 午夜福利成人在线免费观看| 精品人妻1区二区| 俄罗斯特黄特色一大片| 久久午夜综合久久蜜桃| 成人av一区二区三区在线看| 久久久国产精品麻豆| 91老司机精品| 国产伦一二天堂av在线观看| 美女午夜性视频免费| 三级毛片av免费| 亚洲欧美精品综合一区二区三区| 我要搜黄色片| 国产高清三级在线| 18禁黄网站禁片免费观看直播| 俺也久久电影网| 网址你懂的国产日韩在线| 97超视频在线观看视频| 亚洲国产中文字幕在线视频| 亚洲成人免费电影在线观看| 一个人观看的视频www高清免费观看 | aaaaa片日本免费| 特级一级黄色大片| 国产成人影院久久av| 国产乱人视频| 99精品久久久久人妻精品| 女人高潮潮喷娇喘18禁视频| 国产成人精品久久二区二区91| 女同久久另类99精品国产91| 亚洲 欧美 日韩 在线 免费| 动漫黄色视频在线观看| 两个人视频免费观看高清| 免费一级毛片在线播放高清视频| 天堂√8在线中文| 国产成人啪精品午夜网站| 女人高潮潮喷娇喘18禁视频| а√天堂www在线а√下载| 日日夜夜操网爽| 国产伦精品一区二区三区视频9 | 免费在线观看影片大全网站| 性色avwww在线观看| 夜夜躁狠狠躁天天躁| 五月玫瑰六月丁香| 久久热在线av| 国产爱豆传媒在线观看| 久99久视频精品免费| 午夜福利在线观看免费完整高清在 | 天堂网av新在线| 亚洲九九香蕉| 九九在线视频观看精品| 一本久久中文字幕| 无遮挡黄片免费观看| 99热6这里只有精品| 国产主播在线观看一区二区| 看片在线看免费视频| 午夜福利免费观看在线| 欧美日韩综合久久久久久 | 88av欧美| 熟女少妇亚洲综合色aaa.| 麻豆国产97在线/欧美| 熟妇人妻久久中文字幕3abv| 亚洲欧美日韩卡通动漫| ponron亚洲| 亚洲精品中文字幕一二三四区| 我的老师免费观看完整版| 人妻久久中文字幕网| 久久亚洲精品不卡| 午夜日韩欧美国产| 亚洲精华国产精华精| 久久香蕉精品热| 成人鲁丝片一二三区免费| 亚洲 国产 在线| 97超级碰碰碰精品色视频在线观看| 色综合亚洲欧美另类图片| 亚洲人成伊人成综合网2020| 国产精品,欧美在线| 韩国av一区二区三区四区| 美女高潮喷水抽搐中文字幕| 午夜精品一区二区三区免费看| 精品福利观看| 男女做爰动态图高潮gif福利片| 欧美色欧美亚洲另类二区| 午夜影院日韩av| 一进一出抽搐动态| 日韩人妻高清精品专区| 男人的好看免费观看在线视频| 动漫黄色视频在线观看| www.www免费av| 一区二区三区激情视频| 亚洲aⅴ乱码一区二区在线播放| 精品福利观看| 51午夜福利影视在线观看| 日韩精品中文字幕看吧| 丰满人妻一区二区三区视频av | 熟女电影av网|