• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Intelligent Feature Selection with Deep Learning Based Financial Risk Assessment Model

    2022-08-24 06:58:34ThavavelVaiyapuriPriyadarshiniHemlathadheviDhamodaranAshitKumarDuttaIrinaPustokhinaandDenisPustokhin
    Computers Materials&Continua 2022年8期

    Thavavel Vaiyapuri,K.Priyadarshini,A.Hemlathadhevi,M.Dhamodaran,Ashit Kumar Dutta,Irina V.Pustokhinaand Denis A.Pustokhin

    1College of Computer Engineering and Sciences,Prince Sattam bin Abdulaziz University,Al-Kharj,16278,Saudi Arabia

    2Department of Electronics and Communication Engineering,K.Ramakrishnan College of Engineering,Tiruchirappalli,621112,India

    3Department of Computer Science and Engineering,Panimalar Engineering College,Chennai,600 123,India

    4Department of Electronics and Communication Engineering,M.Kumarasamy College of Engineering,Karur,639113,India

    5Department of Computer Science and Information System,College of Applied Sciences,AlMaarefa University,Riyadh,11597,Kingdom of Saudi Arabia

    6Department of Entrepreneurship and Logistics,Plekhanov Russian University of Economics,117997,Moscow,Russia

    7Department of Logistics,State University of Management,109542,Moscow,Russia

    Abstract: Due to global financial crisis,risk management has received significant attention to avoid loss and maximize profit in any business.Since the financial crisis prediction(FCP)process is mainly based on data driven decision making and intelligent models,artificial intelligence (AI) and machine learning(ML)models are widely utilized.This article introduces an intelligent feature selection with deep learning based financial risk assessment model(IFSDL-FRA).The proposed IFSDL-FRA technique aims to determine the financial crisis of a company or enterprise.In addition,the IFSDL-FRA technique involves the design of new water strider optimization algorithm based feature selection (WSOA-FS) manner to an optimum selection of feature subsets.Moreover,Deep Random Vector Functional Link network(DRVFLN) classification technique was applied to properly allot the class labels to the financial data.Furthermore,improved fruit fly optimization algorithm (IFFOA) based hyperparameter tuning process is carried out to optimally tune the hyperparameters of the DRVFLN model.For enhancing the better performance of the IFSDL-FRA technique,an extensive set of simulations are implemented on benchmark financial datasets and the obtained outcomes determine the betterment of IFSDL-FRA technique on the recent state of art approaches.

    Keywords: Financial risks;intelligent models;financial crisis prediction;deep learning;feature selection;metaheuristics

    1 Introduction

    Financial crisis prediction(FCP)is the most challenging requirement for the enterprise in making financial decisions.Artificial intelligence(AI)and Statistical techniques were utilized for recognizing the important aspects of FCP [1].During this method,AI technique was utilized for performance validation and forecasts if the system faces a problem or not.The primary goal of this method is for extracting the financial parameter in a wide-ranging economical statement like financial features using maximal data with FCP[2].Commonly,FCP takes a binary classification method that has been resolved in an efficient manner.The result from the classification algorithm could be classified into two kinds:failure and non-failure status of enterprises[3].So far,a greater amount of classification methods has been proposed with several domain knowledge for FCP [4].In general,the proposed predictive method could be separated into artificial intelligence(AI)or statistical methods.

    In FCP,data mining (DM) methods have been employed by decision-making and primary detection modules[5].On the other hand,financial risk could be evaluated by using Machine Learning(ML)algorithms,which are capable of extracting nonlinear relationships amongst the financial data contained in the balance sheet[6].In a typical data science life cycle,model is selected for optimizing the prediction accuracy.In highly regulated areas,such as medicine or finance,model needs to be selected balancing accuracy with explainability.Enhance the choice selecting model-based prediction accuracy,and employs a posteriori a model attains explainability[7].It doesn’t limit the selection of the optimally executing methods.Therefore,it is appropriate to make decision in removing financial failures.In the event of imbalanced data,the data extraction method is extremely challenging [8].Hence,the extraction of massive number of information is significant to detect financial errors;particularly in FCP.In this architecture,many arithmetical methods and estimations were applied for the management of FCP[9].It can be accountable for removing the redundant and unwanted features in new information.Furthermore,FS has been employed to extract highly possible information through minimal feature subset and potential properties such as computation time,noise removal[10],minimization of impure feature,and decreased cost that is crucial to implement an estimated technique.Moreover,it is used to process the feature set under the applications of fixed value instead of utilizing elected features[11].The most significant challenge in this model is discovering an optimum feature from existing feature named an NP-hard problem.

    1.1 Recent State of Art Financial Risk Assessment Models

    This section performs a detailed review of existing FCP techniques available from the literature.Uthayakumar et al.[12]proposed a clustering-based classification method,includes:fitness-scaling chaotic genetic ant colony algorithm (FSCGACA) and improved K-means clustering based classification technique.Firstly,an enhanced K-means method is introduced to remove the inaccurately clustered data.Subsequently,a rule-based method is elected for designing the offered dataset.Lastly,FSCGACA was used for seeking the ideal parameter of rule-based method.Tyagi et al.[13]presented a smart IoT assisted FCP method with meta-heuristic algorithm.The presented FCP model includes feature selection(FS),classification,pre-processing,and data acquisition.In the beginning,the financial information of the enterprises is accumulated by utilizing IoT gadgets like laptops,smartphones,and so on.Then,the quantum artificial butterfly optimization(QABO)method to FS was employed for choosing an optimum subset of features.Later,LSTM using RNN technique is exploited for categorizing the gathered financial data.

    Metawa et al.[14]designed a novel FS with EHO using MWWO technique based on DBN to FCP.The EHO approach was employed as a feature selector,and MWWO-DBN is applied to the classifier model.The application of MWWO algorithms assist in tuning the parameter of DBN algorithm,and the selection of optimum feature set in the EHO model results in better classification accuracy.Ivanyuk et al.[15]resolved the problems of creating a weighted-average prediction that comprises numerous individual predictions.Original prediction models are utilized in the grouping include gradient boosting,Arima,and FC-FFNN models.NN is becoming more prominent nowadays since they allow prediction in the case of uncertainty and crisis.Wang et al.[16]created a novel index assessment scheme to supply chain finance dependent upon hesitant fuzzy linguistic PROMETHEE methodology,and the advantages and effectiveness of the models were established.To some extent,the SME financing the assessment model and enhanced PROMETHEE technique could assist financial institutions to decrease the survival threat of financial institutions as well as decrease the risk in certain financial transactions.Zheng et al.[17]presented architecture of privacy-preserving credit risk modelling based adversarial learning(PCAL).The presented model focus on masking the secret data within the original data set,when preserving the significant utility data for the target predictive performances,through(iteratively)weighing among utility oriented loss and privacy-risk loss.

    1.2 Paper Contributions

    The major contribution of this study is summarized here.This article introduces an intelligent feature selection with deep learning based financial risk assessment model (IFSDL-FRA).The proposed IFSDL-FRA technique derives a novel water strider optimization algorithm based feature selection (WSOA-FS) appraoch to an optimum selection of feature subsets.Also,Deep Random Vector Functional Link network(DRVFLN)classification method was applied to properly allot the class labels to the financial data.Eventually,improved fruit fly optimization algorithm(IFFOA)based hyperparameter tuning procedure was implemented.In order to make sure the enhanced predictive outcomes of the IFSDL-FRA technique,a wide range of experiments were performed on benchmark financial datasets.

    1.3 Paper Organization

    The residual sections of the paper are arranged as follows.Section 2 offers a brief discussion of the IFSDL-FRA approach.Section 3 provides a detailed experimental analysis and Section 4 draws the concluding remarks of the study.

    2 The Proposed Model

    In this study,a novel IFSDL-FRA technique has been presented to determine the financial crisis of a company or enterprise.The proposed IFSDL-FRA technique comprises different major processes such as pre-processing,WSOA based optimal feature subset selection,DRVFLN based classification,and IFFOA based hyperparameter tuning.The utilization of WSOA to elect optimum features and IFFOA to select hyperparameters to help considerably boost the overall performance.Fig.1 illustrates the overall process of IFSDL-FRA approach.The processes involved in these modules are elaborated in the succeeding sections.

    2.1 Preprocessing

    To begin with,the dataset has appropriately normalization utilizing min-max normalized.In this procedure,the minimal and maximal values of data were attained and changed with utilizing in Eq.(1).

    where X refers the parameter that exists from the data,min(X)and max(X)signifies the lower as well as upper levels of attribute values,implies the upgrade values of entries,lstands for the previous value from the data andnewmin(X) and newmax(X)denotes the value of minimal and maximal restricts correspondingly.

    2.2 Design of WSOA-FS Technique

    Next to data pre-processing,the preprocessed data is fed as input to WSOA-FS technique to choose optimal features.The WSOA is a meta-heuristic algorithm which is simulated as the nature of territorial,intellectual ripple interaction,mating style,feeding,and progression of water striders(WSs) bugs [18].The mathematical modeling of the WSOA is given in the following.The WSs or candidate solutions can be arbitrarily produced in the searching area using Eq.(2):

    whereWSi0denotes the starting locations of theith WSin the lake(searching area).LbandUbdenote minimum and maximum bounds of parameters.randindicates an arbitrary number lies between 0 to 1,andnwsrepresent the population size.The starting locations of theWSscan be determined using an objective function for calculating the fitness value(FV).For creating a set ofntregions,theWSsgets arranged to depend upon the FV andgroup counts are sorted.Thejthmember of all the groups is allocated to thejthregion,where=1,2,...,nt.So,the number ofWSsalive in every region is equivalent toThe locations in all regions with the minimum and maximum FV are treated as male and female correspondingly.

    The maleWStransmits the ripple to the female ones in mating process.As the reply of the female WSs remains unknown,a likelihood(p)is determined to identify attractive or repulsive responses.The location of the maleWScan be upgraded using Eq.(3):

    The length ofRcan be computed using Eq.(4):

    whereWSit-1andWSFt-1denotes the male and femaleWSsin the(t-1)thcycle,correspondingly.

    Mating spends massive quantity of energy for WS and the male ones start foraging process next to mating process.The objective function can be assessed for checking the existence of food.When the FV exceeds the earlier FV,the male WS has identified food in new location,and vice versa.Then,the maleWSstarts moving in the direction of optimalWSof the lake for determining the food based on Eq.(5):

    When the WS exist in newly generated location,the maleWScould not identify the food,it gets dead and a newWSgets replaced to it using Eq.(6):

    whereUbtjandLbjdenotes the upper and lower values of theWS′slocation inside thejthregion.

    When the stopping criteria are unsatisfied,the WSOA returns the mating process for a new loop and highest number of FV determinations is treated as the ending criteria.The overall process of the WSOA is given in Algorithm 1.

    In feature selection,when the size of the feature vector isN,the amount of distinct feature combination tends to be 2N,that is a large space for comprehensive search.The proposed method is utilized for searching the feature space dynamically and produces the accurate integration of features.Feature selection falls within multiobjective problem since it should fulfill one or more objectives for getting optimal solution,that reduces the set of features selected and simultaneously,maximize the accuracy of the output for a provided classification.Fig.2 showcases the flowchart of WSA.

    In this study,the fitness function to determine solution in this scenario was constructed to attain a balance among the two objectives is given as follows.

    WhereasΔR(D)represent the classifier error rate.|Y|denotes the size of the subset that selects and|T| indicates the overall amount of the feature contains in the existing data set.αillustrates a variable∈[0,1]that relates to the weight of the error rate of classification,correspondingly andβ=1-αindicates the fine reduction.The classification performance is given a weight instead of number of features selected.When the calculation function takes the classification accuracy into account,the effects will be the neglect of solution which might contain the similar accuracy but have less selected feature which serves as most important factors in decreasing the dimensionality problem.

    Figure 2:Flowchart of WSA

    2.3 Process Involved in Optimal DRVFLN Based Classification

    During classification process,the chosen subset of features is passed into the DRVFLN based classifier to allot proper class labels.The DRVFLN network is extensive of shallow RVFL network regarding deep or representation learning.The input to all the layers in the stack is the outcome of previous layer where all the layers build an internal representation of input data.Now assume a stack ofLhidden layers all of them have a similar amount of hidden nodesN.For ease of representation,neglect the bias term from the formula.Then,the outcome of initial hidden layer was determined by Eq.(8):

    For each layerl>1 it is determined by Eq.(9):

    In whichW(1)∈Rd×NandW(l)∈RN×Nrepresent the weight matrices among the input-first and inter hidden layers correspondingly.Such variables(biases and weights)of hidden neurons are formed arbitrarily within an appropriate range and kepts set in the trained phase.gindicates the nonlinear activation function[19].Then,the input to the output layers is determined by Eq.(10):

    This model framework is equivalent to RVFL network.Where input to output the layers consist of nonlinear features under stacked hidden layer and the novel feature.Then,the outcome can be determined by Eq.(11):

    The resultant weightβd∈R(NL+d)×K(K:the amount of classes)was resolved.From Eqs.(10)and(11),DRVFLN exist a linear integration among the features as well as resultant layer weight matrixβdthat is weighted amount of features under the hidden layer includes the input layer.During the trained phase,this directly allows the system to differently weigh the support of all types of feature making in distinct layers.

    To optimally tune the hyperparameters of the DRVFLN technique,the IFFOA technique is employed.The fundamental FOA is simulated as the foraging performance of fruit flies (FFs)naturally is presented by Pan [20].The foraging performance of FF are separated as to 2 phases:the olfactory search phase and visual search phase.In olfactory foraging,the FF search and locate food sources nearby the populations,next estimates the odor focus equivalent to all feasible food sources.During the visual foraging stage,an optimum food source with maximal smell focus value was initiated,afterward,the FF group flies near it.The process of FOA has outlined as follows:

    Step 1:Initialization parameters are containing the maximal amount of rounds and size of population.

    Step 2:Initialization of the FF swarm place.

    Step 3:Olfactory foraging stage:make various FF arbitrarily close to the present FF swarm place for constructing a population:

    Step 4:Estimate the population for obtaining the fitness value of all FF.

    Step 5:Visual foraging stage:determine the FF with optimum fitness values,later the FF group flies near optimum one.

    Step 6:Once the maximal count of rounds is attained,this technique was ended;else,go back to Step 3.

    Before creating novel solution with altering every decision variable of population place as the original FOA,IFFOA makes novel solution with arbitrarily chosen indexes for enhancing the search from the growth phase.

    In Eq.(1),λimplies the search radius of FF from all iterations,λmaxrefers the maximal search radius,andλminsignifies the minimal search radius.Iterstands for the present iteration number,and Max-Iterdefines the maximal iteration number.

    d∈{1,2,...,n}stands for the index arbitrarily chosen in uniformly distributed decision variable,nrefers the dimensional of solution[21],rand()demonstrated the arbitrary number from the range of zero and one,and the place ofxi,jis upgraded in Eq.(13).δjdenotes the value of better solution from thejthdimension.

    The fitness function performs an important part in optimized problems.It computes a positive integer for specifying a better candidate outcome.During this work,classification error rate is considered as a minimalizing fitness function.The poor solution has maximum fitness score (error rate)and better solution is minimum fitness score(error rate).

    3 Performance Validation

    The performance validation of the IFSDL-FRA technique is performed against 3 benchmark datasets like Qualitative[22],Polish[23],and Weislaw datasets.The former qualitative dataset contains 250 samples with 6 attributes and 2 classes.The second Polish dataset has 43405 samples with 64 attributes and 2 classes.The last Weislaw dataset includes 240 instances with 30 features.

    The FS result analysis of the WSOA-FS technique takes place in Tab.1.The results demonstrated that WSOA-FS technique has chosen an optimal number of features on all datasets.Tab.2 offers the best cost (BC) analysis of the WSOA-FS technique under three datasets.The results show that the WSOA-FS technique has gained lower BC under all datasets.For instance,with qualitative dataset,the WSOA-FS technique has offered least average BC of 0.0320 whereas the GSO-FS,DFO-FS,and FFO-FS techniques have obtained increased average BC of 0.0520,0.0810,and 0.0972.

    Table 1:Selected features of proposed WSOA-FS algorithm on applied dataset

    Table 2:BC analysis of WSOA-FS technique with different count of iteration

    Likewise,with Polish dataset,the WSOA-FS technique has provided minimal average BC of 0.1500 whereas the GSO-FS,DFO-FS,and FFO-FS techniques have resulted in maximum average BC of 0.1614,0.1714,and 0.1719 respectively.Moreover,with Weislaw dataset,the WSOA-FS system has offered average BC of 0.0598 but the GSO-FS,DFO-FS,and FFO-FS techniques have obtained increased average BC of 0.0873,0.0968,and 0.1020.

    Fig.3 illustrates the set of confusion matrices produced by the IFSDL-FRA technique.On the test qualitative dataset,the IFSDL-FRA technique has identified the 107 instances into financial crisis (FC) class and 142 instances into non-financial crisis (NFC) class.Besides,on the test Polish dataset,the IFSDL-FRA technique has identified the 2086 instances into FC class and 431294 instances into NFC class.In addition,on the test Weislaw dataset,the IFSDL-FRA technique has identified the 111 instances into FC class and 128 instances into NFC class.

    Figure 3:a)Qualitative dataset b)Polish dataset c)Weislaw dataset

    Tab.3 and Fig.4 provide a detailed classification results analysis of the IFSDL-FRA technique on the qualitative bankruptcy dataset.The results show that the OlexGA model has shown worse classification results than the other techniques.At the same time,the Improved GACO and Genetic Ant Colony models have obtained slightly enhanced classification results.Followed by,the optimal SAE and ant colony techniques have reached reasonable classification performance.

    However,the presented IFSDL-FRA technique has showcased maximum classifier results with thesensy,specy,accuy,Fscore,and MCC of 1.0000,0.9930,0.9960,0.9953,and 0.9919 respectively.

    Table 3:Result analysis of various classifiers on qualitative bankruptcy dataset

    Figure 4:Result analysis of IFSDL-FRA technique on qualitative bankruptcy dataset

    Fig.5 offers a clear accuracy graph analysis of the IFSDL-FRA technique on the test qualitative bankruptcy dataset.The results revealed that the IFSDL-FRA technique has gained increased values of training and validation accuracies on the applied qualitative bankruptcy dataset.

    A loss graph analysis of the IFSDL-FRA technique on the test qualitative bankruptcy dataset is offered in Fig.6.The results showcased that the IFSDL-FRA technique has resulted in minimal values of training and testing loss on the applied qualitative bankruptcy dataset.

    Tab.4 and Fig.7 demonstrate a comparative results analysis of the IFSDL-FRA technique on the Polish bankruptcy dataset.The experimental results demonstrated that the OlexGA model has depicted poor classification results over the other techniques.Along with that,the Improved GACO and Genetic Ant Colony models have gained moderately closer classification results.In line with,the optimal SAE and ant colony techniques have tried to accomplish somewhat improved classification performance.However,the presented IFSDL-FRA technique has outperformed the other techniques with the increasedsensy,specy,accuy,Fscore,and MCC of 0.9976,1.0000,0.9999,0.9940,and 0.9940 respectively.

    Fig.8 gives a clear accuracy graph analysis of the IFSDL-FRA approach on the test Polish bankruptcy dataset.The outcomes depicted that the IFSDL-FRA approach has gained improved values of training and validation accuracies on the applied qualitative bankruptcy dataset.A loss graph analysis of the IFSDL-FRA system on the test Polish bankruptcy dataset is offered in Fig.9.The outcomes outperformed that the IFSDL-FRA manner has resulted in minimal values of training and testing loss on the applied qualitative bankruptcy dataset.

    Figure 5:Accuracy analysis of IFSDL-FRA technique on qualitative bankruptcy dataset

    Figure 6:Loss analysis of IFSDL-FRA technique on qualitative bankruptcy dataset

    Table 4:Result analysis of various classifiers on polish bankruptcy dataset

    Figure 7:Result analysis of IFSDL-FRA technique on polish bankruptcy dataset

    Figure 8:Accuracy analysis of IFSDL-FRA technique on polish bankruptcy dataset

    Figure 9:Accy analysis of IFSDL-FRA technique on polish bankruptcy dataset

    Tab.5 and Fig.10 offer a comprehensive performance validation of the IFSDL-FRA technique on the Weislaw bankruptcy dataset [24].The experimental results demonstrated that the OlexGA model has reported reduced efficiency over the other techniques.Eventually,the Improved GACO and Genetic Ant Colony models have resulted in somewhat improved classifier outcomes.Next to that,the optimal SAE and ant colony techniques have accomplished acceptable classifier performance.But the presented IFSDL-FRA technique has demonstrated superior results over the other techniques with the highersensy,specy,accuy,Fscore,and MCC of 0.9911,1.0000,0.9958,0.9955,and 0.9917 respectively.

    Table 5:Result analysis of various classifiers on weislaw bankruptcy dataset

    Figure 10:Result analysis of IFSDL-FRA technique on weislaw bankruptcy dataset

    4 Conclusion

    In this study,a novel IFSDL-FRA approach has been presented to determine the financial crisis of a company or enterprise.The proposed IFSDL-FRA technique comprises different major processes such as pre-processing,WSOA based optimal feature subset selection,DRVFLN based classification,and IFFOA based hyperparameter tuning.The utilization of WSOA to elect optimum features and IFFOA to select hyperparameters to help considerably boost the overall performance.In order to ensure the enhanced predictive outcomes of the IFSDL-FRA technique,a wide range of experiments were carried out on benchmark financial datasets and the obtained outcomes depict the betterment of the IFSDL-FRA technique over the recent state of art approaches.Therefore,the IFSDL-FRA technique was applied as proficient tools for predicting the financial condition of a firm.In future,outlier detection and clustering techniques can be integrated into the IFSDL-FRA technique to further improve the classification performance.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    一区二区日韩欧美中文字幕| 男女下面插进去视频免费观看| 日韩有码中文字幕| 国产精品永久免费网站| 在线观看66精品国产| 亚洲国产精品sss在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久久久精品吃奶| 午夜福利成人在线免费观看| 男男h啪啪无遮挡| 色哟哟哟哟哟哟| 在线永久观看黄色视频| 十八禁人妻一区二区| 成人亚洲精品av一区二区| 精品久久久精品久久久| av中文乱码字幕在线| 国产一区二区激情短视频| 69av精品久久久久久| 欧美黄色淫秽网站| 欧美绝顶高潮抽搐喷水| 大陆偷拍与自拍| 欧美在线黄色| 久久婷婷成人综合色麻豆| 91老司机精品| 亚洲五月色婷婷综合| 成人亚洲精品av一区二区| 搡老妇女老女人老熟妇| 村上凉子中文字幕在线| 女同久久另类99精品国产91| 国产成+人综合+亚洲专区| 中文字幕高清在线视频| 国产av一区在线观看免费| 日韩一卡2卡3卡4卡2021年| 一区在线观看完整版| 欧美在线一区亚洲| 亚洲狠狠婷婷综合久久图片| videosex国产| 在线天堂中文资源库| 丰满的人妻完整版| 久久精品成人免费网站| 久久伊人香网站| 一本综合久久免费| 亚洲成人精品中文字幕电影| 精品国产乱码久久久久久男人| 嫁个100分男人电影在线观看| 亚洲av电影不卡..在线观看| 成年版毛片免费区| 波多野结衣av一区二区av| av有码第一页| 久久久精品国产亚洲av高清涩受| 一级毛片高清免费大全| 亚洲精品在线观看二区| 黑丝袜美女国产一区| 亚洲一卡2卡3卡4卡5卡精品中文| 窝窝影院91人妻| 亚洲 欧美 日韩 在线 免费| 亚洲成人国产一区在线观看| 给我免费播放毛片高清在线观看| 国产精品一区二区免费欧美| 国产一区二区三区视频了| 少妇被粗大的猛进出69影院| 十八禁人妻一区二区| www.精华液| 久久精品亚洲熟妇少妇任你| 在线观看一区二区三区| 老鸭窝网址在线观看| 97超级碰碰碰精品色视频在线观看| 桃色一区二区三区在线观看| 国产熟女xx| 欧美 亚洲 国产 日韩一| 一区二区三区高清视频在线| 老汉色av国产亚洲站长工具| av福利片在线| av电影中文网址| 日韩欧美国产一区二区入口| 国产三级在线视频| 欧美日韩精品网址| 黄色a级毛片大全视频| 视频在线观看一区二区三区| 嫩草影院精品99| 欧美日韩中文字幕国产精品一区二区三区 | 国产亚洲精品久久久久久毛片| 欧美精品亚洲一区二区| 黄色视频不卡| 久久香蕉国产精品| 国产亚洲欧美在线一区二区| 日韩大码丰满熟妇| 夜夜躁狠狠躁天天躁| 一区二区三区激情视频| 长腿黑丝高跟| 中文字幕人妻熟女乱码| 精品卡一卡二卡四卡免费| 男人舔女人的私密视频| 香蕉丝袜av| 欧美中文日本在线观看视频| 国产精品一区二区精品视频观看| 国产91精品成人一区二区三区| 最近最新免费中文字幕在线| 淫妇啪啪啪对白视频| 在线观看www视频免费| 国产91精品成人一区二区三区| 高清毛片免费观看视频网站| 丁香六月欧美| 国产野战对白在线观看| 高清黄色对白视频在线免费看| 人妻久久中文字幕网| 亚洲国产精品合色在线| 精品乱码久久久久久99久播| av福利片在线| 日韩国内少妇激情av| 在线视频色国产色| 国产精品 国内视频| √禁漫天堂资源中文www| 免费无遮挡裸体视频| 亚洲片人在线观看| 成人手机av| 50天的宝宝边吃奶边哭怎么回事| 欧美+亚洲+日韩+国产| 视频区欧美日本亚洲| 热99re8久久精品国产| 久久久久久久久中文| 亚洲精品一区av在线观看| 黄色视频,在线免费观看| 日韩一卡2卡3卡4卡2021年| 午夜福利影视在线免费观看| av欧美777| a级毛片在线看网站| 亚洲精品国产色婷婷电影| 麻豆成人av在线观看| 午夜免费观看网址| 久99久视频精品免费| 一级毛片高清免费大全| 国产xxxxx性猛交| 日本 欧美在线| 久久午夜综合久久蜜桃| 神马国产精品三级电影在线观看 | 99国产精品免费福利视频| 亚洲人成电影免费在线| 女性被躁到高潮视频| 少妇被粗大的猛进出69影院| 国产欧美日韩一区二区精品| 国产免费男女视频| 欧美黄色片欧美黄色片| 日韩一卡2卡3卡4卡2021年| 亚洲最大成人中文| 国产精品久久久久久精品电影 | 久久人人爽av亚洲精品天堂| 人人妻人人澡欧美一区二区 | 一区二区三区激情视频| 国产av精品麻豆| 亚洲第一欧美日韩一区二区三区| 女同久久另类99精品国产91| 午夜福利免费观看在线| 成熟少妇高潮喷水视频| 国产精品综合久久久久久久免费 | 看免费av毛片| 日本五十路高清| 免费观看人在逋| 老司机午夜福利在线观看视频| 国产成人精品久久二区二区免费| 在线观看免费视频日本深夜| 久久精品aⅴ一区二区三区四区| 99riav亚洲国产免费| 高潮久久久久久久久久久不卡| 国产精品久久久久久亚洲av鲁大| 亚洲国产欧美一区二区综合| 久久 成人 亚洲| 好男人电影高清在线观看| 91精品三级在线观看| a在线观看视频网站| 国产单亲对白刺激| 久久精品91蜜桃| 国产亚洲欧美在线一区二区| 欧美国产日韩亚洲一区| 午夜视频精品福利| 免费人成视频x8x8入口观看| 国产在线精品亚洲第一网站| 搡老岳熟女国产| 免费看十八禁软件| 亚洲av成人一区二区三| 99热只有精品国产| 久久精品国产99精品国产亚洲性色 | 午夜福利高清视频| 久久亚洲真实| 色综合婷婷激情| 男女下面进入的视频免费午夜 | 欧美色欧美亚洲另类二区 | 99香蕉大伊视频| 日韩国内少妇激情av| 欧美老熟妇乱子伦牲交| 国产区一区二久久| 一区二区三区激情视频| 久久精品国产亚洲av高清一级| 国产高清videossex| 少妇粗大呻吟视频| 亚洲黑人精品在线| 久久久久久久久中文| 在线观看免费视频网站a站| 成人手机av| 国产成+人综合+亚洲专区| 91麻豆精品激情在线观看国产| 欧美日韩福利视频一区二区| 国产精品1区2区在线观看.| 一二三四社区在线视频社区8| 在线观看免费午夜福利视频| 欧美一级a爱片免费观看看 | 欧美午夜高清在线| 中文字幕另类日韩欧美亚洲嫩草| 淫妇啪啪啪对白视频| 久久国产乱子伦精品免费另类| 久久精品91无色码中文字幕| 熟妇人妻久久中文字幕3abv| 亚洲精品美女久久久久99蜜臀| 女人精品久久久久毛片| 精品一区二区三区视频在线观看免费| 国产激情久久老熟女| 国产高清视频在线播放一区| 日韩大码丰满熟妇| 大型av网站在线播放| √禁漫天堂资源中文www| ponron亚洲| av视频在线观看入口| 精品一区二区三区av网在线观看| 精品国产一区二区三区四区第35| 69精品国产乱码久久久| 欧美成人午夜精品| 狠狠狠狠99中文字幕| 精品久久久久久久久久免费视频| 国产精品香港三级国产av潘金莲| 精品无人区乱码1区二区| 午夜激情av网站| 欧美激情极品国产一区二区三区| 黄色丝袜av网址大全| 自线自在国产av| 免费人成视频x8x8入口观看| 亚洲一区二区三区不卡视频| 亚洲熟妇熟女久久| 国产精品 欧美亚洲| 久久人人97超碰香蕉20202| 色播亚洲综合网| 波多野结衣巨乳人妻| 久久亚洲精品不卡| 免费在线观看亚洲国产| 久久婷婷成人综合色麻豆| 99国产精品一区二区蜜桃av| 色播在线永久视频| 在线天堂中文资源库| www.精华液| 久久久久亚洲av毛片大全| 18美女黄网站色大片免费观看| 色综合婷婷激情| 亚洲,欧美精品.| 国产97色在线日韩免费| 欧美一区二区精品小视频在线| 男女下面插进去视频免费观看| 亚洲 欧美一区二区三区| 亚洲精品久久成人aⅴ小说| 日本一区二区免费在线视频| 黄网站色视频无遮挡免费观看| 国产伦人伦偷精品视频| 精品高清国产在线一区| 亚洲成av片中文字幕在线观看| 成人三级做爰电影| 最好的美女福利视频网| 欧美日韩福利视频一区二区| 欧美日韩黄片免| 满18在线观看网站| 国产免费男女视频| 亚洲av电影在线进入| 黄色丝袜av网址大全| 久久久国产欧美日韩av| 人人妻人人澡人人看| 侵犯人妻中文字幕一二三四区| 国产精品自产拍在线观看55亚洲| 一级毛片女人18水好多| 亚洲av美国av| 国产aⅴ精品一区二区三区波| 搡老岳熟女国产| 国产极品粉嫩免费观看在线| 身体一侧抽搐| 久久久久九九精品影院| 91九色精品人成在线观看| 久久国产乱子伦精品免费另类| 1024视频免费在线观看| 制服人妻中文乱码| 国产亚洲精品久久久久久毛片| 中文字幕人妻丝袜一区二区| 十分钟在线观看高清视频www| 欧美日韩精品网址| 国产一区二区在线av高清观看| 国产区一区二久久| 不卡一级毛片| 亚洲精品中文字幕一二三四区| 亚洲 欧美一区二区三区| 一区福利在线观看| 人人妻人人澡人人看| 午夜两性在线视频| 日韩视频一区二区在线观看| 国产成人一区二区三区免费视频网站| 国产精品国产高清国产av| 涩涩av久久男人的天堂| 久久久久久久久久久久大奶| 午夜日韩欧美国产| 国产av一区二区精品久久| 国产亚洲av嫩草精品影院| 欧美国产日韩亚洲一区| 999精品在线视频| 变态另类丝袜制服| 欧美丝袜亚洲另类 | 国内久久婷婷六月综合欲色啪| 欧美亚洲日本最大视频资源| 91成年电影在线观看| 少妇的丰满在线观看| 成人特级黄色片久久久久久久| 亚洲av电影在线进入| 欧洲精品卡2卡3卡4卡5卡区| 不卡一级毛片| 黄频高清免费视频| 看免费av毛片| 国产精品久久久av美女十八| 18美女黄网站色大片免费观看| 国产精品电影一区二区三区| 久久国产乱子伦精品免费另类| 亚洲欧美精品综合一区二区三区| 高清黄色对白视频在线免费看| 亚洲专区字幕在线| 午夜亚洲福利在线播放| 欧美 亚洲 国产 日韩一| 嫩草影院精品99| 99国产精品99久久久久| av有码第一页| 色综合婷婷激情| 美女高潮到喷水免费观看| 50天的宝宝边吃奶边哭怎么回事| www.999成人在线观看| 伦理电影免费视频| 国产精品,欧美在线| 免费久久久久久久精品成人欧美视频| 亚洲精品久久成人aⅴ小说| 精品欧美一区二区三区在线| 久久狼人影院| 成熟少妇高潮喷水视频| 亚洲精品久久成人aⅴ小说| 色综合欧美亚洲国产小说| 亚洲欧美日韩无卡精品| 久久久久久亚洲精品国产蜜桃av| 精品久久久久久,| 两人在一起打扑克的视频| 神马国产精品三级电影在线观看 | 高清毛片免费观看视频网站| 亚洲 欧美 日韩 在线 免费| 亚洲色图 男人天堂 中文字幕| 又紧又爽又黄一区二区| 高清毛片免费观看视频网站| 激情视频va一区二区三区| 午夜福利在线观看吧| 国产黄a三级三级三级人| 精品第一国产精品| 人人妻人人爽人人添夜夜欢视频| 一级毛片女人18水好多| 成人免费观看视频高清| 韩国av一区二区三区四区| 成人亚洲精品一区在线观看| 搡老熟女国产l中国老女人| 90打野战视频偷拍视频| 美国免费a级毛片| 99国产综合亚洲精品| 看黄色毛片网站| 90打野战视频偷拍视频| av电影中文网址| 91av网站免费观看| 亚洲一区中文字幕在线| 麻豆av在线久日| 免费无遮挡裸体视频| 夜夜爽天天搞| 亚洲欧美日韩另类电影网站| 亚洲人成电影观看| 激情视频va一区二区三区| 91国产中文字幕| 国产一级毛片七仙女欲春2 | 色综合婷婷激情| 国产黄a三级三级三级人| 亚洲色图综合在线观看| or卡值多少钱| av电影中文网址| 国产亚洲精品久久久久5区| 熟妇人妻久久中文字幕3abv| 亚洲国产精品成人综合色| 女性被躁到高潮视频| cao死你这个sao货| 一边摸一边做爽爽视频免费| 国产亚洲av嫩草精品影院| 亚洲一区二区三区色噜噜| 麻豆国产av国片精品| 老熟妇仑乱视频hdxx| 黄色片一级片一级黄色片| 波多野结衣高清无吗| 久久这里只有精品19| av中文乱码字幕在线| 日本vs欧美在线观看视频| 91成人精品电影| 成年女人毛片免费观看观看9| 国产又爽黄色视频| 在线播放国产精品三级| 免费在线观看完整版高清| 国内精品久久久久精免费| 亚洲精品粉嫩美女一区| 黑人操中国人逼视频| 欧美日韩乱码在线| 美女国产高潮福利片在线看| 高清毛片免费观看视频网站| 女人被躁到高潮嗷嗷叫费观| 国产精品秋霞免费鲁丝片| 久久久久亚洲av毛片大全| 夜夜夜夜夜久久久久| 国产精品久久久av美女十八| 亚洲第一电影网av| 长腿黑丝高跟| 咕卡用的链子| 满18在线观看网站| 国产亚洲精品久久久久久毛片| 欧美乱妇无乱码| 免费在线观看影片大全网站| 亚洲欧美激情综合另类| 国产精品久久久av美女十八| 高清在线国产一区| 中文字幕人妻丝袜一区二区| 在线观看66精品国产| 又大又爽又粗| ponron亚洲| 99久久精品国产亚洲精品| 无遮挡黄片免费观看| 久久草成人影院| 这个男人来自地球电影免费观看| 黄色 视频免费看| 久久久精品国产亚洲av高清涩受| 一级a爱片免费观看的视频| √禁漫天堂资源中文www| 久久中文看片网| 窝窝影院91人妻| 俄罗斯特黄特色一大片| 亚洲午夜理论影院| 成人亚洲精品一区在线观看| 看片在线看免费视频| 夜夜看夜夜爽夜夜摸| 国产精品影院久久| 青草久久国产| 亚洲一区中文字幕在线| 淫秽高清视频在线观看| xxx96com| 亚洲激情在线av| 制服人妻中文乱码| 久久精品aⅴ一区二区三区四区| 亚洲欧美精品综合久久99| 亚洲全国av大片| 真人一进一出gif抽搐免费| 国产视频一区二区在线看| 亚洲一码二码三码区别大吗| 精品久久久久久久人妻蜜臀av | 51午夜福利影视在线观看| 国产成人免费无遮挡视频| 黄片小视频在线播放| 美女扒开内裤让男人捅视频| 无遮挡黄片免费观看| 极品人妻少妇av视频| 久久久久久人人人人人| 好男人在线观看高清免费视频 | www.自偷自拍.com| 给我免费播放毛片高清在线观看| 少妇 在线观看| 国产精品 国内视频| 激情在线观看视频在线高清| 久久中文字幕一级| 香蕉久久夜色| 视频在线观看一区二区三区| 少妇粗大呻吟视频| www国产在线视频色| 日韩欧美一区视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 俄罗斯特黄特色一大片| 久热爱精品视频在线9| 制服诱惑二区| 亚洲精品一区av在线观看| 法律面前人人平等表现在哪些方面| 久久中文看片网| 男男h啪啪无遮挡| 大型av网站在线播放| 国产午夜福利久久久久久| 人人妻人人澡人人看| 美女午夜性视频免费| 91老司机精品| 国内毛片毛片毛片毛片毛片| 欧美成人午夜精品| 日本撒尿小便嘘嘘汇集6| 在线观看免费视频网站a站| 啦啦啦观看免费观看视频高清 | 黄网站色视频无遮挡免费观看| 三级毛片av免费| 在线视频色国产色| 国产精品一区二区免费欧美| 香蕉丝袜av| 亚洲三区欧美一区| 国产亚洲欧美98| 亚洲激情在线av| 亚洲国产欧美网| 亚洲国产精品成人综合色| 丝袜在线中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 一区福利在线观看| 国产精品野战在线观看| 狠狠狠狠99中文字幕| 国产99白浆流出| 性欧美人与动物交配| 他把我摸到了高潮在线观看| 色播在线永久视频| 一边摸一边抽搐一进一小说| 久久人人97超碰香蕉20202| 免费久久久久久久精品成人欧美视频| 国产黄a三级三级三级人| 欧美激情久久久久久爽电影 | 国产在线观看jvid| 欧美一级a爱片免费观看看 | 久久中文看片网| 亚洲在线自拍视频| 国产又色又爽无遮挡免费看| 少妇裸体淫交视频免费看高清 | 亚洲成人精品中文字幕电影| 大陆偷拍与自拍| 午夜久久久久精精品| 久久中文看片网| 黄色毛片三级朝国网站| 亚洲人成77777在线视频| 亚洲av片天天在线观看| 久久人妻福利社区极品人妻图片| 免费在线观看视频国产中文字幕亚洲| 搡老岳熟女国产| 99久久综合精品五月天人人| 久久国产乱子伦精品免费另类| 婷婷丁香在线五月| 国产高清激情床上av| 制服人妻中文乱码| 长腿黑丝高跟| 国产成人精品久久二区二区免费| 99国产综合亚洲精品| 在线十欧美十亚洲十日本专区| а√天堂www在线а√下载| 免费无遮挡裸体视频| 国产精品 国内视频| 亚洲成人免费电影在线观看| 好男人在线观看高清免费视频 | 亚洲国产欧美日韩在线播放| 国产国语露脸激情在线看| 波多野结衣高清无吗| 国产成人欧美在线观看| 男女下面进入的视频免费午夜 | 亚洲成国产人片在线观看| 一a级毛片在线观看| 成人18禁在线播放| 日本精品一区二区三区蜜桃| 精品国内亚洲2022精品成人| 亚洲精品美女久久av网站| 精品久久久久久久人妻蜜臀av | 成人18禁在线播放| www.999成人在线观看| 日日爽夜夜爽网站| 亚洲av电影在线进入| 午夜福利影视在线免费观看| 高清黄色对白视频在线免费看| 99国产精品一区二区三区| 亚洲精品中文字幕一二三四区| 午夜激情av网站| 又大又爽又粗| 国产99白浆流出| 好男人在线观看高清免费视频 | 久久国产精品男人的天堂亚洲| 精品欧美一区二区三区在线| 一区二区日韩欧美中文字幕| 国产精品 欧美亚洲| 一进一出好大好爽视频| 国产av精品麻豆| 精品国产国语对白av| 黄色视频,在线免费观看| 激情在线观看视频在线高清| 在线观看午夜福利视频| 色哟哟哟哟哟哟| 99香蕉大伊视频| 免费看a级黄色片| 亚洲avbb在线观看| 亚洲男人天堂网一区| 热re99久久国产66热| 亚洲精品中文字幕一二三四区| 一边摸一边做爽爽视频免费| 99在线视频只有这里精品首页| 亚洲精品一区av在线观看| 欧美另类亚洲清纯唯美| 88av欧美| 咕卡用的链子| 久久精品91无色码中文字幕| 国产一区二区三区视频了| 很黄的视频免费| 国产xxxxx性猛交| 九色国产91popny在线| 久久精品人人爽人人爽视色| 中文字幕精品免费在线观看视频| 日本 欧美在线| 女人被躁到高潮嗷嗷叫费观| 久久久国产成人精品二区| 欧美午夜高清在线| 国产1区2区3区精品| 日韩欧美免费精品| 在线观看66精品国产| 精品熟女少妇八av免费久了| 亚洲欧美日韩无卡精品| 久久人妻av系列| 亚洲狠狠婷婷综合久久图片|