• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Sparse Optimization Approach for Beyond 5G mmWave Massive MIMO Networks

    2022-08-24 06:59:42WaleedShahjehanAbidUllahSyedWaqarShahImranKhanNorSamsiahSaniandKiIlKim
    Computers Materials&Continua 2022年8期

    Waleed Shahjehan,Abid Ullah,Syed Waqar Shah,Imran Khan,Nor Samsiah Sani and Ki-Il Kim

    1Department of Electrical Engineering,University of Engineering and Technology Peshawar,Pakistan

    2Center for Artificial Intelligence Technology,Faculty of Information Science&Technology,Universiti Kebangsaan,Kajang,43000,Malaysia

    3Department of Computer Science and Engineering,Chungnam National University,Daejeon,34134,Korea

    Abstract: Millimeter-Wave (mmWave) Massive MIMO is one of the most effective technology for the fifth-generation (5G) wireless networks.It improves both the spectral and energy efficiency by utilizing the 30-300 GHz millimeter-wave bandwidth and a large number of antennas at the base station.However,increasing the number of antennas requires a large number of radio frequency(RF)chains which results in high power consumption.In order to reduce the RF chain’s energy,cost and provide desirable quality-ofservice(QoS)to the subscribers,this paper proposes an energy-efficient hybrid precoding algorithm for mmWave massive MIMO networks based on the idea of RF chains selection.The sparse digital precoding problem is generated by utilizing the analog precoding codebook.Then,it is jointly solved through iterative fractional programming and successive convex optimization (SCA)techniques.Simulation results show that the proposed scheme outperforms the existing schemes and effectively improves the system performance under different operating conditions.

    Keywords: 5G;mmwave precoding;massive mimo;complexity

    1 Introduction

    The fifth generation of mobile communications (5G) intends to use millimeter-wave frequency bands to provide higher system capacity for users in hot spots [1].Millimeter-wave is considered as one of the key technologies to solve the capacity demand in the fifth-generation (5G) mobile communication system due to its large number of unused frequency bands[2].The millimeter-wave has a shorter wavelength,so the base station can configure more antennas with a smaller physical array size[3].In the traditional pure digital baseband precoding scheme,each antenna has a corresponding baseband and radio frequency (RF) link structure [4].These RF links are not only costly but also consume large power and it is impractical.Compared with the microwave band,the aperture of antenna elements in the millimeter-wave band is usually smaller,and a large number of antenna elements can be integrated at the transmitting end of the millimeter-wave system,thereby using multiple-input multiple-output(MIMO)technology to improve antenna gain through beamforming;at the same time,can solve the problem of high path loss and attenuation in the millimeter-wave band,it also precode multiple data streams for multiple users,improving the spectral efficiency of the system [5-8].Generally,microwave band communication systems are precoded at the baseband by digital signal processing(DSP)units.However,due to the hardware cost and power constraints in a millimeter-wave system,the system cannot configure an RF link for each antenna,so it is difficult to achieve pure digital precoding[9,10].In order to achieve spatial multiplexing,a hybrid precoding algorithm using fewer RF chains has become a cost-saving and power-saving alternative to millimeterwave MIMO systems[11].In this hybrid structure,analog precoding is used to provide beamforming gain,and digital precoding is used to provide multiplexing gain.In order to solve the above problems,academia proposes to adopt a hybrid digital/analog precoding structure in a millimeter-wave MIMO system[8].Hybrid digital/analog precoding at the transmitting end maps the data stream to baseband digital precoding processing and maps it to each RF link.Then,a constant mode phase shifter adjusts the phase of the signal on each RF link to complete the analog precoding.In this structure,the number of RF links is much smaller than the number of antennas,thereby reducing the hardware requirements of the communication system without causing a significant loss to the system performance[9,10].

    In recent years,due to energy shortages and the effects of the greenhouse effect,the energy consumption of communication systems has also received widespread attention.Energy efficiency as a performance indicator weighing system capacity and system energy consumption has become one of the hotspots in future wireless communication research[5].At present,there is a large amount of literature that has extensively studied the energy efficiency optimization problem in mmWave MIMO systems.For example,the authors in [12]proposed a beamforming scheme with optimal energy efficiency in a multi-user MISO scenario.The reference[13]design an iterative algorithm to optimize energy efficiency under the interfered with the broadcasting channel.

    However,the proposed new hybrid precoding structure under the mmWave communication system brings more new difficulties to the energy efficiency optimization problem:

    1)The constant mode limit of the analog precoder brings non-convex limits to the original target problem;

    2) The number of RF links has a great impact on the energy efficiency of the system [14],but because its value is directly related to the dimensions of the analog precoding matrix and the digital precoding matrix,therefore,it is difficult to obtain its optimal solution through numerical analysis.

    Although there are currently limited literature focusing on energy efficiency optimization problems in mmWave hybrid precoding systems,for example,in [15],given the number of RF links,the energy efficiency optimization problem of mmWave hybrid precoding is transformed into a Euclidean solution.For the problem with the smallest distance,use the orthogonal matching pursuit (OMP)algorithm to obtain the approximate optimal value of the original problem.Reference[16]also uses the OMP method to obtain the optimal value of system energy efficiency after traversing each possible number of RF links.However,the above literature ignores the difficulty 2),and the preset number of RF links is used,which increases the difficulty of solving.Doing so,on the one hand,ignores the impact of the number of RF links on the energy efficiency of the system;on the other hand,when there are a large number of antennas,exhaustively searching for each possible number of RF links will be very time-consuming.

    Based on the above research status,this paper proposes an energy efficiency optimization scheme based on RF link selection in a multi-user mmWave MIMO system.Because the original problem is difficult to solve directly,first a preset analog precoding codebook is introduced to convert the problem equivalently to solving sparse digital precoding [17,18],while the analog precoding is anNRFselected from the codebook codeword,whereNRFis the optimal number of RF links.Then,since the transformed problem is still a non-convex non-linear problem,we use sequential convex approximation(SCA)theory and Dinkelbach’s theory to turn the problem into a convex problem and solve iteratively.Simulation results show that the performance of the proposed algorithm is very close to the performance of the exhaustive method,and is much higher than the performance of the equal gain transmission(EGT)[19]and other existing algorithms.

    The rest of the paper is organized as follows.In Section 2,the system model is described.In Section 3,the proposed algorithms and their principle are analyzed.Section 4 provides the simulation results,while Section 6 concludes the paper.

    2 System Model

    2.1 Channel Model

    Consider the mmWave single-cell downlink scenario,as shown in Fig.1.The system consists ofKsingle-antenna users and a base station withNtantennas.The number of RF links at the base station isNRF,and its value range is [K,Nt].The base station uses a fully connected hybrid digital/analog precoding structure,including aNRF×Kbaseband digital precoderWBBand anNt×NRFanalog precoderWRFcomposed of a constant-mode phase shifter.

    Figure 1:System model

    The signal received by thekth user can be expressed as

    whereNrayis the number of multipath from the base station toKusers;ρk=ξ/rκkis a large-scale attenuation factor;ξis a random number that obeys the normal distribution,with a mean value of 0 and a variance of 9.7 dB[20];rkis the distance between the base station and thekth user;κis the path loss index;αkiis the complex gain of theith transmission path from the base station to thekth user;φiandθiare the azimuth and elevation angles of the antenna,respectively,and obey the uniform distribution in the rangeu(φi,θi)represents the transmitting antenna array response vector,which is expressed as

    whereλis the signal wavelength anddis the separation between the antenna elements which is half the wavelength.pandqare the indexes of the antenna in the 2D plane.This article uses a square array,so there are

    2.2 Energy Consumption Model

    Because the base station accounts for the main power consumption in mobile communication systems,this article does not consider the user’s power consumption.The total power consumption of a base station usually includes signal transmission power consumption and circuit power consumption,so the general power consumption model of a mmWave communication system[8]is

    where the coefficientε<1 of the power amplifier is a constant;Ptis the transmission power consumption and hasFor the sake of convenience,all power consumption unrelated to the transmission power consumptionPtis represented as the circuit power consumption,which includes the dynamic circuit power consumptionNRFPRFcaused by the radio frequency link,and the basic power at the base station end which is independent of the number of antennas and radio frequency links consumePc.PRFrefers to the power consumption of RF devices,including the sum of all power consumption of the transmit filter,mixer,frequency synthesizer,and A/D and D/A converters.

    3 Proposed Hybrid Precoding Algorithm

    3.1 Problem Formulation

    The energy efficiency optimization problem under the above millimeter-wave system model can be modeled as follows

    wherePmaxis the maximum transmit power;Rkis the rate of thekth user,which can be expressed as

    3.2 Problem Model Transformation

    In order to maximize the energy efficiency of the system,three variables in Eq.(5) need to be optimized simultaneously:WRF,WBB,andNRF.Since the size ofWRFandWBBis directly related toNRF,and the target problem is non-convex and nonlinear,Eq.(5)becomes very complicated and difficult to solve directly.Although the reference[16]searched the energy efficiency of the system under each possibleNRFby the exhaustive method to obtain the optimal value,when the number of antennas is large,this reference[16]algorithm takes too much time and the complexity is too high.In order to avoid exhaustive search and make the problem solvable,the original problem will be further transformed to make the original ternary coupled variable optimization problem into a sparse digital precoding optimization problem that contains only one variable.Consider that the analog precoding matrixWRFis composed ofNRFcodewords selected from a preset codebook.Here,the codebook is represented by the symbolWRF,and the modulus values of all elements in the codebook are constantAnNt×Nt-sized discrete Fourier transform (DFT) matrix [21]is used to represent the codebook.The reason for this is

    1.Each column vector in the DFT matrix is irrelevant;

    2.The column vectors in the DFT matrix can be combined linearly to synthesize the array response vectors in any direction in space.TheNt×NtDFT matrix can be expressed as

    Each column represents a codeword in the codebookWRF.Therefore,the design of analog precoding can be seen as selecting the appropriate codeword from the codebookWRF.Let=WRFQbe the sparse form ofWRF,which means that the matrix after selectingNRFcodewords from the codebookWRFand filling them withNt-NRFall-zero column vectors have a size ofNt×Nt.Qis a diagonal matrix,and the element on the diagonal is a binary 0-1 variable.When the element on the diagonal is 1,it indicates that the column vector in the codebook corresponding to the subscript is selected.Letbe aNt×Kmatrix,which containsNt-NRFall-zero rows and all elements ofWBBis a sparse representation of,and satisfiesall-zero row index corresponding toall-zero column index.In summary,the following equation holds

    whereNRFis equal to the number of non-zero rows in.

    Using Eq.(8),Eq.(5)can be equivalently transformed into

    The total power consumption of the system is thatPcandis thekth column vector of,and=hkWRF,?k,which is the equivalent channel of thekth user.

    Through the above conversion,Eq.(9)contains only one unknown variable,that is,a sparse digital precoding matrix.The original problem can be seen as a process of sparse digital precoding matrix and codeword selection.Each codeword in the codebookWRFcan be regarded as a virtual transmitting antenna,and the virtual channel to thekth user is.When theith row ofis all zero,it indicates that theith codeword ofWRFis not selected.

    3.3 Algorithm Design

    The problem in Eq.(9)is a classic fractional programming problem.Using Dinkelbach’s theory[22,23],the fractional programming problem is transformed into an equivalent linear programming problem by introducing the parameter η,so as to optimize the single precoding matrix which can be obtained by solvingJ(η)=0,whereJ(η)is expressed as

    The meaning of the equivalence relationship is that if an optimal value ηoptcan be found,so thatJ(η)=0 holds,then its corresponding optimal solutionis the optimal solution to the optimization problem (9).This paper uses the classic binary search method to solveJ(η)=0 [22].It can be seen that the key step in solving the optimization problem in this paper is still to solve the corresponding optimal solutionunder a given η.Therefore,the following section will discuss the solution method of the given η subproblem.

    First,since the DFT matrix is a unitary matrix,there isAccording to this equation,the total power consumption can be written asand the second constraint in Eq.(9)is also transformed into

    Next,introduce a few auxiliary variables,and combine the constraints in Eqs.(10)and(9)and get maxτ

    Obviously,all constraints in Eq.(11) are optimal when they take the equal sign,so Eq.(11) is the equivalent transformation form of sub-problems.The difficulty in solving the problem (11) lies in its existence of non-convex constraintsand zero normFor non-convex constraints,uses the order convex approximation[24]to approximate it.Reference[24]showed thatcan be replaced by its convex upper bound and the parameters in it are updated iteratively during the solution process.Specifically,definefor a fixedφk,φk>0,there isTherefore,can be converted toin each iteration,for a fixedφk,≥G(φk,βk,zk)it is a convex constraint.Second,consider thel0norm ofIntroduce a selection variablexi∈{0,1},which indicates whether theith codeword is selected,1 for selected,and 0 for unselected.Obviously,when theith codeword is not selected,for all users,theith element ofis 0,that is,[[W1]i,[W2]i,...,[WK]i]T∈CK×1is theith row vector of.The above process is transformed into a constraint form,which can be written aswherefiis regarded as the power level corresponding to each codeword.Whenxi,is relaxed into a continuous variable between 0 and 1,the second-order cone constraint ofcan be written asCombining all the above results,the solution of the subproblem (11) with a given η is transformed into a convex problem,and the mathematical description of the problem is shown in Eq.(12)maxτ

    The algorithm solving steps for the entire problem is shown in Algorithm 1.It includes two nested loops.The outer binary search η makesJ(η)=0 and the inner loop solves the optimal energy efficiency value corresponding to Eq.(12)under the condition of fixed η.

    Algorithm 1:Proposed Sparse Digital Precoding Algorithm Initialize:ηmin=0,ηmax=∑K k=1 log2images/BZ_620_990_2357_1021_2403.pngPmax σ2‖‖‖hkimages/BZ_620_1284_2357_1315_2403.png‖‖‖2+1/KPc 1:While|F(η)|≤gap,repeat steps 3~8.2:η=0.5×(ηmax+ηmin)3:Initialize n=0,φ(n)k.4:Solve the convex problem(12)with φ(n)k.()5:Determine the optimal value(βk,zk),and record it as β*kk,z*k.(Continued)

    Algorithm 1:Continued()6:Update β*kk,z*k withimages/BZ_621_941_499_960_545.pngβ(n+1)k ,z(n+1)kimages/BZ_621_1416_469_1454_515.pngimages/BZ_621_1159_499_1178_545.png,let φ(n+1)k=β(n+1)k z(n+1)k ,n=n+1.7:Repeat steps 5~6 until convergence.8:If|F(η)|≤0,ηmax=η;otherwise ηmin=η.9:End While

    In Eq.(12),sincexiis relaxed into a continuous variable on [0,1],a simple matching principle is adopted:forxi>1-ξ,letxi=1;otherwise,letxi=0.Hereξis a very small number.The simulation results in the next section show that the impact of this matching algorithm on performance is almost negligible because of most of thexiobtained from the solution are very close to 1 or 0.Through the matchedxi,the selected codewords in the codebook can be found,thereby forming an analog precoding matrixWRF.Use=hkWRFandto replace the new Eq.(12),repeat the steps in Algorithm 1 again,and solve the digital precoding matrixWBBto obtain the optimal value of system energy efficiency.

    3.4 Complexity Analysis

    The complexity of the proposed algorithm is compared with reference[25]and conventional OMP algorithm[7]in Tab.1.As can be seen from Tab.1,the proposed algorithm has a lower computational complexity than the competing alternative which means that the proposed algorithm is easy to implement with simple hardware and less signal processing requirement.

    Table 1:Computational complexity comparison

    4 Simulation Results and Analysis

    This section verify the simulation performance of the above algorithm.Some parameters[8-16]used in the simulation are shown in Tab.2.The number of users isK=4,the number of transmitting antennas isNt=64 and the maximum transmission power isPmax=30 dBm.

    Fig.2 compares the spectral efficiency of the proposed algorithm with optimal digital,reference[25]and conventional OMP algorithm[7]under different antenna configurations and SNR levels.In Fig.2a,the system configuration ofNRF=4,Nt=64,Nr=16 is used to evaluate the achievable spectral efficiency of the algorithms under different SNR values.As can be seen from Fig.2a,the spectral efficiencies of all algorithms increase with increasing SNR.It is also clear from the results that the spectral efficiency of the proposed algorithm is better than reference [25]and conventional OMP algorithm [7].The proposed algorithm also gives closed performance with the fully digital precoding which verifies it effectiveness.On the other hand,the spectral efficiency of the conventional OMP algorithm [7]is lower than the other algorithms and the rate gap increases with increasing SNR,which makes OMP scheme worst in high SNR channel conditions.In Fig.2b,the system configuration ofNRF=4,Nt=256,Nr=16 is used to evaluate the performance of the proposed and existing algorithms.It can be seen from Fig.2b that;the proposed algorithm gives better spectral efficiency as compared with reference [25]and conventional OMP algorithm [7]and it also shows closed performance with the optimal digital precoding scheme.It is worth notable that with increasing the number of transmitter antennasNt,the rate gap between the proposed algorithm and reference[25]and conventional OMP algorithm[7]gets larger whereas,the spectral efficiency of the proposed algorithm reaches that of the optimal digital precoding algorithm.Fig.2c compare the spectral efficiency performance with system configuration ofNRF=4,Nt=1024,Nr=16.It can be seen from Fig.2c that the spectral efficiency of the proposed algorithm is better than the reference [25]and conventional OMP algorithm[7].The rate gap of the OMP algorithm[7]gets much larger as in contrast to Figs.2a and 2b respectively.

    Table 2:Simulation parameters

    Fig.3 compares the NMSE of the proposed algorithm with fully digital,reference [25]and conventional OMP[7]algorithm under various SNR values.As can be seen from Fig.3,the NMSE of all algorithms decreases with increasing SNR.It is also clear from the results that the NMSE of the proposed algorithm is much better than reference[25]and conventional OMP[7]algorithms and gets improved with increasing SNR.This means that the channel quality and quality of service(QoS)to the subscribers is better using the proposed algorithm,and has reliable data transmission.Moreover,the proposed algorithm closely perform with the fully-digital precoding,which also validates the effectiveness of the proposed algorithm.

    To elaborate the effectiveness of the proposed algorithms in terms of hardware energy consumption(energy efficiency),Fig.4 compares the energy efficiency of algorithms under increasing number of RF chains.As can be seen from Fig.4,the energy efficiency of all algorithms increases when the number of RF chains range is from 1 to 10.However,when the number of RF chains increases above 10,the energy efficiency of all algorithms starts declining.It can also be seen from the results that the energy efficiency of the proposed algorithm is much better than that of reference [25]and conventional OMP[7]algorithm for each number of RF chains,which makes it more effective from practical implementation perspective which will require less amount of energy per hardware module.

    Figure 2:Comparison of the spectral efficiency of the algorithms under different SNR values.(a)NRF=4,Nt=64,Nr=16;(b)NRF=4,Nt=256,Nr=16;(c)NRF=4,Nt=1024,Nr=16

    Figure 3:Comparison of the NMSE of the algorithms under different SNR values

    Figure 4:Comparison of the energy efficiency of the algorithms under different number of RF chains

    5 Conclusion

    With the millimeter-wave hybrid precoding structure,the optimization of system energy efficiency and the number of RF links is very challenging.This paper proposes an energy-efficient hybrid precoding algorithm based on RF link selection.First,using the preset analog precoding codebook,the original problem is equivalently converted into a sparse digital precoding optimization problem,so that the three coupling variables of the original problem are converted into one unknown variable.Then an iterative solution algorithm was designed using Dinkelbach’s theory combined with sequential convex approximation.The results show that the algorithm proposed in this paper can optimize the number of RF links and effectively improve the energy efficiency of the system while avoiding exhaustive search.The results are very close to the performance obtained by the fully digital method and significantly higher than other commonly used algorithms,such as reference[25]and conventional OMP [7].This work can further be improved by considering the hardware impairment and lowresolution ADC issues and evaluation in different deployment scenarios.

    Acknowledgement:This study was supported by the Institute for Information &Communications Technology Planning&Evaluation(IITP)grant funded by the Korean government(MSIT)(No.2019-0-01343,Training Key Talents in Industrial Convergence Security).

    Funding Statement:This publication was supported by the Ministry of Education,Malaysia (Grant code:FRGS/1/2018/ICT02/UKM/02/6).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲国产精品专区欧美| 视频区图区小说| 制服丝袜香蕉在线| 永久网站在线| 免费av不卡在线播放| 麻豆久久精品国产亚洲av| 亚洲激情五月婷婷啪啪| 欧美区成人在线视频| 波野结衣二区三区在线| 一级毛片aaaaaa免费看小| 听说在线观看完整版免费高清| 男女下面进入的视频免费午夜| 亚洲成人精品中文字幕电影| 黄片无遮挡物在线观看| 搡女人真爽免费视频火全软件| 一级毛片 在线播放| 一级片'在线观看视频| 91久久精品国产一区二区三区| 一级毛片久久久久久久久女| 亚洲精品久久午夜乱码| 精品久久久精品久久久| 简卡轻食公司| 久热久热在线精品观看| 99热这里只有是精品50| 91狼人影院| 免费看光身美女| 美女脱内裤让男人舔精品视频| 国产女主播在线喷水免费视频网站| 日韩av在线免费看完整版不卡| 亚洲欧美精品自产自拍| 亚洲精品日韩在线中文字幕| av播播在线观看一区| 国产黄色免费在线视频| 18禁裸乳无遮挡动漫免费视频 | 亚洲国产精品成人综合色| 一级毛片我不卡| 久久人人爽人人片av| 国产在线一区二区三区精| 亚洲人成网站在线观看播放| 一个人看视频在线观看www免费| 老司机影院毛片| 91午夜精品亚洲一区二区三区| 黄片wwwwww| 一级片'在线观看视频| 日日摸夜夜添夜夜爱| 极品教师在线视频| .国产精品久久| 久久久久久久久大av| 精品久久久久久久久亚洲| 观看美女的网站| 啦啦啦啦在线视频资源| 亚洲国产精品999| 午夜福利在线在线| 久久6这里有精品| 又爽又黄无遮挡网站| 国产伦在线观看视频一区| 国产亚洲5aaaaa淫片| 噜噜噜噜噜久久久久久91| 欧美zozozo另类| 国产乱来视频区| 午夜免费男女啪啪视频观看| 少妇人妻一区二区三区视频| av国产久精品久网站免费入址| 99久久人妻综合| 亚洲色图av天堂| 最新中文字幕久久久久| 99久久精品国产国产毛片| 九九爱精品视频在线观看| 97超碰精品成人国产| 色视频在线一区二区三区| 亚洲国产欧美人成| 久久97久久精品| 国产老妇伦熟女老妇高清| 午夜爱爱视频在线播放| 男人爽女人下面视频在线观看| 91精品伊人久久大香线蕉| 婷婷色综合大香蕉| 免费av毛片视频| 一级a做视频免费观看| 青春草亚洲视频在线观看| 国产精品秋霞免费鲁丝片| 国产精品久久久久久精品电影| 国产成人精品婷婷| 亚洲精品国产色婷婷电影| 午夜老司机福利剧场| 麻豆精品久久久久久蜜桃| 国产一区有黄有色的免费视频| 在线精品无人区一区二区三 | 欧美日本视频| 一级毛片黄色毛片免费观看视频| 国产精品偷伦视频观看了| 五月玫瑰六月丁香| 91在线精品国自产拍蜜月| 水蜜桃什么品种好| 涩涩av久久男人的天堂| 男的添女的下面高潮视频| 国产一区二区亚洲精品在线观看| 香蕉精品网在线| 99久久九九国产精品国产免费| www.色视频.com| 国语对白做爰xxxⅹ性视频网站| 国产精品麻豆人妻色哟哟久久| 寂寞人妻少妇视频99o| 国产黄a三级三级三级人| 午夜激情福利司机影院| 国产毛片在线视频| 久久久久久久久大av| 日韩亚洲欧美综合| 中文资源天堂在线| 久久精品久久久久久噜噜老黄| 亚洲国产精品成人综合色| 国产日韩欧美亚洲二区| 亚洲精品亚洲一区二区| 国产视频首页在线观看| 一本一本综合久久| 好男人在线观看高清免费视频| 综合色丁香网| 人妻系列 视频| 在线观看免费高清a一片| av专区在线播放| 制服丝袜香蕉在线| 一区二区av电影网| 亚洲国产欧美在线一区| 午夜亚洲福利在线播放| 少妇熟女欧美另类| 亚洲欧美成人精品一区二区| 肉色欧美久久久久久久蜜桃 | 国产成人免费无遮挡视频| 三级国产精品片| 日韩欧美一区视频在线观看 | 精品99又大又爽又粗少妇毛片| 国产午夜精品一二区理论片| 亚洲欧美精品自产自拍| 国产成人免费观看mmmm| 久久久久久久精品精品| 国产 精品1| 久久精品熟女亚洲av麻豆精品| 夜夜看夜夜爽夜夜摸| 草草在线视频免费看| 18禁在线播放成人免费| 男人和女人高潮做爰伦理| 午夜精品一区二区三区免费看| 免费av不卡在线播放| 日日撸夜夜添| 精品久久久精品久久久| 久久精品国产鲁丝片午夜精品| 日韩在线高清观看一区二区三区| 在线观看av片永久免费下载| 欧美国产精品一级二级三级 | 五月伊人婷婷丁香| 精品一区在线观看国产| 国产精品熟女久久久久浪| 中文字幕人妻熟人妻熟丝袜美| 老女人水多毛片| 国产成人freesex在线| 国内少妇人妻偷人精品xxx网站| 久久99热这里只有精品18| 日韩成人av中文字幕在线观看| 最近2019中文字幕mv第一页| 国产成人精品一,二区| 网址你懂的国产日韩在线| 精品人妻视频免费看| 国产亚洲最大av| 亚洲欧美中文字幕日韩二区| 乱码一卡2卡4卡精品| 国产乱来视频区| 欧美潮喷喷水| 久久久久久九九精品二区国产| 色吧在线观看| 啦啦啦中文免费视频观看日本| 天堂俺去俺来也www色官网| 亚洲性久久影院| 亚洲自拍偷在线| 超碰av人人做人人爽久久| 国产精品国产三级国产专区5o| 一级毛片aaaaaa免费看小| 亚洲av日韩在线播放| 日韩大片免费观看网站| av卡一久久| 亚洲美女搞黄在线观看| 成人高潮视频无遮挡免费网站| 亚洲成人精品中文字幕电影| 亚洲av电影在线观看一区二区三区 | 久久久久久久精品精品| 99热这里只有是精品在线观看| 国产又色又爽无遮挡免| 午夜日本视频在线| 亚洲精品国产色婷婷电影| 午夜激情福利司机影院| 亚洲人成网站在线观看播放| 久久久亚洲精品成人影院| 男女边吃奶边做爰视频| 男女啪啪激烈高潮av片| 欧美激情国产日韩精品一区| 婷婷色麻豆天堂久久| 欧美少妇被猛烈插入视频| 日本欧美国产在线视频| 真实男女啪啪啪动态图| 人体艺术视频欧美日本| 天天躁夜夜躁狠狠久久av| 少妇丰满av| 亚洲av一区综合| 欧美xxxx性猛交bbbb| 国产欧美日韩一区二区三区在线 | 夫妻午夜视频| 18禁裸乳无遮挡免费网站照片| av线在线观看网站| 国产探花极品一区二区| 91aial.com中文字幕在线观看| 深爱激情五月婷婷| a级毛色黄片| 男人添女人高潮全过程视频| 一个人看的www免费观看视频| 黄片无遮挡物在线观看| 欧美一区二区亚洲| 美女高潮的动态| 亚洲性久久影院| 自拍偷自拍亚洲精品老妇| 美女xxoo啪啪120秒动态图| 久久人人爽人人片av| 久久亚洲国产成人精品v| 久久久午夜欧美精品| 舔av片在线| 麻豆精品久久久久久蜜桃| 国产伦理片在线播放av一区| 哪个播放器可以免费观看大片| 69av精品久久久久久| 欧美成人午夜免费资源| 人体艺术视频欧美日本| 777米奇影视久久| 91精品国产九色| 亚洲av日韩在线播放| 欧美激情在线99| a级一级毛片免费在线观看| 国产精品秋霞免费鲁丝片| 一级黄片播放器| 国产有黄有色有爽视频| 亚洲aⅴ乱码一区二区在线播放| 80岁老熟妇乱子伦牲交| 亚洲国产欧美在线一区| av在线app专区| 国产精品偷伦视频观看了| 国产精品熟女久久久久浪| 岛国毛片在线播放| 日韩成人av中文字幕在线观看| 联通29元200g的流量卡| 免费电影在线观看免费观看| 九九爱精品视频在线观看| 汤姆久久久久久久影院中文字幕| 人妻少妇偷人精品九色| 欧美日韩综合久久久久久| 久久综合国产亚洲精品| 亚洲av中文字字幕乱码综合| 黑人高潮一二区| 晚上一个人看的免费电影| 22中文网久久字幕| 2021少妇久久久久久久久久久| 国产成人精品福利久久| 日本av手机在线免费观看| 青春草视频在线免费观看| 国内揄拍国产精品人妻在线| 国产精品伦人一区二区| 国产亚洲5aaaaa淫片| 日本欧美国产在线视频| 国产av码专区亚洲av| 免费观看性生交大片5| 波多野结衣巨乳人妻| 各种免费的搞黄视频| 精品99又大又爽又粗少妇毛片| 亚洲精品久久久久久婷婷小说| 99久久精品国产国产毛片| 一个人看视频在线观看www免费| 亚洲精品色激情综合| 国产精品伦人一区二区| 亚洲精品自拍成人| 国内精品宾馆在线| 夫妻性生交免费视频一级片| 日本av手机在线免费观看| 黄色欧美视频在线观看| 少妇被粗大猛烈的视频| 99热6这里只有精品| .国产精品久久| 国产精品女同一区二区软件| 99久久精品一区二区三区| 国产精品秋霞免费鲁丝片| 亚洲精品成人av观看孕妇| 欧美日韩综合久久久久久| 青青草视频在线视频观看| 男人添女人高潮全过程视频| 99久久中文字幕三级久久日本| 国产精品一二三区在线看| 成年女人看的毛片在线观看| 欧美zozozo另类| 亚洲人成网站在线观看播放| 一级毛片 在线播放| 日韩 亚洲 欧美在线| 免费黄频网站在线观看国产| 久久综合国产亚洲精品| 国产精品一二三区在线看| 高清视频免费观看一区二区| 亚洲欧洲国产日韩| 亚洲高清免费不卡视频| 久久久久久久国产电影| av天堂中文字幕网| 久久久久久久国产电影| 国产精品国产av在线观看| 亚洲精品久久久久久婷婷小说| 亚洲精品色激情综合| 国产精品国产三级国产专区5o| 人妻一区二区av| 99热国产这里只有精品6| 大香蕉97超碰在线| 亚洲国产精品999| 国产精品久久久久久精品电影| 亚洲综合精品二区| 极品少妇高潮喷水抽搐| 精品熟女少妇av免费看| 久久久久久久午夜电影| 久久久久国产精品人妻一区二区| 可以在线观看毛片的网站| 国产女主播在线喷水免费视频网站| 男女国产视频网站| 亚洲三级黄色毛片| 又粗又硬又长又爽又黄的视频| 蜜桃久久精品国产亚洲av| 欧美亚洲 丝袜 人妻 在线| 男人和女人高潮做爰伦理| 黄色日韩在线| 亚洲国产精品成人综合色| 尾随美女入室| 国产精品三级大全| 日韩欧美一区视频在线观看 | 国产免费福利视频在线观看| 在线 av 中文字幕| 欧美日韩一区二区视频在线观看视频在线 | 在线免费观看不下载黄p国产| 国内精品美女久久久久久| 一本久久精品| 日本-黄色视频高清免费观看| 久久午夜福利片| 成人免费观看视频高清| 午夜福利视频精品| 亚洲成人av在线免费| 日日摸夜夜添夜夜爱| 成人高潮视频无遮挡免费网站| 午夜免费鲁丝| 国产毛片a区久久久久| 国产高清有码在线观看视频| 国产探花极品一区二区| 丝袜美腿在线中文| 成人亚洲精品一区在线观看 | 精品一区二区三区视频在线| 成人毛片a级毛片在线播放| 国模一区二区三区四区视频| 欧美激情国产日韩精品一区| 国精品久久久久久国模美| 亚洲最大成人中文| 91在线精品国自产拍蜜月| 不卡视频在线观看欧美| 欧美zozozo另类| 国产毛片a区久久久久| av在线播放精品| 看免费成人av毛片| 国产精品久久久久久av不卡| 九九在线视频观看精品| 午夜福利视频1000在线观看| 永久免费av网站大全| av女优亚洲男人天堂| 欧美精品一区二区大全| 最近2019中文字幕mv第一页| 欧美亚洲 丝袜 人妻 在线| 麻豆精品久久久久久蜜桃| 亚洲精品,欧美精品| 天堂俺去俺来也www色官网| 身体一侧抽搐| 日本爱情动作片www.在线观看| 蜜桃亚洲精品一区二区三区| 一级毛片久久久久久久久女| 日韩一区二区三区影片| 国产午夜福利久久久久久| 少妇裸体淫交视频免费看高清| 国产爽快片一区二区三区| 男女啪啪激烈高潮av片| 69人妻影院| 国产精品国产av在线观看| 黑人高潮一二区| 亚洲精品456在线播放app| 自拍偷自拍亚洲精品老妇| 国产老妇伦熟女老妇高清| 欧美日韩综合久久久久久| 综合色丁香网| 国产大屁股一区二区在线视频| 在线a可以看的网站| 国产男人的电影天堂91| 精品人妻一区二区三区麻豆| 国产成年人精品一区二区| 男人添女人高潮全过程视频| 欧美少妇被猛烈插入视频| 亚洲精品一二三| 麻豆国产97在线/欧美| a级一级毛片免费在线观看| 亚洲精品国产色婷婷电影| 尾随美女入室| 一二三四中文在线观看免费高清| 九九在线视频观看精品| 国产精品久久久久久精品电影小说 | 乱系列少妇在线播放| 久久久亚洲精品成人影院| 秋霞在线观看毛片| 五月伊人婷婷丁香| 新久久久久国产一级毛片| 亚洲自偷自拍三级| 午夜免费男女啪啪视频观看| 久久久久久久精品精品| h日本视频在线播放| 一级毛片我不卡| 在线看a的网站| 亚洲人与动物交配视频| 亚洲熟女精品中文字幕| 伊人久久国产一区二区| 国产男人的电影天堂91| 熟女av电影| 午夜免费鲁丝| 成人亚洲欧美一区二区av| 18禁在线无遮挡免费观看视频| 精品国产露脸久久av麻豆| 日韩亚洲欧美综合| 国产亚洲5aaaaa淫片| 国产精品蜜桃在线观看| 最近最新中文字幕免费大全7| 国产精品麻豆人妻色哟哟久久| 亚洲内射少妇av| 欧美老熟妇乱子伦牲交| 色播亚洲综合网| 国产男女超爽视频在线观看| 日本欧美国产在线视频| 国产精品国产三级专区第一集| 亚洲精品456在线播放app| 国产精品av视频在线免费观看| 日日啪夜夜爽| 日韩av免费高清视频| 97超碰精品成人国产| 国产高清有码在线观看视频| 国产成年人精品一区二区| 国产探花在线观看一区二区| 美女xxoo啪啪120秒动态图| 国产成人精品福利久久| 日本一二三区视频观看| 亚洲av中文av极速乱| 国产精品久久久久久精品古装| 亚洲欧美成人综合另类久久久| 国产高清三级在线| 狂野欧美激情性xxxx在线观看| 亚洲欧美日韩东京热| 亚洲国产最新在线播放| 日韩一本色道免费dvd| 欧美丝袜亚洲另类| 免费看a级黄色片| 欧美极品一区二区三区四区| 国产精品国产三级国产av玫瑰| 美女被艹到高潮喷水动态| 国产精品女同一区二区软件| 夫妻性生交免费视频一级片| 人妻少妇偷人精品九色| 亚洲精品成人久久久久久| 又爽又黄a免费视频| 2018国产大陆天天弄谢| 免费观看性生交大片5| 国产老妇女一区| 午夜爱爱视频在线播放| 精华霜和精华液先用哪个| av线在线观看网站| 国产精品三级大全| 看免费成人av毛片| 男人和女人高潮做爰伦理| 国产极品天堂在线| 亚洲图色成人| 高清av免费在线| 亚洲,欧美,日韩| 精品久久久久久久末码| 国产永久视频网站| 午夜精品国产一区二区电影 | 亚洲精品国产av蜜桃| 亚洲精品色激情综合| 成年女人在线观看亚洲视频 | 99re6热这里在线精品视频| 久久韩国三级中文字幕| 欧美区成人在线视频| 国产人妻一区二区三区在| 久久精品综合一区二区三区| 成年女人在线观看亚洲视频 | 国产高清不卡午夜福利| 国产黄色视频一区二区在线观看| 日韩中字成人| 亚洲在线观看片| 一级二级三级毛片免费看| 亚洲经典国产精华液单| 丝袜脚勾引网站| 精华霜和精华液先用哪个| 亚洲人成网站高清观看| 超碰av人人做人人爽久久| 大陆偷拍与自拍| 少妇人妻精品综合一区二区| 成人国产麻豆网| 成人一区二区视频在线观看| 久久精品久久精品一区二区三区| 亚洲欧美精品自产自拍| 婷婷色av中文字幕| 亚洲精品色激情综合| 亚洲性久久影院| 插阴视频在线观看视频| 一区二区三区精品91| 精品人妻一区二区三区麻豆| 噜噜噜噜噜久久久久久91| 日本熟妇午夜| 成年人午夜在线观看视频| 成人黄色视频免费在线看| 亚洲人成网站高清观看| 午夜亚洲福利在线播放| 永久网站在线| 香蕉精品网在线| 中文精品一卡2卡3卡4更新| 日日摸夜夜添夜夜添av毛片| 精品久久久精品久久久| 亚洲精品,欧美精品| 国产大屁股一区二区在线视频| 在线观看国产h片| 最近中文字幕2019免费版| 欧美日韩国产mv在线观看视频 | 秋霞在线观看毛片| 免费观看av网站的网址| av国产久精品久网站免费入址| 最近中文字幕2019免费版| 国产成人a∨麻豆精品| 亚洲国产日韩一区二区| 日韩成人av中文字幕在线观看| 内射极品少妇av片p| 一二三四中文在线观看免费高清| 少妇高潮的动态图| 卡戴珊不雅视频在线播放| 国产高清不卡午夜福利| 18禁裸乳无遮挡免费网站照片| 免费观看av网站的网址| 亚洲欧美中文字幕日韩二区| 三级国产精品欧美在线观看| 简卡轻食公司| 亚洲精品亚洲一区二区| 简卡轻食公司| 欧美精品人与动牲交sv欧美| 少妇人妻精品综合一区二区| 一区二区三区精品91| 18禁动态无遮挡网站| 精品久久久久久电影网| 欧美97在线视频| 色哟哟·www| a级一级毛片免费在线观看| 亚洲国产精品专区欧美| 成年av动漫网址| 欧美bdsm另类| 在线观看人妻少妇| 亚洲av福利一区| 18+在线观看网站| 久久97久久精品| 老司机影院毛片| 午夜福利视频1000在线观看| 美女脱内裤让男人舔精品视频| 18禁裸乳无遮挡免费网站照片| 日本-黄色视频高清免费观看| 在现免费观看毛片| av网站免费在线观看视频| 久久人人爽人人片av| 日韩大片免费观看网站| 国产一区二区三区综合在线观看 | 18禁动态无遮挡网站| 夫妻午夜视频| 欧美区成人在线视频| 成人二区视频| 亚洲内射少妇av| av福利片在线观看| 热re99久久精品国产66热6| 自拍欧美九色日韩亚洲蝌蚪91 | 成人一区二区视频在线观看| 欧美成人a在线观看| 免费看a级黄色片| 日韩视频在线欧美| av卡一久久| 国产黄频视频在线观看| 男女无遮挡免费网站观看| 毛片一级片免费看久久久久| 神马国产精品三级电影在线观看| 国产综合懂色| 亚洲,一卡二卡三卡| 久久精品人妻少妇| 在线观看人妻少妇| 成人漫画全彩无遮挡| 99精国产麻豆久久婷婷| 最近2019中文字幕mv第一页| 中文欧美无线码| 美女被艹到高潮喷水动态| 丰满少妇做爰视频| 两个人的视频大全免费| 精品99又大又爽又粗少妇毛片| 亚洲av免费在线观看| 成人高潮视频无遮挡免费网站| 午夜激情福利司机影院| 亚洲精品色激情综合| 成人免费观看视频高清| 成年免费大片在线观看| 日韩av免费高清视频| 99精国产麻豆久久婷婷| 如何舔出高潮| 久久久精品欧美日韩精品| 人妻夜夜爽99麻豆av| 又爽又黄a免费视频| 国产高清有码在线观看视频|