• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Intelligent Dynamic Inversion Controller Design for Ball and Beam System

    2022-08-24 06:58:18IbrahimMehediAbdulahJezaAljohaniMdMottahirAlamMohamedMahmoudMohammedAbdulaalMuhammadBilalandWaleedAlasmary
    Computers Materials&Continua 2022年8期

    Ibrahim M.Mehedi,Abdulah Jeza Aljohani,Md Mottahir Alam,Mohamed Mahmoud,Mohammed J.Abdulaal,Muhammad Bilal and Waleed Alasmary

    1Department of Electrical and Computer Engineering(ECE),King Abdulaziz University,Jeddah,21589,Saudi Arabia

    2Center of Excellence in Intelligent Engineering Systems(CEIES),King Abdulaziz University,Jeddah,21589,Saudi Arabia

    3Electrical and Computer Engineering,Electrical and Computer Engineering,TN,38505,United States

    4Computer and Information Systems,Umm Al-Qura University,Makkah,Saudi Arabia

    Abstract: The Ball and beam system(BBS)is an attractive laboratory experimental tool because of its inherent nonlinear and open-loop unstable properties.Designing an effective ball and beam system controller is a real challenge for researchers and engineers.In this paper,the control design technique is investigated by using Intelligent Dynamic Inversion (IDI) method for this nonlinear and unstable system.The proposed control law is an enhanced version of conventional Dynamic Inversion control incorporating an intelligent control element in it.The Moore-Penrose Generalized Inverse(MPGI)is used to invert the prescribed constraint dynamics to realize the baseline control law.A sliding mode-based intelligent control element is further augmented with the baseline control to enhance the robustness against uncertainties,nonlinearities,and external disturbances.The semi-global asymptotic stability of IDI control is guaranteed in the sense of Lyapunov.Numerical simulations and laboratory experiments are carried out on this ball and beam physical system to analyze the effectiveness of the controller.In addition to that,comparative analysis of RGDI control with classical Linear Quadratic Regulator and Fractional Order Controller are also presented on the experimental test bench.

    Keywords: Ball and beam system(BBS);unstable system;internal model;PD controllers;IDI control;robust control

    1 Introduction

    The ball and beam system (BBS) is a standard laboratory experimental setup and serves as an essential benchmark to investigate and validate the performance of various control strategies[1].The tilt angle of the beam is the most significant action through which the ball position is controlled systematically by varying the tilt angle.It is an under-actuated open-loop unstable system having two degrees of freedom.The fundamental idea of BBS can be applied to a wide range of applications such as stabilizing the aircraft in its horizontal position while landing,tanker on-road carrying liquid,aircraft yaw roll control,goods handling problem by industrial robots,etc.

    The control of an under-actuated system is an active research field having fewer control inputs than the state variables that need to be controlled.The experimental setup of BBS deals with the two loops control strategy.The outer loop is responsible for ball position control,whereas the inner loop is engaged for servo angle control.Due to its double loop control strategies,it is not easy to control this system using linear controllers[2].Therefore,several control techniques are proposed in the literature to investigate the tracking and stabilization problem of BBS[3-5].

    A feedback linearization method is applied for BBS,which produces singularity and does not produce good results[3].A Fuzzy-based controller is investigated in[6],showing the tracking performance numerically without implementing it on a practical testbed.The Fuzzy and Neural Networks based algorithms are presented in[7,8].The robust control technique based on the sliding mode approach is also investigated for the ball balancing problem,see[9,10].A Backstepping controller is designed in[11]to simulate the tracking problem of BBS.An anti-windup compensator(AWC)control scheme is also demonstrated in[12].Similarly,the optimal performance of Model Predictive Control(MPC)is investigated to evaluate the tracking characteristics for ball and beam equipment[5].

    Recent work was proposed designing a controller comprising two embedded loops based on linear fractional-order calculus [2].The outer-loop and inner-loop control the ball’s location on the beam and angle of servo gear,respectively.The prime focus of this method of control is to demonstrate a fractional-order control scheme to enhance efficiency,which is reported in several journals [13-17].However,the performance is unsatisfactory because an integer order traditional controller is related to the non-integer order integrator,which is used in the outer loop.

    In addition to that,Nonlinear Dynamic Inversion(NDI)was also implemented for this ball and beam underactuated system,see [18].However,this control method requires the exact model of the plant dynamics.

    Therefore,NDI control may possess certain shortcomings and limitations while developing the algorithms.This includes the simplified approximations to introduce the inverse model of plant dynamics,square dimensionality condition,useful nonlinearity cancellations,etc.

    Recently a control law focused on the inversion principle is proposed known as Generalized Dynamic Inversion (GDI),which addresses the limitations of the classical NDI approach [19].The control objectives of GDI are defined in the form of differential state constraints which are calculated along the solution paths of the system dynamics.The control law is obtained by inverting the suggested constraints using Moore-Penrose Generalized Inverse (MPGI) [20].Further,the GDI algorithm is made intelligent by augmenting the switching term based on the concept of classical SMC principle to ensure robustness against parametric uncertainties and un-modeled dynamics while guaranteeing semi-global asymptotic stability conditions[21-25].

    A two-loop control architecture is employed in this paper to solve the tracking and stabilization problem for two degrees of freedom under actuated BBS.A proportional derivative (PD) control is implemented in the outer loop to generate rotary servo angle commands based on the ball position on the beam.An intelligent version of GDI,Intelligent Dynamic Inversion(IDI),is used to process the inner loop’s angular command.Identical (baseline) control and switching (continuous) control elements make up this IDI control system.The baseline control enforces the constraint dynamics based on the deviation function of the rotary servo angle for stable attitude tracking,while the switching control ensures robustness against nonlinearities and external perturbations.As a result,the proposed control guaranteed a semi-global attitude tracking system and bounded tracking errors.Quanser’s BBS is used to simulate and perform laboratory experiments on the controller performance and compare the controller performance to existing control strategies.

    The remaining sections of the paper are described as follows.The modeling of BBS is presented in Section 2.The two-loop control structure is discussed in Section 3.The classical PD control design for the outer position loop is presented in Section 4.The design implementation of IDI control for tracking the servo angle command is given in Section 5.The detailed stability analysis that will guarantee semi-global asymptotic stability was illustrated in Section 6.Controller validation through computer simulations and experimental findings are reported in Sections 7 and 8.Finally,the concluding remarks are given in Section 9.

    2 Description of BBS

    Quanser developed BBS,a benchmark laboratory test bench [1],to validate control algorithms that are defined relative degrees with nonlinear attributes.The two significant ball and beam setup components are the ball and beam unit and rotary servo unit.One end of the finite length beam is fixed by a shaft,whereas the other end is connected to the rotary servo unit,as shown in the schematic diagram in Fig.1.Therefore,this unstable architecture is well known as an open-loop system in control technology.The core objective is to orient and stabilize the ball placed on the beam according to the commanded reference input profile.In Fig.1,xis the linear displacement ball,mbis the mass,rbis the beam’s radius,andJbis the ball’s momentum,respectively.The relative angle of the beam concerning the horizontal plane is denoted byα,whereas the gravitational acceleration is mentioned byg.The expression of the linear acceleration of the ball is given as Eq.(1).

    Figure 1:Ball and beam system

    Similarly,the relation between the beam angleαand servo angleθl(t)is expressed as

    whereLbeamis the length of the beam andrarmis the gap between the rotary servo output gear and the coupled joint.To relate the linear displacementxwith the rotary servo angleθ,place the expression ofsinα(t)in the linear acceleration equation given by Eq.(2),it implies

    The second major component of the ball and beam setup is the rotary servo base unit which comprises a DC motor with a gearbox,as shown in Fig.2.The subscriptmrepresents the motor attributes in the given schematic,whereaslcharacterizes the load shaft variables.In the rotary servo unit,the resistance is denoted byR,Lis the inductance,ωis the angular speed,τis the applied torque,Jis the moment of inertia,andBstands for the viscous friction.The variableebrepresents the backelectromotive voltage,wherekmis the back-emf constant.To realize the dynamical model of the rotary servo unit,the mechanical and electrical systems are combined to form the relationship between the angular speed of the motor load shaftωland the applied controlled voltageVm.The dynamical system is represented by the following equations

    where the equivalent moment of inertiaJeqis expressed as

    Figure 2:Rotary servo unit

    and the equivalent damping termBeqvis given by

    In the expressions of the equivalent moment of inertia and damping,ηgandηmrepresent the efficiency of the gearbox and motor,respectively.The motor torque constant is denoted bykt,andkgis the gear ratio.The actuator gainAmis computed as

    The numerical value of the BBS parameters is listed in Tab.1,see[1,26].

    3 Cascade Control Architecture

    A cascade control architecture based on the time separation principle is proposed to control the ball’s position on the beam,as shown in Fig.3.Based on the measured ball positionx,the outer positional loop computes the desired angleθldof the servo load shaft by engaging the classical PD control.The inner fast attitude loop incorporates IDI control to track the desired angleθldby generating the corresponding motor controlled voltageVsuch that the desired ball position on the beam is achieved in minimal time.

    Table 1:BBS specifications

    Figure 3:Cascade control architecture

    4 Outer Loop PD Control Design

    Given the desired and actual ball’s position,i.e.,xdandx,the classical PD controller is engaged in the outer loop to generate the desired servo angle commandθldfor the inner loop to minimize the positional error of the ball placed on the beam.The asymptotically stable virtual(desired)dynamics to computeθldbased on the positional error of the ball in the horizontal plane is expressed as

    wherekpandkdare controller gains chosen to calculate the suitable value ofθldsuch thatxapproachedxdin minimum time.It is noteworthy to mention here that the position feedback of the ball is acquired from an analog sensor with its inherent noise.By taking its derivative,it will generate an amplified high-frequency signal transmitted to the inner loop via feedback which causes the grinding noise in the motor.The derivative is replaced by a first-order filter governed following dynamics to compensate for this effect.

    whereωfrepresents the cutoff frequency,whose value is set to be 6.28 rad/s.

    5 Attitude Control Using IDI

    This section discussed the design and implementation of IDI control for attitude control of the rotary servo unit of BBS.The proposed non-square inversion-based intelligent controller proves to be an efficient and effective control strategy to deal with complex nonlinear systems.The control law comprises two major components,i.e.,an equivalent or baseline control and a switching control component.The general form of IDI control law is expressed as follows

    The first componentueqrepresents the baseline controller,which enforces the prescribed constraint dynamics based on the attitude deviation function for stable attitude tracking.On the other hand,urbtrepresents the discontinuous control element whose design principle is based on the classical SMC approach to address robustness against uncertain dynamics,parametric variations,and external disturbances.

    5.1 Baseline Control Design

    The equations of motion of rotary servo unit angular rate dynamics given by Eq.(5)is expressed as

    whereζθl=x1e2θl=x1(θl-θld)2andζωl==x2(ωl-ωld)2are the deviation functions andωlis the angular speed.The order of the constraint equation is equal to the relative degree of the respective controlled variable.The coefficientsc1,c2,andc3are selected such that the characteristic polynomials are given by Eqs.(13),and(14)is Hurwitz,such thatζθl→0 andζωl→0 ast→∞[19].Computing and substituting the time derivatives in the constraint dynamics given by Eqs.(13)and(14)yields the following under-determined equivalent algebraic system.

    where the elements of the controls coefficient column vector function A:Rn×[t0,∞)→R2×1is given by

    A1=2x1eθlG

    A2=2x2eωlG

    and the elements of the controls load vector function B:Rn×[t0,∞)→R2×1are given as

    The baseline or equivalent controlled voltageVmeqis computed by inverting the algebraic system given by Eq.(15)using MPGI yields the following expression

    where A+represents the MPGI of A defined as

    Remark 1:The matrix A2×1appeared to be a tall matrix,which causes the value ofPto become zero by using the property of pseudo-inverse A+A=1.Hence the under-determined nature of constraint dynamics does not qualify with the benefit of the null control vector due to the ineffectiveness of the null projection matrix.Hence,the null control is supposed to be incompetent and not considered in the present control design methodology.

    5.2 Switching Control Design

    A suitable discontinuous control element is determined to solve the reachability problem,which ensures robustness against parametric uncertainties,system nonlinearities,and external disturbances.The resultant GDI-SMC or IDI control law is constructed to be of the following form

    where s=[sθl sωl]Tis an appropriate switching surface vector,whose vector elements are defined as

    Moreover,K is 2 × 2 diagonal gain matrix with positive valued diagonal elementsk1andk2,ensuring that the sliding mode dynamics are maintained and attained.Therefore,the controlled voltageVmgiven by the Eq.(18)is reasonably competent to attract the sliding surfaces given by Eqs.(19)and(20)and enforce the system trajectories to slide along the sliding surfaces.

    6 Stability Analysis

    The time derivatives of the sliding surfaces are evaluated as

    It has been observed that the asymptotic convergence of the sliding surfacessθlandsωlto zero implies the asymptotic realization of the constraint dynamics given by the Eqs.(13)and(14),and its equivalent algebraic form given by Eq.(15).Hence,the sliding vector s is defined as

    To prove the asymptotic convergence of the error dynamics,place the control lawVmgiven by Eq.(18)in sliding mode dynamics given by Eq.(23),resulting in

    Consider the following positive definite Lyapunov candidate function

    The time derivative ofVis computed as

    The 2-(induced) norms of AA+and AA+-I2×2are unity.It follows that≤0 is guaranteed ifσmin(K)>‖ B(x(0),0)‖,whereσminis the minimum singular value function.Moreover,because=0 occurs only at s=02,it follows Lassale’s principle [27]that s=02is attractive.Moreover,the discontinuous term in the right-hand side of Eq.(26)implies that this condition on K guarantees finite-time convergence of s and ˙sto the zero vectors,which implies asymptotic convergence ofeθlandeωlto zero.Finally,because it is assumed that the matrix gain K can be increased arbitrarily such that the stability condition is satisfied for any initial state condition,it follows that the design guarantees semi-global asymptotic stability of

    7 Numerical Simulation

    This section investigates the performance of IDI control law through computer simulations on the dynamical simulator of BBS developed by considering the model of ball and beam unit given by Eq.(3)and the model of rotary servo unit given by Eqs.(4)and(5).The simulation environment is created in Simulink/Matlab,in which the closed-loop performance is evaluated by commanding the square wave profile having an amplitude of ±20mwith 0.05Hzfrequency,assuming nominal system parameters.The initial condition of the system state vector is set as[0 0 0 0 0 0]The time histories of the position tracking curve of the ball is shown in Fig.4,which is quite appealing.The inner loop rotary servo angle tracking performance using IDI control is depicted in Fig.5,which demonstrates faster convergence towards the angular reference command.Finally,the servo motor controlled voltage well within the saturation limit is displayed in Fig.6.

    Figure 4:Simulations:ball position

    Figure 5:Simulations:beam angle

    Figure 6:Simulations:controlled voltage

    8 Experimental Results

    To investigate the real-time performance of balancing the ball on a beam,the IDI control law developed in Section 5 is implemented on Quanser’s ball and beam real hardware,as shown in Fig.7,which proves to be a benchmark testbed for testing and validating control techniques.

    Figure 7:Experimental setup

    The experimental setup comprised the power module VoltPAQ-X1 for supplying voltage to the rotary servo motor module.The servo motor is placed at the right corner of the beam to move the beam in an upward and downward direction.The ball placed on the beam rolls on the track accordingly by changing the slope of the beam.The ball position and the angular position feedback commands are sent to the computer through Quanser’s Q8-USB data acquisition card.The communication between Simulink/MATLAB and the experimental hardware is accomplished through the QUARC software.The sampling time is chosen to be 2msfor all the experiments.

    8.1 Step Response Analysis

    In this analysis,the core objective is to present the comparative analysis of IDI control with classical Linear Quadratic Regulator(LQR)and Fractional Order Control(FOC)strategies.The ball is commanded to follow the step input profile in this setup.The initial position of system states arex=-18cm,=0cm,θl=0deg,and=0deg,whereas the desired step command is set to bexd=10cm.The three control methodologies were implemented on a practical BBS test bench,and the tracking curves of ball position,beam angle,and the controlled voltages are shown in Figs.8-10.It is evident from Fig.8 that the response curves of positional tracking with IDI control are faster in terms of rising time and settling time.

    Figure 8:Experimental results:ball position

    Figure 9:Experimental results:attitude tracking

    Figure 10:Experimental results:controlled voltage

    Furthermore,the FOC suffers from high overshoot,whereas many steady-state errors were observed in the LQR response.On the other hand,the IDI controller demonstrates very stable time-domain performance near reference input with less overshoot and steady-state error.The time evolution of desired and actual angular profiles and the time histories of the controlled voltages generated in response to the step input command are shown in Figs.9 and 10,respectively.

    8.2 Disturbance Rejection Capability

    This section highlighted the disturbance rejection capability of the IDI controller when the ball is subjected to some manual disturbances.The ball position on the beam in a steady state is stimulated by tapping the ball at different time instants.The ball position plot under the effect of disturbances is shown in Fig.11.It is evident that when disturbances are applied,the ball position is perturbed but immediately returns to its stable position by control reaction and re-stabilized.The jerks appeared in the angular profile due to manual perturbations,which are depicted in Fig.12.The controlled voltage under the supplied capacity is displayed in Fig.13,whose magnitude fluctuates in response to the applied disturbances.The experimental results demonstrate better disturbance rejection capability and intelligent attributes of IDI control.

    Figure 11:Experimental results:ball position

    Figure 12:Experimental results:attitude tracking

    Figure 13:Experimental results:controlled voltage

    8.3 Square-wave Tracking

    In this plot,the controllers’capability is further analyzed by commanding a reference square wave profile with an amplitude of ±20mwith 0.05Hzfrequency and the variation of 20% in the system dynamical parameters.The time evolution of the critical performance indices is illustrated in Figs.14-16.The smooth tracking response of the ball’s position placed on the beam in response to the square wave input command is shown in Fig.14.The rotary servo angular position tracking curve required to steer the ball to follow the square waveform command and the control effort in the form of generated controlled voltage are shown in Figs.15 and 16,respectively.

    Figure 14:Experimental results:ball position

    Figure 15:Experimental results:attitude tracking

    Figure 16:Experimental results:controlled voltage

    While examining the different behaviors of the controller response in the simulation and experimental results,it is claimed that the proposed controller proves itself a reasonable control approach for stabilizing the under-actuated electro-mechanical systems.

    9 Conclusion

    This paper investigates the performance of IDI control for a standard nonlinear ball and beam unstable system.A two-loops structured control is implemented in which PD control is responsible for generating the desired servo angle command based on the positional error of the ball placed on the beam.Furthermore,IDI control is engaged in the inner loop for precise attitude tracking.The results are verified through computer simulations and experimental studies in a MATLAB environment.Furthermore,a comparative analysis is presented,which exhibits the superior performance of IDI control over LQR and FOC in terms of faster error convergence with lesser steady-state error.Hence the proposed methodology is quite appealing and feasible for practical electro-mechanical systems.

    Acknowledgement:The authors extend their appreciation to the Deputyship for Research &Innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number(IFPRC-023-135-2020)and King Abdulaziz University,DSR,Jeddah,Saudi Arabia.

    Funding Statement:This research work was funded by Deputyship for Research &Innovation,Ministry of Education in Saudi Arabia under Grant No.(IFPRC-023-135-2020).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    久久亚洲精品不卡| 久久九九热精品免费| 美女 人体艺术 gogo| 亚洲国产中文字幕在线视频| 久久精品国产综合久久久| 亚洲午夜精品一区,二区,三区| 精品一区二区三区视频在线观看免费| 午夜福利18| 每晚都被弄得嗷嗷叫到高潮| 国产高清激情床上av| АⅤ资源中文在线天堂| 看片在线看免费视频| 国产乱人伦免费视频| 国产一区二区三区视频了| 久久久国产欧美日韩av| 国产一区二区三区综合在线观看| 夜夜爽天天搞| 国产成人欧美在线观看| 99国产精品99久久久久| 亚洲精品在线美女| 一区二区日韩欧美中文字幕| 国产一区二区三区在线臀色熟女| 给我免费播放毛片高清在线观看| 人妻久久中文字幕网| 人妻丰满熟妇av一区二区三区| 亚洲专区字幕在线| 亚洲精品中文字幕在线视频| 777久久人妻少妇嫩草av网站| 天堂影院成人在线观看| 三级毛片av免费| 欧美中文日本在线观看视频| 中出人妻视频一区二区| 后天国语完整版免费观看| tocl精华| 国产午夜精品久久久久久| 久久狼人影院| 色在线成人网| 国产三级在线视频| 婷婷精品国产亚洲av在线| 国产精品综合久久久久久久免费 | 激情在线观看视频在线高清| 国产伦一二天堂av在线观看| 99久久99久久久精品蜜桃| 校园春色视频在线观看| 国产伦一二天堂av在线观看| 女人高潮潮喷娇喘18禁视频| 亚洲av美国av| 在线观看免费日韩欧美大片| 久久久久精品国产欧美久久久| 欧美乱码精品一区二区三区| 午夜激情av网站| 亚洲 国产 在线| 啦啦啦免费观看视频1| 国产午夜精品久久久久久| 亚洲五月天丁香| 国产国语露脸激情在线看| 成人18禁在线播放| 国产成+人综合+亚洲专区| 不卡一级毛片| 婷婷精品国产亚洲av在线| 亚洲欧美日韩另类电影网站| 亚洲成人久久性| 97碰自拍视频| 国产亚洲av高清不卡| 美女国产高潮福利片在线看| 欧美乱色亚洲激情| 女人被躁到高潮嗷嗷叫费观| 亚洲国产高清在线一区二区三 | 亚洲熟女毛片儿| 久久香蕉激情| 久久久久久久午夜电影| 亚洲五月婷婷丁香| 成人18禁高潮啪啪吃奶动态图| 亚洲一区二区三区不卡视频| 成人三级黄色视频| 国产成人精品久久二区二区91| 操美女的视频在线观看| 日韩av在线大香蕉| 色婷婷久久久亚洲欧美| 一边摸一边抽搐一进一小说| 国产一区二区在线av高清观看| 久久天躁狠狠躁夜夜2o2o| 精品久久蜜臀av无| 一级黄色大片毛片| 天堂动漫精品| 国产麻豆成人av免费视频| 亚洲欧美日韩高清在线视频| 一区二区三区高清视频在线| 露出奶头的视频| 久久香蕉激情| 国产成人精品久久二区二区免费| 在线视频色国产色| 亚洲aⅴ乱码一区二区在线播放 | a在线观看视频网站| 自拍欧美九色日韩亚洲蝌蚪91| 国产成+人综合+亚洲专区| 亚洲av成人不卡在线观看播放网| 91av网站免费观看| 国产精品 欧美亚洲| 国产精品国产高清国产av| 一夜夜www| 日本 欧美在线| 国产精品久久视频播放| 亚洲精品一卡2卡三卡4卡5卡| 少妇 在线观看| 免费av毛片视频| 麻豆av在线久日| 国产激情久久老熟女| 热re99久久国产66热| 黑人巨大精品欧美一区二区蜜桃| 日韩视频一区二区在线观看| 色av中文字幕| 亚洲欧美日韩另类电影网站| 亚洲熟妇熟女久久| 国产国语露脸激情在线看| 黄色毛片三级朝国网站| 无遮挡黄片免费观看| 黄频高清免费视频| 国产av一区在线观看免费| 亚洲欧美日韩另类电影网站| 亚洲精品美女久久久久99蜜臀| a在线观看视频网站| 国产人伦9x9x在线观看| 亚洲成人久久性| 亚洲熟妇熟女久久| 成人国语在线视频| 侵犯人妻中文字幕一二三四区| 久久精品国产亚洲av香蕉五月| av超薄肉色丝袜交足视频| 国产精品久久电影中文字幕| 妹子高潮喷水视频| 国产av精品麻豆| 久久精品国产99精品国产亚洲性色 | 日本三级黄在线观看| 国产乱人伦免费视频| 国产av一区二区精品久久| 久久精品成人免费网站| 国产成人免费无遮挡视频| 男女之事视频高清在线观看| 级片在线观看| 悠悠久久av| 欧美老熟妇乱子伦牲交| 国产色视频综合| 天堂影院成人在线观看| 国产精品一区二区精品视频观看| 国产av一区二区精品久久| 国产成人精品无人区| 十分钟在线观看高清视频www| 中文字幕av电影在线播放| 国产高清视频在线播放一区| 国产三级黄色录像| 久久久精品国产亚洲av高清涩受| 国产成人精品久久二区二区免费| 亚洲av成人不卡在线观看播放网| 国产精品精品国产色婷婷| 极品人妻少妇av视频| 可以在线观看毛片的网站| 亚洲成人免费电影在线观看| 在线十欧美十亚洲十日本专区| 一级,二级,三级黄色视频| 欧美成人午夜精品| 成熟少妇高潮喷水视频| 一进一出好大好爽视频| 亚洲欧美精品综合一区二区三区| 亚洲片人在线观看| 如日韩欧美国产精品一区二区三区| 脱女人内裤的视频| 丁香欧美五月| 午夜精品在线福利| 一本大道久久a久久精品| 99re在线观看精品视频| 国产熟女午夜一区二区三区| 欧美国产精品va在线观看不卡| 在线观看一区二区三区| av福利片在线| 欧美日韩精品网址| 久久久久久久午夜电影| 校园春色视频在线观看| 免费在线观看影片大全网站| 色综合站精品国产| 国产熟女午夜一区二区三区| 久久精品亚洲精品国产色婷小说| 波多野结衣av一区二区av| 久久精品影院6| 操美女的视频在线观看| 亚洲成人免费电影在线观看| 天天添夜夜摸| 91大片在线观看| 午夜精品国产一区二区电影| 国产成人精品久久二区二区91| 国产人伦9x9x在线观看| 人人妻人人澡欧美一区二区 | 亚洲精品国产色婷婷电影| 制服丝袜大香蕉在线| 亚洲中文字幕日韩| 欧美+亚洲+日韩+国产| 男女床上黄色一级片免费看| 制服诱惑二区| 真人做人爱边吃奶动态| 午夜免费成人在线视频| 久久人妻熟女aⅴ| 日韩有码中文字幕| 午夜成年电影在线免费观看| 亚洲五月色婷婷综合| 色综合站精品国产| 九色国产91popny在线| 国产精品久久久久久亚洲av鲁大| 一本久久中文字幕| 久久久久国产精品人妻aⅴ院| 国产精品二区激情视频| 午夜久久久在线观看| 每晚都被弄得嗷嗷叫到高潮| 麻豆av在线久日| 精品高清国产在线一区| 黄片小视频在线播放| 精品无人区乱码1区二区| av免费在线观看网站| 99精品欧美一区二区三区四区| 十分钟在线观看高清视频www| 国产亚洲av高清不卡| 亚洲av电影在线进入| 国产成人一区二区三区免费视频网站| 国产激情久久老熟女| 99国产精品免费福利视频| 国产精品一区二区三区四区久久 | 黄色丝袜av网址大全| 久久青草综合色| 日日摸夜夜添夜夜添小说| 亚洲熟女毛片儿| 国产精品香港三级国产av潘金莲| 中文字幕另类日韩欧美亚洲嫩草| 美女扒开内裤让男人捅视频| 男人舔女人的私密视频| www.www免费av| 国产亚洲精品一区二区www| 欧美激情 高清一区二区三区| 日韩一卡2卡3卡4卡2021年| 欧美成人午夜精品| 日韩av在线大香蕉| 国产伦一二天堂av在线观看| 国产精品日韩av在线免费观看 | 亚洲,欧美精品.| 日本vs欧美在线观看视频| 亚洲欧美日韩另类电影网站| 高清黄色对白视频在线免费看| 精品国内亚洲2022精品成人| 亚洲成人国产一区在线观看| www.精华液| 午夜精品国产一区二区电影| 视频在线观看一区二区三区| 久久久久国产精品人妻aⅴ院| 亚洲精品国产精品久久久不卡| 日韩欧美在线二视频| 黑人巨大精品欧美一区二区蜜桃| 欧美乱妇无乱码| 757午夜福利合集在线观看| 19禁男女啪啪无遮挡网站| 日本三级黄在线观看| 亚洲性夜色夜夜综合| 久久久久精品国产欧美久久久| 黄色 视频免费看| av网站免费在线观看视频| 亚洲av成人一区二区三| 亚洲精品国产精品久久久不卡| 欧美国产日韩亚洲一区| 啦啦啦免费观看视频1| 一进一出抽搐动态| 悠悠久久av| 最近最新免费中文字幕在线| 岛国在线观看网站| 欧美日韩乱码在线| 黑人操中国人逼视频| 国产精品免费一区二区三区在线| 欧美一级毛片孕妇| 久久久国产欧美日韩av| x7x7x7水蜜桃| 大型黄色视频在线免费观看| 欧美成狂野欧美在线观看| 9热在线视频观看99| 国产精品自产拍在线观看55亚洲| 真人做人爱边吃奶动态| 变态另类丝袜制服| 午夜免费鲁丝| 美女高潮喷水抽搐中文字幕| 午夜久久久久精精品| 免费少妇av软件| 日韩大码丰满熟妇| 黄片播放在线免费| 欧美精品亚洲一区二区| 老司机午夜十八禁免费视频| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲五月天丁香| 亚洲情色 制服丝袜| 亚洲三区欧美一区| АⅤ资源中文在线天堂| 国产精品秋霞免费鲁丝片| 欧美绝顶高潮抽搐喷水| 1024香蕉在线观看| 国产熟女午夜一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 日日干狠狠操夜夜爽| 好男人在线观看高清免费视频 | 成人三级黄色视频| 首页视频小说图片口味搜索| 亚洲伊人色综图| 在线观看日韩欧美| 国产精品综合久久久久久久免费 | 国产精品98久久久久久宅男小说| 亚洲国产精品成人综合色| 久久精品亚洲精品国产色婷小说| 极品教师在线免费播放| 欧美乱码精品一区二区三区| 亚洲性夜色夜夜综合| 看片在线看免费视频| 在线免费观看的www视频| 操出白浆在线播放| 超碰成人久久| 一区福利在线观看| 性色av乱码一区二区三区2| 中文字幕最新亚洲高清| 91字幕亚洲| 日韩欧美免费精品| 最新美女视频免费是黄的| 亚洲全国av大片| 免费人成视频x8x8入口观看| 真人做人爱边吃奶动态| 男女下面进入的视频免费午夜 | cao死你这个sao货| 亚洲色图综合在线观看| 国产又色又爽无遮挡免费看| 青草久久国产| 亚洲专区字幕在线| 国产精品二区激情视频| 国产亚洲欧美精品永久| 女人被躁到高潮嗷嗷叫费观| 制服丝袜大香蕉在线| 人人澡人人妻人| 91成人精品电影| 99在线视频只有这里精品首页| 777久久人妻少妇嫩草av网站| 91精品三级在线观看| 久久久久国产一级毛片高清牌| 日本免费一区二区三区高清不卡 | 精品国产国语对白av| 婷婷六月久久综合丁香| 一进一出抽搐动态| 国产精品98久久久久久宅男小说| 黄色视频不卡| 亚洲av电影不卡..在线观看| 亚洲成人久久性| 亚洲精品美女久久久久99蜜臀| 又大又爽又粗| 手机成人av网站| 69av精品久久久久久| 欧美精品啪啪一区二区三区| 亚洲黑人精品在线| 亚洲五月色婷婷综合| 久久天躁狠狠躁夜夜2o2o| 欧美不卡视频在线免费观看 | 亚洲熟妇熟女久久| 日韩成人在线观看一区二区三区| tocl精华| 久久精品91蜜桃| 日韩欧美三级三区| 久久青草综合色| 精品乱码久久久久久99久播| 可以免费在线观看a视频的电影网站| 日韩成人在线观看一区二区三区| 人妻久久中文字幕网| 搡老熟女国产l中国老女人| 俄罗斯特黄特色一大片| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美乱妇无乱码| 亚洲精品国产区一区二| 高清黄色对白视频在线免费看| 一本综合久久免费| 亚洲av熟女| 亚洲国产精品合色在线| 国产亚洲精品久久久久5区| 中文字幕精品免费在线观看视频| av视频在线观看入口| 看片在线看免费视频| 淫秽高清视频在线观看| 怎么达到女性高潮| 亚洲中文av在线| 中文字幕高清在线视频| 免费在线观看完整版高清| 很黄的视频免费| 悠悠久久av| 国产欧美日韩综合在线一区二区| 男女午夜视频在线观看| 一进一出抽搐动态| 久久久国产欧美日韩av| 成年女人毛片免费观看观看9| 18禁观看日本| 国产麻豆69| 涩涩av久久男人的天堂| 母亲3免费完整高清在线观看| 亚洲专区国产一区二区| tocl精华| 欧美国产精品va在线观看不卡| 成在线人永久免费视频| 脱女人内裤的视频| 国产精品二区激情视频| 久久热在线av| 精品一区二区三区视频在线观看免费| 久久人妻熟女aⅴ| 色老头精品视频在线观看| 国产精品 国内视频| 在线观看免费视频日本深夜| 欧美人与性动交α欧美精品济南到| 午夜视频精品福利| 热99re8久久精品国产| 免费在线观看影片大全网站| 日韩一卡2卡3卡4卡2021年| 久久国产乱子伦精品免费另类| 色综合欧美亚洲国产小说| 久久精品aⅴ一区二区三区四区| 国产精品一区二区在线不卡| 中文字幕人妻丝袜一区二区| 淫妇啪啪啪对白视频| 国产午夜精品久久久久久| 中文字幕高清在线视频| 日本a在线网址| 亚洲色图av天堂| 久久人妻熟女aⅴ| 国产乱人伦免费视频| 午夜免费激情av| 亚洲欧美精品综合一区二区三区| 后天国语完整版免费观看| 少妇粗大呻吟视频| 午夜精品久久久久久毛片777| 神马国产精品三级电影在线观看 | 亚洲伊人色综图| 女人被狂操c到高潮| 午夜a级毛片| 国产极品粉嫩免费观看在线| 成人三级黄色视频| 色尼玛亚洲综合影院| 搡老岳熟女国产| 午夜成年电影在线免费观看| 欧美黑人欧美精品刺激| 色av中文字幕| 男女床上黄色一级片免费看| 男男h啪啪无遮挡| 亚洲熟妇中文字幕五十中出| 女人爽到高潮嗷嗷叫在线视频| 69av精品久久久久久| 国产精品亚洲美女久久久| 夜夜爽天天搞| 亚洲国产欧美日韩在线播放| 好男人在线观看高清免费视频 | 国产xxxxx性猛交| www.熟女人妻精品国产| avwww免费| 国产一区二区三区在线臀色熟女| 欧美午夜高清在线| 麻豆国产av国片精品| 一级黄色大片毛片| 免费观看人在逋| 欧美日韩瑟瑟在线播放| 亚洲九九香蕉| 麻豆一二三区av精品| 国产精品九九99| 一卡2卡三卡四卡精品乱码亚洲| 欧美av亚洲av综合av国产av| 制服诱惑二区| 老熟妇乱子伦视频在线观看| 久久人妻熟女aⅴ| 午夜日韩欧美国产| 久久久国产精品麻豆| 一区在线观看完整版| 国产一区二区三区视频了| 久久精品成人免费网站| 国产精品亚洲美女久久久| 午夜福利免费观看在线| 午夜久久久久精精品| 可以在线观看的亚洲视频| 99国产精品99久久久久| 国产蜜桃级精品一区二区三区| 精品久久蜜臀av无| 亚洲一区中文字幕在线| 大型av网站在线播放| 曰老女人黄片| 午夜亚洲福利在线播放| www日本在线高清视频| 欧美成人性av电影在线观看| 精品卡一卡二卡四卡免费| 黄色视频,在线免费观看| 亚洲情色 制服丝袜| 一二三四社区在线视频社区8| 人妻丰满熟妇av一区二区三区| 在线永久观看黄色视频| 9色porny在线观看| 亚洲精品美女久久久久99蜜臀| 久久影院123| 亚洲av成人av| 人人澡人人妻人| 一二三四社区在线视频社区8| 丁香六月欧美| 亚洲精品美女久久久久99蜜臀| 成人欧美大片| 88av欧美| 精品久久久久久久人妻蜜臀av | 午夜免费观看网址| 精品午夜福利视频在线观看一区| 在线观看免费视频网站a站| 99久久国产精品久久久| 夜夜看夜夜爽夜夜摸| 真人一进一出gif抽搐免费| 成人特级黄色片久久久久久久| 亚洲国产欧美网| 在线观看免费视频网站a站| 国产人伦9x9x在线观看| 一二三四社区在线视频社区8| 成人欧美大片| 国产成人精品在线电影| 美国免费a级毛片| 高清黄色对白视频在线免费看| 亚洲av五月六月丁香网| 久久久久久久久久久久大奶| 一级毛片高清免费大全| 他把我摸到了高潮在线观看| 国产片内射在线| 欧美老熟妇乱子伦牲交| 九色国产91popny在线| 亚洲精品粉嫩美女一区| 国产精品电影一区二区三区| 国产成人精品在线电影| 精品国内亚洲2022精品成人| 亚洲av日韩精品久久久久久密| 免费久久久久久久精品成人欧美视频| 亚洲视频免费观看视频| 九色国产91popny在线| 亚洲国产精品sss在线观看| 首页视频小说图片口味搜索| 巨乳人妻的诱惑在线观看| 亚洲免费av在线视频| 丁香欧美五月| 欧美中文日本在线观看视频| 午夜免费成人在线视频| 国产成人欧美在线观看| 日韩精品青青久久久久久| 如日韩欧美国产精品一区二区三区| 制服人妻中文乱码| 国产主播在线观看一区二区| 制服人妻中文乱码| 国产黄a三级三级三级人| 久久精品国产综合久久久| 亚洲无线在线观看| 一本综合久久免费| cao死你这个sao货| 又黄又爽又免费观看的视频| 1024视频免费在线观看| 美女国产高潮福利片在线看| 日韩高清综合在线| 12—13女人毛片做爰片一| 制服诱惑二区| 婷婷精品国产亚洲av在线| 大码成人一级视频| 国产野战对白在线观看| 性少妇av在线| 搡老岳熟女国产| 性少妇av在线| 日韩成人在线观看一区二区三区| 亚洲一区高清亚洲精品| 91字幕亚洲| 亚洲成国产人片在线观看| 男女做爰动态图高潮gif福利片 | 最新在线观看一区二区三区| 最好的美女福利视频网| 中文字幕色久视频| 亚洲国产精品sss在线观看| 在线av久久热| 国产精品影院久久| 国产色视频综合| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩福利视频一区二区| 精品人妻1区二区| 老司机福利观看| 国产真人三级小视频在线观看| 午夜久久久久精精品| 婷婷精品国产亚洲av在线| 婷婷丁香在线五月| avwww免费| 在线av久久热| 久久亚洲精品不卡| 久久久久久久久免费视频了| 久久精品国产亚洲av香蕉五月| 亚洲在线自拍视频| 亚洲精品粉嫩美女一区| 怎么达到女性高潮| 国内毛片毛片毛片毛片毛片| av免费在线观看网站| 亚洲国产欧美一区二区综合| 999久久久国产精品视频| 久久草成人影院| 精品久久久久久,| 色尼玛亚洲综合影院| 99热只有精品国产| 正在播放国产对白刺激| 国产精品日韩av在线免费观看 | 欧美日本亚洲视频在线播放| 日韩有码中文字幕| 久久国产精品男人的天堂亚洲| 成人18禁在线播放| 男女做爰动态图高潮gif福利片 | 欧美久久黑人一区二区| 国产黄a三级三级三级人| 一本综合久久免费| 日本a在线网址| 久久久久久免费高清国产稀缺| 亚洲色图 男人天堂 中文字幕| 亚洲中文字幕一区二区三区有码在线看 | 国产不卡一卡二|