• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Post-Processing Algorithm for Boosting Contrast of MRI Images

    2022-08-24 06:59:34PriestlyShanJebaShineySharzeelSaleemRajinikanthAtefZaguiaandDilbagSingh
    Computers Materials&Continua 2022年8期

    B.Priestly Shan,O.Jeba Shiney,Sharzeel Saleem,V.Rajinikanth,Atef Zaguia and Dilbag Singh

    1Department of Electronics&Communication Engineering,Chandigarh University,Mohali,140413,India

    2Department of Electrical,Electronics&Communication Engineering,Galgotias University,Greater Noida,201310,India

    3Department of Electronics and Instrumentation Engineering,St.Joseph’s College of Engineering,Chennai,600119,Tamil Nadu,India

    4Department of Computer Science,College of Computers and Information Technology,Taif University,Taif,21944,Saudi Arabia

    5School of Electrical Engineering and Computer Science,Gwangju Institute of Science and Technology,Gwangju,61005,Korea

    Abstract: Low contrast of Magnetic Resonance(MR)images limits the visibility of subtle structures and adversely affects the outcome of both subjective and automated diagnosis.State-of-the-art contrast boosting techniques intolerably alter inherent features of MR images.Drastic changes in brightness features,induced by post-processing are not appreciated in medical imaging as the grey level values have certain diagnostic meanings.To overcome these issues this paper proposes an algorithm that enhance the contrast of MR images while preserving the underlying features as well.This method termed as Power-law and Logarithmic Modification-based Histogram Equalization(PLMHE) partitions the histogram of the image into two sub histograms after a power-law transformation and a log compression.After a modification intended for improving the dispersion of the sub-histograms and subsequent normalization,cumulative histograms are computed.Enhanced grey level values are computed from the resultant cumulative histograms.The performance of the PLMHE algorithm is compared with traditional histogram equalization based algorithms and it has been observed from the results that PLMHE can boost the image contrast without causing dynamic range compression,a significant change in mean brightness,and contrast-overshoot.

    Keywords: Contrast enhancement;histogram equalisation;image quality;magnetic resonance imaging;medical image analysis;post-processing

    1 Background&Problem Domain

    Magnetic Resonance Imaging(MRI)is a medical imaging modality used to visualize the internal organs of the human body.The MRI is widely used for the diagnosis of a broad spectrum of diseases like ischemic stroke [1],Autism Spectrum Disorder (ASD) [2],Parkinson’s disease [3],brain tumors[4],Schizophrenia[5],intracranial Tuberculosis[6],pancreatic cancer[7],Osteo Arthritis[8],prostate cancer [9]and Endometriosis [10].Because of hardware limitations,images obtained from low-field MRI scanners are of low resolution,low acutance,and low contrast.The presence of noise is another factor that reduces the quality of MR images.Hence,post-processing algorithms are extensively used in medical imaging to improve the quality of MR images.

    The post-processing algorithms used for improving the quality of MR images include bias correction[11,12],denoising/smoothing filters[13,14],super-resolution techniques[15,16],sharpening schemes[17],and contrast enhancement.The contrast enhancement improves the visibility of subtle changes and fine structures in the MR images.Contrast boosting is helpful to make the interpretation of MR images easier and the diagnosis more accurate.Segmentation of brain structures or anomalies is a usual procedure involved in the automated analysis of MRI.For example,segmentation of the hippocampus is a step involved in the automated diagnosis of Alzheimer’s Disease(AD)from MRI[18].Similarly,accurate segmentation of brain tumors is an important step in MRI-guided automated surgery and radiation treatment planning[19].Contrast boosting is helpful to improve the efficiency of segmentation algorithms.

    2 Related Work

    Among the contrast boosting algorithms,Histogram Equalization(HE)is the one that is widely used on medical images.However,HE has several limitations.HE causes over-enhancement and amplifies noise.It intolerably changes the mean brightness of the image.Several algorithmic modifications of HE meant for incorporating brightness-preserving characteristics are available in the literature.Based on the application,the modifications of HE can be categorized in different ways.Certain modifications of HE are exclusively intended for enhancing color images.The image enhancement algorithm based on the combination of reflectance guided HE and ‘comparametric approximation’proposed by Wu et al.[20]is a typical example of this.Another example is the white balancing algorithm proposed by Kumar et al.[21].Certain other modifications of HE are exclusively meant for enhancing the contextual information rather than the region-wise contrast.The Fuzzy-Contextual Contrast Enhancement(FCCE) scheme proposed by Parihar et al.[22]is an example of this.In the FCCE,the enhanced image is computed from the histogram of fuzzy-based local contrast,rather than the intensity histogram.

    Apart from algorithms for color image enhancement and improving the local contrast(contextual information),techniques suitable for enhancing the global contrast of greyscale images are also available in the literature.The Adaptive Histogram Equalization (AHE) [23],Non-parametric Modified Histogram Equalization(NMHE)[24],Plateau Limit-based Tri-histogram Equalization(PLTE)[25],Triple Clipped Dynamic Histogram Equalization based on Standard Deviation (TCDHE-SD) [26],Clipped and Thresholded Weighted Histogram Equalization (CTWHE) [27]and Contrast Limited Adaptive Histogram Equalization(CLAHE)[28,29]are certain examples suitable for boosting global contrast of greyscale images.

    In the AHE,the normalized histogram is clipped with respect to its mean amplitude,and the cumulative histogram computed from the clipped histogram is normalized to a range 0-1,if the ratio of maximum amplitude and mean amplitude of the normalized histogram is greater than an arbitrary value(suggested as 10).If the ratio of maximum amplitude and mean amplitude of the histogram is less than the arbitrary value,clipping and normalization steps are waived.Following this,the cumulative histogram is subjected to an exponential weighting.In the weighting process,the ratio of the total sum of values in the cumulative histogram and the highest possible intensity value is used as the exponent.

    In NMHE,to avoid amplification of noise,only the pixels which exhibit a relatively higher value of gradient with respect to their neighbors are considered while computing the histogram.The histogram normalized to the range [0 1]is clipped with respect to a threshold value equal to the reciprocal of the maximum possible number of grey levels (256 in a unit8 image).A linear combination of the clipped histogram and a uniform histogram is computed following this.The amplitude of the uniform histogram is equal to the reciprocal of the maximum possible number of grey levels,at all grey levels.In the linear combination,the total sum of the differences between corresponding values in the uniform histogram and the clipped histogram is used as the weight of the clipped histogram.The difference of the total sum of the differences between corresponding values in the uniform histogram and the clipped histogram and one is used as the weight of the uniform histogram,in the linear combination.A cumulative histogram computed from the output histogram of the linear combination and the enhanced image is computed from the cumulative histogram.To compensate the change in mean brightness,the output of the histogram equalization is subjected to a gamma transformation.The ratio of the log of the normalized value of the mean brightness of the input image and the log of the normalized value of the mean brightness of the output of histogram equalization is used as the value of gamma.

    In PLTE,the histogram is clipped with respect to the average of mean and median f amplitude values in it.The clipped histogram is partitioned into three sub-histograms with respect to two threshold values.The first threshold is the sum of the minimum intensity of the input image and the standard deviation of the pixel intensities in it.The second threshold is the difference between the highest intensity of the input image and the standard deviation of the pixel intensities in it.Each sub-histogram is equalized individually.

    In the TCDHE-SD,the histogram is partitioned into three sub-histograms with respect to two threshold values.The first threshold is the difference between the mean intensity of the input image and the product of 0.43 and the standard deviation of the pixel intensities in it.The second threshold is the sum of the mean intensity of the input image and the product of 0.43 and the standard deviation of the pixel intensities in it.Each sub-histogram is clipped.The clip-limit used for the first sub-histogram is the product of the sum of values in the first sub-histogram and the reciprocal of the difference between the first threshold and minimum intensity of the input image.The clip-limit used for the second subhistogram is the product of the sum of values in the second sub-histogram and the reciprocal of the difference between the second threshold and first threshold.The clip-limit used for the third subhistogram is the product of the sum of values in the third sub-histogram and the reciprocal of the difference between the second threshold and maximum intensity of the input image.A cumulative histogram is computed from each clipped sub-histogram after normalizing with the total sum of values in it.Enhanced grey level values are computed from the cumulative histograms.

    In CTWHE,the histogram is clipped first with respect to an arbitrary clip-limit.The histogram amplitudes below another arbitrarily chosen threshold value are made 0.The clipped and thresholded histogram is subjected to a Power-Law Transformation.The cumulative histogram is computed from the weighted histogram.Enhanced grey levels are computed from the cumulative histogram.

    In the CLAHE,the input image is first partitioned into non-overlapping blocks.The histograms of the individual blocks are clipped against a user-defined clip-limit.The remaining pixels resulting from the clipping process are filled back to the histogram bins.The cumulative histogram is computed after the refilling process.The cumulative histogram is subjected to a modification based on a user-defined histogram specification.Three types of histogram specifications are mostly used in CLAHE.These specifications are uniform,exponential,Rayleigh.The block-wise enhancement procedure followed in CLAHE results in artificial edges among the blocks.To reduce the impact of this drawback pixel values at the boundary of the blocks are calculated with the help of a bilinear interpolation algorithm.

    3 Limitations of Existing Techniques&Motivation

    In the reflectance-guided HE,estimation of the reflectance component is based on the Retinex theory.Retinex theory is applicable for image formation in a digital camera and it does not account for the image reconstruction process in MRI.In the white balancing algorithm,information from all color channels is used simultaneously.Hence,white balancing is not suitable for greyscale images like MRI.Methods like FCCE can make the image sharper.FCCE does not increase the grey level contrast between objects and regions lying spatially apart.

    They pushed her here, and threw her wretched clothes there, and gave her to eat only what they left, and they were as unkind to her as ever they could be

    The AHE,NMHE,PLTE,TCDHE-SD,and CTWHE do not have brightness-preserving characteristics.The NMHE,PLTE,TCDHE-SD and CTWHE compress the dynamic range of the image.The output images produced by any ideal contrast boosting technique should occupy the full dynamic range.Drastic changes in brightness features,induced by post-processing are not appreciated in medical imaging as the grey level values have certain diagnostic meanings.CLAHE has some other serious limitations also.The bilinear interpolation used to compute the grey levels along the borders of the blocks does not suppress the inter-block edges caused by the block-wise equalization.The quality of the enhanced images obtained from CLAHE heavily depends on the choice of multiple userdefined parameters such as clip-limit,size of the tile,targeted histogram shape,and model parameters of targeted histogram specification.The process of adjusting many such user-defined parameters simultaneously is very complex.Hence CLAHE is less user-friendly.As a solution to these problems,a post-processing algorithm termed as Power-law and Logarithmic Modification-based Histogram Equalization (PLMHE) that has excellent feature-preserving features,for boosting the contrast of MR images is proposed in this paper.

    4 Power-law and Logarithmic Modification-based Histogram Equalization(PLMHE)

    The first step in the PLMHE is the computation of the histogram of the input image.Let the histogram of the input image‘X’be:

    In Eq.(1),‘Hk’represents the number of occurrences of an arbitrary grey level,‘k’in the input image,‘X’and‘L-1’is the maximum possible grey level value.In an image with bit-depth equal to 8(uint8 image),the maximum possible grey level value is,L-1=28-1=255.

    In the second step,the histogram,‘Hk’is subjected to an adaptive power-law transformation as:

    In Eq.(2),‘α’is normalised value of the mean intensity of the input image,‘X’.The power-law transformation is referred to as‘a(chǎn)daptive’because the exponent,‘γ’is determined adaptively from the normalised value of the mean intensity of the input image.The normalized value of the mean intensity of the input image can be computed alternatively as:

    In Eq.(3),‘R’and ‘C’respectively are the number of rows and number of columns in the input image.From Eqs.(2)and(3),it can be inferred that the range of‘α’is[0 1].This implies,

    From Eqs.(2) and (4),it can be understood that the higher is the normalized value of the mean intensity,the histogram undergoes a higher level of amplification.A log transformation is applied to the histogram obtained after the power-law transformation,to avoid over-enhancement and saturation.The log transformation is,

    In Eq.(5),‘β’,is a user-defined parameter within a range,0 ≤β≤1,which further penalises the histogram for restricting the over-enhancement and saturation.Preservation of mean brightness is a major concern in histogram equalization-based contrast boosting.Hence,for preserving the mean brightness,the principle of bi-histogram equalization[30]is adopted.The histogram obtained after the log transformation‘Qk’is split into two sub-histograms,with respect to an adaptive intensity threshold,‘τ’.The first sub-histogram obtained from the histogram partitioning is,

    The second sub-histogram is,

    In Eqs.(8) and (9),‘σA’and ‘σB’respectively are standard deviations of amplitude values in the sub-histograms‘Ak’and‘Bk’.The notions,‘μA’and ‘μB’respectively denote the mean amplitudes of the sub-histograms‘Ak’and‘Bk’given by,

    The modified sub-histograms,‘Dk’and‘Ek’are normalized as,

    The histogram at various levels of processing described in Eqs.(1) to (11) is shown in Fig.1.Relatively high amplitudes the original histogram (Fig.1a) is amplified to a greater degree by the PLT as apparent in Fig.1b.Readers should note that the multiplier corresponding to the Y-axis in Fig.1b is 105.The nonlinear log transform compresses the histogram amplitudes as seen in Fig.1c.Uniformly adding the respective values of the standard deviation to the sub-histograms,emphasize the low amplitude values and penalizes high amplitude values,upon normalization as evident in Figs.1c-1i.

    Figure 1:(Continued)

    Figure 1:Histogram at various levels of processing (a) Original histogram (b) After power-law transform (c) After log transform (d) First sub-histogram (e) Second sub-histogram (f) First subhistogram after modification (g) Second sub-histogram after modification (h) modified first subhistogram after normalization(h)modified second sub-histogram after normalization

    The enhanced grey level,‘i’corresponding to the original grey level,‘k’is

    In Eq.(12),‘Xmin’and ‘Xmax’respectively are the minimum and maximum values of grey levels present in the input image,‘X’.Each intensity,‘k’in the input image,‘X’is replaced by the corresponding enhanced intensity,‘i’to obtain the contrast-boosted image.

    The steps involved in PLMHE described above are pictorially depicted in Fig.2.The histogram of the input image is subjected to a PLT and a log compression.The resultant histogram is partitioned into two sub-histograms with respect to an intensity threshold.The value of the exponent in the PLT is an exponential function of normalized mean intensity of the input image.The intensity threshold is the product of normalized mean intensity of the input image and the maximum possible number of grey levels.Each sub-histogram is modified by adding the standard deviation of values in it for enhancing the dispersion.After normalizing the modified sub-histograms with the total sum of values in them,cumulative histograms are computed.Enhanced grey level values are computed from the cumulative histograms.

    Figure 2:Schematic of the steps involved in PLMHE

    Algorithm 1:Pseudo-code of PLMHE Step 1:Compute histogram‘Hk’of the input image‘X’Step 2:Compute normalised value of the mean intensity‘α’of the input image,‘X’using Eq.(2)or Eq.(3)Step 3:Compute the value of the exponent,‘γ’using Eq.(2)Step 4:Apply power-law transformation in Eq.(2)on the histogram‘Hk’and obtain‘Pk’Step 5:Initialize the value of the user-defined parameter‘β’within a range,0 ≤β ≤1 Step 6:Apply power-law transformation in Eq.(5)on‘Pk’and obtain‘Qk’Step 7:Compute the value of adaptive intensity threshold,‘τ’from the total number of possible grey levels,‘L’and‘α’such that,τ=Lα Step 8:Split the log-transformed histogram‘Qk’with respect to the adaptive intensity threshold,τ’into two sub-histograms,‘Ak’and‘Bk’Step 9:Compute the mean amplitudes ‘μA’and ‘μB’of the sub-histograms ‘Ak’and ‘Bk’from Eq.(10)Step 10:Compute the standard deviations of amplitude values‘σA’and‘σB’of the sub-histograms‘Ak’and‘Bk’from Eqs.(8)&(9)Step 11:Compute modified sub-histograms,‘Dk’and‘Ek’as Dk= Ak+σA &Ek= Bk+σA from Eqs.(8)and(9)Step 12:Obtain ‘Fk’and ‘Gk’by normalising the modified sub-histograms,‘Dk’and ‘Ek’from Eq.(11)‘(Continued)

    Algorithm 1:Continued Step 13:Compute the enhanced grey level,‘i’corresponding to the original grey level,‘k’from Eq.(12)Step 14:Replace each intensity,‘k’in the input image,‘X’by the corresponding enhanced intensity,‘i’to obtain the contrast-enhanced image.

    5 Test Images&System Requirements

    A data set comprising 100 MR slices are used in this experiment.It is a well-established dataset already used in literature for evaluating the performance of image enhancement algorithms[31-33].Images in the data set are acquired with the help of a 1.5 Tesla 2D MRI scanner manufactured by GE Medical Systems (Model:Signa HDxt),available at Hind Labs,Government Medical College Kottayam,Kerala,India.The Series of acquisitions is MR Spectroscopy.Slice thickness and interslice gap set during the image acquisition are 5 and 1.5 mm,respectively.Images from T1 Fast Spin-Echo Contrast-Enhanced(FS-ECE),T2 Fluid Attenuation Inversion Recovery(FLAIR),Diffusion-Weighted Imaging (DWI),Gradient Recalled Echo (GRE) and 1000b Array Spatial Sensitivity Encoding Technique(ASSET)pulse sequences are used.Proposed and state-of-the-art enhancement algorithms are simulated using Matlab?2020a.The software is installed on a desktop computer operating on Windows 7 with 8 GB RAM.The system runs on an i3-2100 processor with 2 cores and a maximum speed of 3.1 GHz.

    6 Results&Discussions

    In this section,the performance of PLMHE is tested against its alternatives,namely,AHE,NMHE,PLTE,TCDHE-SD,CTWHE and CLAHE,via subjective inspection of their output images and with the help of objective quality metrics like Patch-based Contrast Quality Index (PCQI) [34],Absolute Mean Brightness Error (AMBE) [35],Over-Contrast Measure (OCM) [36]and Dynamic Range(DR).

    6.1 Subjective Evaluation

    Output images of AHE,NMHE,PLTE,TCDHE-SD,CTWHE,CLAHE,and PLMHE on three test images are furnished in Figs.3-5.Output images of AHE (Figs.3b,4b and 5b) and NMHE(Figs.3c,4c,and 5c) are significantly brighter than the input images.Rather than increasing the brightness,the grey level difference between different structures has not improved.However,the increase in brightness is not as severe in NMHE as AHE.Output images of PLTE(Figs.3d,4d and 5d),TCDHE-SD (Figs.3e,4e and 5e),and CTWHE (Figs.3f,4f and 5f),appear to be unnatural.Inherent brightness features of the input images are not maintained during the contrast boosting.Drastically amplified background noise is visible in the output images of CTWHE.Being a local enhancement scheme,CLAHE sharpens the texture instead of improving global contrast among the structures as visible in Figs.3g,4g and 5g.PLMHE ((Figs.3h,4h and 5h)),improves the global contrast among the structures by maintaining inherent brightness features of the input images.The issues of noise amplification observed in TCDHE-SD and textural sharpening noted in CLAHE,are absent in PLMHE.On all 100 test images,the PLMHE is found to be better than AHE,NMHE,PLTE,TCDHE-SD,CTWHE,and CLAHE.

    Figure 3:Output of various contrast boosting schemes(a)Input image 1(b)AHE(c)NMHE(d)PLTE(e)TCDHE-SD(f)CTWHE(g)CLAHE(h)PLMHE

    6.2 Objective Evaluation

    Any ideal contrast boosting algorithm should maximize the image contrast without causing dynamic range compression,a significant change in mean brightness,and over-enhancement/contrastovershoot.These aspects are considered in this paper for objectively evaluating the quality of enhanced images.The first objective measure,Dynamic Range (DR) reflects the dynamic range compression.Ideally,grey levels in an enhanced image should occupy the full dynamic range.The ideal value of DR is 0-255,in a uint8 image.Another quality metric,the Patch-based Contrast Quality Index(PCQI)is used to measure the grey level contrast of enhanced images.Absolute Mean Brightness Error(AMBE)is employed to quantify the shift in mean brightness.Over-Contrast Measure (OCM) indicates the degree of contrast-overshoot.The OCM is a bounded statistic with a range[0 1].The value of PCQI should be as high as possible.The values of the AMBE and OCM are expected to be as low as possible.

    Values of DR of enhanced images from various contrast boosting techniques on three test images are shown in Tab.1.From Tab.1 it is evident that NMHE,PLTE,TCDHE-SD,and CTWHE compress the dynamic range of the image.The issue of dynamic range compression is more severe in PLTE and CTWHE compared to NMHE and TCDHE-SD.AHE,CLAHE,and PLMHE are free from the above issue.Outputs of all three algorithms cover almost the full dynamic range in a relatively better way.

    Values of objective quality metrics shown by various contrast boosting techniques on 100 test images are shown in Tab.2.Very high values of PCQI in Tab.2,exhibited by CLAHE and PLMHE indicate that they can produce output images with very high perceptual contrast.Compared to the AHE,NMHE,PLTE,TCDHE-SD,CTWHE,and CLAHE,PLMHE exhibits the lowest values of AMBE and OCM.The lowest value of AMBE shown by PLMHE reflects its excellent ability to preserve brightness features.The lowest value of OCM shown by PLMHE confirms that it is free from the issue of contrast-overshoot.Even though CLAHE has exhibited high values of PCQI,it shows AMBE and OCM values significantly higher than that of the PLMHE.CLAHE is prone to contrast-overshoot,and it is inferior to PLMHE in terms of brightness-preserving features.

    Figure 5:Output of various contrast boosting schemes(a)Input image 3(b)AHE(c)NMHE(d)PLTE(e)TCDHE-SD(f)CTWHE(g)CLAHE(h)PLMHE

    Table 1:Dynamic Range(DR)of enhanced images

    Table 1:Continued

    Table 2:Values of objective quality metrics shown by various contrast boosting techniques on 100 test images

    7 Conclusion and Future Scope

    A post-processing algorithm termed as Power-law and Logarithmic Modification-based Histogram Equalization(PLMHE)that has excellent feature-preserving features,for boosting the contrast of MR images was proposed in this paper.PLMHE exhibited higher values of PCQI and lower values of AMBE and OCM compared to state-of-the-art contrast boosting algorithms,namely,AHE,NMHE,PLTE,TCDHE-SD,CTWHE,and CLAHE.It was found that outputs images of PLMHE cover the full dynamic range.It has been observed that PLMHE could boost the image contrast without causing dynamic range compression,a significant change in mean brightness,and contrastovershoot.

    The performance of PLMHE was tested in this paper via subjective inspection of the output images and with the help of objective quality metrics like PCQI,AMBE,and OCM.The impact of contrast boosting needs to be further studied on context-specific clinical applications.One constraint encountered during the performance evaluation of PLMHE was lack of a unique objective quality metric that can reflect the overall quality of the enhanced images in terms of perceptual contrast,dynamic range,brightness-preservation,and contrast overshoot.Such a metric can make the performance evaluation of contrast boosting techniques easier and more reliable.The feasibility of PLMHE for hardware implementation needs to be evaluated further on a suitable hardware platform like Field Programmable Gate Array(FPGA).

    Acknowledgement:This work was supported by Taif university Researchers Supporting Project Number(TURSP-2020/114),Taif University,Taif,Saudi Arabia.

    Funding Statement:This work was supported by Taif university Researchers Supporting Project Number(TURSP-2020/114),Taif University,Taif,Saudi Arabia.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    美女黄网站色视频| 又黄又爽又刺激的免费视频.| 久久久久久久久久成人| 三级国产精品欧美在线观看| 国产主播在线观看一区二区| 男女之事视频高清在线观看| 国产69精品久久久久777片| 免费观看精品视频网站| 国产乱人伦免费视频| 91av网一区二区| 亚洲国产欧美人成| 欧美色视频一区免费| 乱码一卡2卡4卡精品| 伦理电影大哥的女人| 少妇人妻一区二区三区视频| 国产精品女同一区二区软件 | 亚洲人与动物交配视频| 精品久久久久久久久久免费视频| 国产视频一区二区在线看| 一级a爱片免费观看的视频| 欧美日韩中文字幕国产精品一区二区三区| 非洲黑人性xxxx精品又粗又长| 一本精品99久久精品77| 黄色日韩在线| 色吧在线观看| 国产淫片久久久久久久久 | 最新中文字幕久久久久| 国产黄色小视频在线观看| 欧美色欧美亚洲另类二区| 99久久精品一区二区三区| 欧美日韩黄片免| 久久中文看片网| 午夜福利在线观看吧| 亚洲男人的天堂狠狠| 免费看光身美女| 亚洲欧美日韩无卡精品| av在线天堂中文字幕| 国产中年淑女户外野战色| 免费人成在线观看视频色| 999久久久精品免费观看国产| 日韩欧美三级三区| 亚洲五月婷婷丁香| 国产在视频线在精品| h日本视频在线播放| 日本与韩国留学比较| 国产精品精品国产色婷婷| 精品无人区乱码1区二区| 国产在线男女| 99国产极品粉嫩在线观看| 女生性感内裤真人,穿戴方法视频| 麻豆成人午夜福利视频| 夜夜躁狠狠躁天天躁| 身体一侧抽搐| a级毛片免费高清观看在线播放| 日韩有码中文字幕| 天堂av国产一区二区熟女人妻| 三级国产精品欧美在线观看| 色综合站精品国产| 日韩 亚洲 欧美在线| 脱女人内裤的视频| 欧美一区二区精品小视频在线| 哪里可以看免费的av片| 青草久久国产| a级一级毛片免费在线观看| 成人av一区二区三区在线看| 久久久久久久午夜电影| 成人性生交大片免费视频hd| 小蜜桃在线观看免费完整版高清| 亚洲精品一区av在线观看| 亚洲av电影在线进入| 国产精品精品国产色婷婷| 午夜激情欧美在线| 日日摸夜夜添夜夜添av毛片 | 国产精品自产拍在线观看55亚洲| 99久久精品国产亚洲精品| 韩国av一区二区三区四区| 日本与韩国留学比较| av在线天堂中文字幕| 色视频www国产| 欧美日韩国产亚洲二区| 亚洲精品成人久久久久久| av视频在线观看入口| 亚洲av电影不卡..在线观看| 国产黄片美女视频| 色综合亚洲欧美另类图片| 桃红色精品国产亚洲av| 怎么达到女性高潮| 一进一出抽搐gif免费好疼| 国产成人福利小说| 51国产日韩欧美| 午夜视频国产福利| 国产精品久久久久久亚洲av鲁大| 一个人免费在线观看的高清视频| 久久草成人影院| 天天一区二区日本电影三级| 一进一出好大好爽视频| 国产精华一区二区三区| 中文字幕久久专区| 国产乱人视频| 日韩av在线大香蕉| 直男gayav资源| 国产精品久久久久久久电影| 国产高清视频在线观看网站| 一区二区三区四区激情视频 | 亚洲精品成人久久久久久| 99热只有精品国产| 搡老妇女老女人老熟妇| 69av精品久久久久久| 最近最新免费中文字幕在线| 久久久国产成人免费| 国产单亲对白刺激| 在线播放国产精品三级| 看片在线看免费视频| 久久性视频一级片| 性插视频无遮挡在线免费观看| 久久午夜福利片| 亚洲成人久久爱视频| 18禁黄网站禁片午夜丰满| 日本一二三区视频观看| 色综合欧美亚洲国产小说| 人人妻人人看人人澡| 九色国产91popny在线| 亚洲,欧美,日韩| 久久香蕉精品热| 少妇人妻一区二区三区视频| 精品久久久久久,| 老司机深夜福利视频在线观看| 亚洲第一区二区三区不卡| 亚洲精品成人久久久久久| 久久久久久大精品| 欧美激情在线99| x7x7x7水蜜桃| 又黄又爽又刺激的免费视频.| 免费无遮挡裸体视频| 日韩成人在线观看一区二区三区| 精品人妻视频免费看| 99久久精品热视频| 精品欧美国产一区二区三| 亚洲av中文字字幕乱码综合| 亚洲精品成人久久久久久| 日韩欧美精品免费久久 | 五月伊人婷婷丁香| 一边摸一边抽搐一进一小说| 麻豆一二三区av精品| 自拍偷自拍亚洲精品老妇| 免费人成视频x8x8入口观看| 成人欧美大片| 99久久精品热视频| 成人av在线播放网站| 国产亚洲精品av在线| 男人舔女人下体高潮全视频| 亚洲欧美日韩高清专用| 国产熟女xx| 最新中文字幕久久久久| 久久久色成人| 99久久九九国产精品国产免费| 99热只有精品国产| 亚洲欧美激情综合另类| 99久久九九国产精品国产免费| 亚洲av免费在线观看| 少妇人妻精品综合一区二区 | avwww免费| 亚洲欧美清纯卡通| 国产欧美日韩精品一区二区| 亚洲欧美日韩无卡精品| 嫁个100分男人电影在线观看| 可以在线观看毛片的网站| 成人三级黄色视频| 午夜福利视频1000在线观看| 亚洲成av人片在线播放无| 欧美bdsm另类| 桃红色精品国产亚洲av| 内地一区二区视频在线| 免费在线观看日本一区| 免费人成视频x8x8入口观看| 一卡2卡三卡四卡精品乱码亚洲| 熟妇人妻久久中文字幕3abv| 男人舔女人下体高潮全视频| 我要看日韩黄色一级片| 狂野欧美白嫩少妇大欣赏| 人妻丰满熟妇av一区二区三区| 成年版毛片免费区| av欧美777| 97热精品久久久久久| av在线老鸭窝| 日韩人妻高清精品专区| 一个人免费在线观看的高清视频| 久久午夜亚洲精品久久| 级片在线观看| 国产老妇女一区| 天堂av国产一区二区熟女人妻| 夜夜看夜夜爽夜夜摸| 亚洲成人中文字幕在线播放| 精品免费久久久久久久清纯| 一卡2卡三卡四卡精品乱码亚洲| 女同久久另类99精品国产91| 久久久成人免费电影| 一个人观看的视频www高清免费观看| 精品久久久久久成人av| 亚洲av二区三区四区| 久久久久久久久大av| 18禁裸乳无遮挡免费网站照片| 国产成人欧美在线观看| 国产亚洲精品久久久久久毛片| 噜噜噜噜噜久久久久久91| 国内久久婷婷六月综合欲色啪| 精品人妻偷拍中文字幕| 99国产精品一区二区蜜桃av| 午夜视频国产福利| 99久久精品热视频| 99久久精品国产亚洲精品| 99视频精品全部免费 在线| a级毛片免费高清观看在线播放| 日韩欧美在线二视频| 好男人电影高清在线观看| 色播亚洲综合网| 精品久久久久久久人妻蜜臀av| av欧美777| 亚洲人与动物交配视频| 免费av不卡在线播放| 久久久久久久午夜电影| 尤物成人国产欧美一区二区三区| 国产真实伦视频高清在线观看 | 亚洲人成伊人成综合网2020| 日本黄色视频三级网站网址| 嫩草影院新地址| 99热精品在线国产| 日本 av在线| 99热6这里只有精品| 亚洲专区国产一区二区| 久久久久久大精品| 乱码一卡2卡4卡精品| 国产午夜精品久久久久久一区二区三区 | 久久久久精品国产欧美久久久| 亚洲av成人不卡在线观看播放网| 成年人黄色毛片网站| 亚洲国产精品合色在线| 欧美性猛交黑人性爽| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品在线观看二区| 免费观看的影片在线观看| 国产精品99久久久久久久久| 成年女人永久免费观看视频| av在线老鸭窝| 亚洲综合色惰| 内地一区二区视频在线| 免费看a级黄色片| 国产精品嫩草影院av在线观看 | 成人av一区二区三区在线看| 嫁个100分男人电影在线观看| 一个人看视频在线观看www免费| 亚洲精品色激情综合| 国产精华一区二区三区| 国产精品不卡视频一区二区 | 又爽又黄a免费视频| 不卡一级毛片| 97热精品久久久久久| 亚洲国产日韩欧美精品在线观看| 色哟哟·www| 亚洲国产精品久久男人天堂| 成人三级黄色视频| 欧美xxxx性猛交bbbb| 日本成人三级电影网站| 欧美性感艳星| 亚洲午夜理论影院| 国产欧美日韩精品亚洲av| 国产成人啪精品午夜网站| 日本五十路高清| 在现免费观看毛片| 国语自产精品视频在线第100页| 亚洲狠狠婷婷综合久久图片| 小蜜桃在线观看免费完整版高清| 国产黄a三级三级三级人| www.熟女人妻精品国产| 97人妻精品一区二区三区麻豆| 日韩有码中文字幕| 欧美日韩瑟瑟在线播放| 俄罗斯特黄特色一大片| 国产色婷婷99| 国产高清视频在线观看网站| www.熟女人妻精品国产| 精品久久久久久久久亚洲 | 亚洲一区二区三区不卡视频| 露出奶头的视频| 精品久久久久久久久久免费视频| 在线免费观看的www视频| 欧美极品一区二区三区四区| 久久国产乱子伦精品免费另类| 熟女人妻精品中文字幕| 国产极品精品免费视频能看的| 男女视频在线观看网站免费| 亚洲av五月六月丁香网| 一级毛片久久久久久久久女| 欧美日本视频| 舔av片在线| 美女被艹到高潮喷水动态| 丰满人妻一区二区三区视频av| 91麻豆av在线| 亚洲成人中文字幕在线播放| 老司机午夜福利在线观看视频| 国产精品影院久久| 日韩有码中文字幕| 三级国产精品欧美在线观看| 真人一进一出gif抽搐免费| 国产老妇女一区| 亚洲黑人精品在线| 亚洲va日本ⅴa欧美va伊人久久| a级毛片a级免费在线| 免费在线观看日本一区| 在线免费观看的www视频| 日本三级黄在线观看| 精华霜和精华液先用哪个| 欧美色欧美亚洲另类二区| 亚洲专区中文字幕在线| 欧美色视频一区免费| 亚洲中文字幕日韩| 一边摸一边抽搐一进一小说| 亚洲精品一卡2卡三卡4卡5卡| 在线观看美女被高潮喷水网站 | 欧美精品国产亚洲| 亚洲人成网站高清观看| 国产精品,欧美在线| 色尼玛亚洲综合影院| 美女大奶头视频| 日本撒尿小便嘘嘘汇集6| 中文字幕av成人在线电影| 国产精品嫩草影院av在线观看 | 人人妻人人澡欧美一区二区| 国产美女午夜福利| 成人av一区二区三区在线看| 能在线免费观看的黄片| 一进一出抽搐gif免费好疼| 男人和女人高潮做爰伦理| 中文亚洲av片在线观看爽| 午夜福利在线观看吧| 精品福利观看| 免费搜索国产男女视频| 黄色一级大片看看| 狠狠狠狠99中文字幕| 国产伦在线观看视频一区| 国产精品爽爽va在线观看网站| 国产伦精品一区二区三区四那| 国产国拍精品亚洲av在线观看| 久久人妻av系列| 免费av毛片视频| 国内久久婷婷六月综合欲色啪| 热99在线观看视频| 中文字幕免费在线视频6| eeuss影院久久| 首页视频小说图片口味搜索| 少妇人妻一区二区三区视频| 午夜福利成人在线免费观看| 高潮久久久久久久久久久不卡| 黄片小视频在线播放| 乱码一卡2卡4卡精品| 久久久久久久久大av| 久久久久精品国产欧美久久久| 国产高清激情床上av| 精品日产1卡2卡| 日韩欧美精品v在线| 麻豆av噜噜一区二区三区| 精品人妻1区二区| x7x7x7水蜜桃| 无遮挡黄片免费观看| 夜夜夜夜夜久久久久| 国产精品久久久久久亚洲av鲁大| 97超级碰碰碰精品色视频在线观看| 亚洲精品在线观看二区| 成年免费大片在线观看| 村上凉子中文字幕在线| 国产69精品久久久久777片| 亚洲美女黄片视频| 老司机午夜福利在线观看视频| 久久国产乱子免费精品| 特大巨黑吊av在线直播| 最新中文字幕久久久久| 欧美国产日韩亚洲一区| 久久精品国产清高在天天线| 亚洲av成人精品一区久久| 88av欧美| 99精品在免费线老司机午夜| 亚洲国产欧洲综合997久久,| 亚洲av中文字字幕乱码综合| 欧美性感艳星| 少妇高潮的动态图| 18美女黄网站色大片免费观看| av天堂中文字幕网| 日韩高清综合在线| 午夜福利在线观看免费完整高清在 | 中文资源天堂在线| 一个人免费在线观看电影| 内射极品少妇av片p| 俄罗斯特黄特色一大片| 欧美潮喷喷水| 香蕉av资源在线| 香蕉av资源在线| 欧美成人a在线观看| 成人美女网站在线观看视频| 97人妻精品一区二区三区麻豆| 午夜免费激情av| 赤兔流量卡办理| 色噜噜av男人的天堂激情| 99在线视频只有这里精品首页| 伊人久久精品亚洲午夜| 国产精品爽爽va在线观看网站| 中文资源天堂在线| 亚洲七黄色美女视频| 亚洲av五月六月丁香网| 十八禁人妻一区二区| 亚洲第一区二区三区不卡| 国产淫片久久久久久久久 | 中文字幕熟女人妻在线| 国产伦在线观看视频一区| 亚洲最大成人av| 亚洲国产精品久久男人天堂| 在线观看66精品国产| 欧美日韩黄片免| 精品久久久久久久末码| 窝窝影院91人妻| 国产免费av片在线观看野外av| 极品教师在线视频| 成人毛片a级毛片在线播放| 99国产精品一区二区蜜桃av| 免费人成在线观看视频色| 宅男免费午夜| 在线播放国产精品三级| 免费在线观看影片大全网站| av女优亚洲男人天堂| 99久久久亚洲精品蜜臀av| 午夜福利视频1000在线观看| 亚洲中文字幕日韩| 午夜免费激情av| 久久国产精品影院| 天美传媒精品一区二区| 国产免费男女视频| 极品教师在线免费播放| a级一级毛片免费在线观看| 国产高清视频在线观看网站| 一本精品99久久精品77| 男女做爰动态图高潮gif福利片| 国产v大片淫在线免费观看| 亚洲av成人不卡在线观看播放网| 身体一侧抽搐| 搡老妇女老女人老熟妇| 色综合婷婷激情| 国产一区二区激情短视频| 久久久精品大字幕| 97超视频在线观看视频| www.熟女人妻精品国产| 久久精品夜夜夜夜夜久久蜜豆| 男人狂女人下面高潮的视频| av天堂在线播放| 国产成人av教育| 免费在线观看影片大全网站| 毛片女人毛片| 午夜两性在线视频| 日本 欧美在线| 成人国产综合亚洲| 搡老妇女老女人老熟妇| 熟妇人妻久久中文字幕3abv| 久久久久久久午夜电影| 可以在线观看毛片的网站| 男女床上黄色一级片免费看| 国内久久婷婷六月综合欲色啪| 一a级毛片在线观看| 蜜桃亚洲精品一区二区三区| 精品人妻1区二区| 国产中年淑女户外野战色| 一级黄色大片毛片| 久久午夜福利片| 欧美区成人在线视频| 国产精品久久视频播放| 国产乱人伦免费视频| 色精品久久人妻99蜜桃| 免费av不卡在线播放| 精品久久久久久久末码| 女同久久另类99精品国产91| 毛片一级片免费看久久久久 | 精品人妻熟女av久视频| 久久热精品热| 国产淫片久久久久久久久 | 欧美一区二区国产精品久久精品| 国内精品久久久久精免费| 亚洲av.av天堂| 欧美国产日韩亚洲一区| 91av网一区二区| 国产人妻一区二区三区在| 日韩欧美 国产精品| 给我免费播放毛片高清在线观看| 内射极品少妇av片p| 深爱激情五月婷婷| 国产在线男女| 国产一区二区在线av高清观看| 怎么达到女性高潮| 美女高潮喷水抽搐中文字幕| 中文在线观看免费www的网站| 国产精品av视频在线免费观看| 欧美丝袜亚洲另类 | 日韩欧美精品v在线| 在线看三级毛片| 成人国产一区最新在线观看| 男人的好看免费观看在线视频| 黄色配什么色好看| 欧美成人性av电影在线观看| 国产成+人综合+亚洲专区| 国内毛片毛片毛片毛片毛片| 久久国产精品影院| 99热6这里只有精品| 亚洲美女视频黄频| 国产在线男女| 最近最新免费中文字幕在线| 嫩草影视91久久| 亚洲男人的天堂狠狠| 变态另类丝袜制服| 伊人久久精品亚洲午夜| 国产亚洲精品久久久com| 午夜影院日韩av| 国产又黄又爽又无遮挡在线| 天堂网av新在线| 最近视频中文字幕2019在线8| 老熟妇乱子伦视频在线观看| av女优亚洲男人天堂| 婷婷色综合大香蕉| 怎么达到女性高潮| 亚洲av熟女| 国产高清视频在线播放一区| 中文字幕免费在线视频6| 变态另类丝袜制服| 白带黄色成豆腐渣| 久99久视频精品免费| 男女下面进入的视频免费午夜| 99精品在免费线老司机午夜| 日韩av在线大香蕉| 91午夜精品亚洲一区二区三区 | 女同久久另类99精品国产91| 99久久精品国产亚洲精品| 高清日韩中文字幕在线| 久久久久免费精品人妻一区二区| 日韩高清综合在线| 国产午夜精品久久久久久一区二区三区 | 九色成人免费人妻av| 在线十欧美十亚洲十日本专区| 真人一进一出gif抽搐免费| av国产免费在线观看| 脱女人内裤的视频| 男女视频在线观看网站免费| 此物有八面人人有两片| 亚洲天堂国产精品一区在线| 一级毛片久久久久久久久女| 国产一区二区三区视频了| 如何舔出高潮| 哪里可以看免费的av片| 精品福利观看| aaaaa片日本免费| 黄片小视频在线播放| 小蜜桃在线观看免费完整版高清| 在线观看午夜福利视频| 国产av在哪里看| 日本一本二区三区精品| 亚洲七黄色美女视频| 老熟妇仑乱视频hdxx| 内地一区二区视频在线| 久久久精品欧美日韩精品| 亚洲中文字幕日韩| 亚洲第一欧美日韩一区二区三区| 精品久久久久久久久av| 在线观看66精品国产| 色视频www国产| 天堂动漫精品| 亚洲色图av天堂| 国产成人av教育| 色吧在线观看| 成人高潮视频无遮挡免费网站| 亚洲人成电影免费在线| 日韩欧美一区二区三区在线观看| 99久久99久久久精品蜜桃| 久久性视频一级片| 久久精品国产自在天天线| 看片在线看免费视频| 午夜老司机福利剧场| 久久人人精品亚洲av| 日韩大尺度精品在线看网址| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品亚洲一区二区| 九色国产91popny在线| 日日干狠狠操夜夜爽| 成人国产一区最新在线观看| 国产又黄又爽又无遮挡在线| 日本a在线网址| 中文字幕av成人在线电影| 午夜久久久久精精品| 在线观看美女被高潮喷水网站 | 97热精品久久久久久| 亚洲欧美日韩无卡精品| 精品一区二区三区av网在线观看| 亚洲av日韩精品久久久久久密| 久久久久国产精品人妻aⅴ院| 亚洲av免费高清在线观看| 男人舔女人下体高潮全视频| 国产色婷婷99| 久久久久久久精品吃奶| 午夜福利在线观看免费完整高清在 | 在线观看av片永久免费下载| 午夜久久久久精精品| 观看美女的网站| 91午夜精品亚洲一区二区三区 | 悠悠久久av| 精品久久久久久久久久久久久| 日韩欧美免费精品| 精品人妻偷拍中文字幕| 九色国产91popny在线| 欧美在线一区亚洲| 久久久久亚洲av毛片大全| 成人美女网站在线观看视频| 日本 欧美在线|