• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Intelligent Forensic Investigation Using Optimal Stacked Autoencoder for Critical Industrial Infrastructures

    2022-08-24 06:58:10AbdullahALMalaiseALGhamdiMahmoudRagabAlsolamiHaniChoudhryandIbrahimRizqallahAlzahrani
    Computers Materials&Continua 2022年8期

    Abdullah S.AL-Malaise AL-Ghamdi,Mahmoud Ragab,F.J.Alsolami,Hani Choudhry and Ibrahim Rizqallah Alzahrani

    1Information Systems Department,Faculty of Computing and Information Technology King Abdulaziz University,Jeddah,21589,Saudi Arabia

    2Information Technology Department,Faculty of Computing and Information Technology,King Abdulaziz University,Jeddah,21589,Saudi Arabia

    3Centre of Artificial Intelligence for Precision Medicines,King Abdulaziz University,Jeddah,21589,Saudi Arabia

    4Mathematics Department,Faculty of Science,Al-Azhar University,Naser City,11884,Cairo,Egypt

    5Computer Science Department,Faculty of Computing and Information Technology King Abdulaziz University,Jeddah,21589,Saudi Arabia

    6Biochemistry Department,Faculty of Science,King Abdulaziz University,Jeddah,21589,Saudi Arabia

    7Computer Science and Engineering Department,College of Computer Science and Engineering,University of Hafr Al Batin,Al Jamiah,Hafar Al Batin,39524,Saudi Arabia

    Abstract: Industrial Control Systems(ICS)can be employed on the industrial processes in order to reduce the manual labor and handle the complicated industrial system processes as well as communicate effectively.Internet of Things (IoT) integrates numerous sets of sensors and devices via a data network enabling independent processes.The incorporation of the IoT in the industrial sector leads to the design of Industrial Internet of Things (IIoT),which find use in water distribution system,power plants,etc.Since the IIoT is susceptible to different kinds of attacks due to the utilization of Internet connection,an effective forensic investigation process becomes essential.This study offers the design of an intelligent forensic investigation using optimal stacked autoencoder for critical industrial infrastructures.The proposed strategy involves the design of manta ray foraging optimization (MRFO) based feature selection with optimal stacked autoencoder (OSAE) model,named MFROFS-OSAE approach.The primary objective of the MFROFS-OSAE technique is to determine the presence of abnormal events in critical industrial infrastructures.The MFROFS-OSAE approach involves several subprocesses namely data gathering,data handling,feature selection,classification,and parameter tuning.Besides,the MRFO based feature selection approach is designed for the optimal selection of feature subsets.Moreover,the OSAE based classifier is derived to detect abnormal events and the parameter tuning process is carried out via the coyote optimization algorithm (COA).The performance validation of the MFROFS-OSAE technique takes place using the benchmark dataset and the experimental results reported the betterment of the MFROFS-OSAE technique over the recent approaches interms of different measures.

    Keywords: Industrial control systems;internet of things;artificial intelligence;feature selection;deep learning

    1 Introduction

    In recent time,new technologies for example Cloud computing(CC)[1]and Internet of Things(IoT) depends largely on Internet and network services for data communication and exchange.Cybersecurity has become an effective area for several experts worldwide in diverse areas of researches like Critical Infrastructure Security,Data Hiding,Big Data Security,cloud,and IoT forensics [2].Industrial Control System (ICS) comprises different classes of control system namely Distributed Control Systems (DCS),Programmable Logic Controllers (PLC),and Supervisory Control and Data Acquisition (SCADA) [3].Each control scheme is found in the crucial infrastructure and industrial sectors namely transportation network,Gas Pipelines,water distribution network,gas,nuclear power generation,and electric power distribution network[4].The major variation among the conventional Information Technology(IT)environments and ICSs is that ICS strongly interacts with the physical devices and instruments.At the present time,ICS is considered cyber-system,hence,they are susceptible to attacks from outside and inside environments.ICS is very difficult when compared to conventional IT systems since they involve various parts found in single geographical area [5].From a cybersecurity viewpoint,the ICS system consists of Field,Enterprise,and Control tiers.Fig.1 illustrates the process involved in digital forensics method.

    Over the last decades,Smart device has been turning out at fast speed.The IoT is an emerging innovation that allows the capability to connect objects or things to the computerized world for information forwarding [6].But,most of these IoT object is easily compromised and hacked.Accordingly,the security of IoT has become a challenging consideration.The risk revealed to the smart device should be resolved [7].The battle among malware designers and security experts is an everlasting fight.Current studies emphasize the growth of things as a result of which the pattern of malware is emerging.For identifying and detecting this malware the ML method is employed.To remain conscious of malware,security specialists and experts should continually extend their cyber defences.One key element is a maximal secured system at the endpoint.Endpoint defence offers a set of security strategies e.g.,email security,firewall,anti-spam,sandboxing,and URL filtering.Currently,ML method plays an important role in cyber-security for detecting anomalies.Various methods like behavioural-based methods,anomaly-based methods,signature-based systems,and so on.But,behavioural-based method is very effective when compared to the anomaly and signaturebased methods.Because of the heterogeneous norm of IoT deployment,emerging an effective network forensic solution demand depth-analysis for detecting and tracing attacks[8-10].

    Koroniotis et al.[11]proposed a network forensic architecture called Particle Deep Framework(PDF),depending on deep learning and optimization method.Next,usage of optimization technique based PSO to choose the hyperparameter of the DNN.Then,the comparison and of evaluation the performances demonstrated by the DNN with another classification method.Chhabra et al.[12]presented a method for big data forensics,with effective precision and sensitivity.In the suggested method,a comprehensive forensic architecture was presented that uses Google programming method,MapReduce as the support for traffic analysis,translation,and extraction of dynamic traffic feature.For the presented method,researchers have employed publicly available tools such as Mahout,Hadoop,and Hive.

    Selim et al.[13]introduced investigative research of finding malicious activities,cyberattacks,and anomalies in a cyber-physical of crucial water framework in the IIoT architecture.This work employs different ML methods for classifying the anomalies event including IIoT hardware failures and attacks.A real-time data set covering fifteen anomaly events of standard system activity were examined for the study of presented model.The test situation includes a wider-ranging of occurrences from hardware failure to water SCADA device damage.Usman et al.[14]presented a hybrid model based on Cyber Threat Intelligence,Dynamic Malware Analysis,Data Forensics,and ML.The presented technique compute severity and highlight the big data forensic problems,assessing the confidence,risk score as well as lifespan at the same time.

    Cui et al.[15]examined the usage of a multilayer model to security which generates an exhausttrail of digital evidence,based on the features of the system attacks.Then,this method is estimated regarding general features of system breaches,and a set of considerations and characteristics for structure designer has been introduced.Zheng et al.[16]proposed a secured storage auditing system that supports effective key updates and is utilized in cognitive industrial IoT platforms.Furthermore,the presented method prolonged to assist batch auditing viz.appropriate for many end devices to audit the data block instantaneously.

    This study offers the design of a manta ray foraging optimization(MRFO)based feature selection with optimal stacked autoencoder(OSAE)model,named MFROFS-OSAE model.The primary aim of the MFROFS-OSAE system is to determine the presence of abnormal events in critical industrial infrastructures.The MFROFS-OSAE technique involves several subprocesses namely data gathering,data handling,feature selection,classification,and parameter tuning.Besides,the MRFO based feature selection approach is designed for the optimal selection of feature subsets.Moreover,the OSAE based classifier is derived to detect abnormal events and the parameter tuning process is carried out via the coyote optimization algorithm (COA).The performance validation of the MFROFS-OSAE technique takes place using the benchmark dataset.

    The rest of the paper is planned as follows.Section 2 introduces the proposed model,Section 3 develops the experimental validation,and Section 4 draws the conclusion.

    2 The Proposed Model

    This study has designed an MFROFS-OSAE technique for intelligent forensic investigation on critical industrial infrastructures.The proposed model effectively determines the presence of abnormal events in critical industrial infrastructures.The MFROFS-OSAE technique involves several subprocesses namely data gathering,data handling,MFRO based feature selection,SAE based classification,and COA parameter tuning.Fig.2 demonstrates the overall process of MFROFS-OSAE technique.

    Figure 2:Overall process of MFROFS-OSAE technique

    2.1 Data Collection Process

    IoT device has been deployed on a network which is under examination.The device has been organized in a promiscuous model,therefore allowing us to view each traffic in a local network.Then,Network packets is performed by applying network capturing tools namely Ettercap,Wireshark,and Tcpdump.The gathered pcap files are later transmitted to the data gathering phase.

    2.2 Data Handling Process

    This is the initial phase in the network investigation method,where the information is collected in a form that could be further examined and analyzed,namely the UNSW-NB15 and BoT-IoT datasets.At first,for the preservation purpose,an SHA-256 hashing function is applied for maintaining the privacy of the gathered information.By using this hashing function,the generated digest of the gathered files is utilized post-investigation to declare that the primary information hasn’t been compromised.Then,the gathered pcaps are treated by data flow extraction models such as Bro or Argus,which extracts the network flow from the pcap file.A further step during this phase is pre-processing,by managing unuseful and missing feature values,producing and re-scaling original features that could help a model training.Afterward cleaning and filtering data sets,the OSAE method is employed for discovering cyberattacks and traces their origin.

    2.3 MRFO Based Feature Selection Process

    At this stage,the MRFO algorithm can be used to choose an optimal subset of features.Zhao et al.[17]proposed a meta heuristic optimization method called manta ray foraging optimizer(MRFO) stimulated from the manta rays in catching the prey and the foraging behavior.Followed,chain,somersault,and cyclone foraging are the three foraging operators.The chain foraging is mathematically formulated by:

    In whichx(it)represent the ith individual location at iterationt,rindicates an arbitrary vector in range;indicates the optimal solution at iterationt,Nshows the amount of manta rays andαsignifies a weight coefficients:

    Regarding the location of ith individual excepting the initial one is reliant on the optimal oneand the location of(i-1)thindividual.

    whereωrepresent an arbitrary value in range of Da Luz etα(2020),

    In whichβrepresent a weighting factor:In the equation,tsignifies the existing iteration,Trepresent the maximal amount of iterations andr1denotes an arbitrary value in range.The cyclone foraging has better exploitation for the optimal solution space since each manta rays do search procedure for the food according to the reference position[18].Furthermore,this procedure improves the exploration method by forcing the individual to search for novel position that is farther from the present optimal one.It is executed by allotting an arbitrary location in the searching space:

    In whichLbandUbindicate the lower and upper bounds of the problem variable,χrandsignifies an arbitrary location allotted for the searching space.The somersault foraging is last stage followed in MRFO where the food is observed as a hinge.In this phase,all the manta rays tend to swim back and forth around the tumble and hinge to a novel location:

    WhereasSdenotes a factor of somersault applied in determining the manta rays somersault range,r2&r3represent arbitrary numbers in range.In this stage,the distances among the best one and the manta ray position decrease that implying converge to the optimum solution.The feature selection using the FS method is represented as aNsized vector in whichNsignifies the amount of features.Now,all the locations of the vector could assume the value as 0 or 1 in which 0 indicates the feature isn’t selected and 1 represents the features is elected.The transfer function shows the probability of differing position vector components from zero to one and vice versa more effectively and easily.A transfer function greatly impacts the result of the FS method during searching the optimum set of features related to avoiding local optimal issues and maintaining the tradeoffs amongst exploitation as well as exploration procedures.As abovementioned,the fitness function(FF)for deciding solution from this state crated to attain balance among the 2 objectives as:

    ΔR(D)indicates the classification error rate.|Y|indicates the size of subset and|T|overall number of features included from the present data sets.αdescribes the variable ∈[0,1]compared to the weight of error rate of classification howeverβ=1-αimplies the consequence of feature reduction.

    2.4 OSAE Based Classification Process

    During classification process,the chosen subset of features is passed into the OSAE model.From the fundamental viewpoint,the AE is an axisymmetric SLNN[19].The AE encoded the input sensor information by utilizing the hidden state,estimating the minimal error,and attaining the optimumfeature hidden state term.For sample,the AE doesn’t learn some practical features with copy and input memory as to implicit state,but it is recreate input data with maximum precision.In order to the adhesion state recognition of locomotive,kgroups of observing information{x1,x2,x3,...,xn}occur that are recreated as toN×Mdataset{x(1),x(2),x(3),...,x(N)},x(i)∈RM.This data is utilized as input matrix X.An input information encoding by AE was utilized for constructing a mapping connection.During this case,the activation function of AE is sigmoid that is planned for obtaining an optimum demonstration of input information:h(X,W,b)=σ(WX+b).The sparse penalty as included to sparse AE cost function for limiting the average activation value of hidden state neurons.Usually,once the resultant value of neuron is one,it can be active,and the neuron has inactive once its resultant value is zero.The determination of applying sparsity is for limiting the unwanted activation.aj(x)is fixed asjthactivation values.During the procedure of feature learning,the activation values of hidden state neurons are generally written asa=sigmoid(WX+b),whileWimplies the weight matrix andbrepresents the deviation matrix[20].The mean activation value ofjthneurons from the hidden state is determined as:

    The hidden state was retained at lesser value for ensuring that standard activation value of sparse variable was determined asρ,as well as the penalty expression was utilized for preventingρjin deviate in parameterρ.The Kullback-Leibler (KL) divergence was employed under this analysis of the fundamental of punishment:

    Whenρjdoesn’t differ in parameterρ,the KL divergence values are zero;else,the KL divergence value is slowly improved with deviations.The cost function of NN is set asC(W,b).Afterward,the cost function of increasing the sparse penalty expression as:

    whereS2refers to the amount of neurons from the implicit state andβsignifies the weight of sparse drawback expression.The trained focus on NN is for finding the suitable weight and threshold parameters(W,b).Next,the sparse penalty expression was determined,the sparse term is attained by reducing the sparse cost function.For optimal tuning of the parameters involved in the SAE model,the COA is utilized.COA is a recently developed metaheuristic method that is presented by Qais et al.[21].COA has a stimulating method to get a balance among exploitation and exploration.The method begins withNPamount of populations andNcamount of coyotes as the candidate solution:

    In which,cdetermines the number andpdetermined the group andtdescribes the simulation time for the model variable.In the beginning,random cayote has been produced as a solution candidate in the searching space as follows

    In the equation,η∈[0,1]indicates is a random value andUrjandLrjdetermines the upper and lower ranges of jth dimension in the searching space as follows[21]:

    The process randomly upgrades the group position.As well,the candidate updated their location by leaving their groups to another one as follows:

    The optimal solution of all the iterations is taken into account as the alpha coyotes in the equation:

    The general characteristics of the coyote for the culture transformation are given in the following:

    Let,Rp,tbe the coyote,social condition ranking for group numberpat timetfor the dimensionj:

    In the equation,rj∈[0,1]determines a random value andr2signifies an arbitrary coyotes in the groupp,σjdefines an arbitrary values within the design variable limits,j1andj2determined random design variable,andpraandprsrepresents the scatter and association likelihoods,correspondingly states that the coyote cultural diversity from the group as follows[22]:

    Whileddefines the dimension for variable.The cultural transition amongst the groups is determined byδ1andδ2factors:

    Consider,δ1signifies the culture difference among the designated coyote(cr1)and the leader(alpha)andδ2represent the cultural differences amongst the selected coyote(cr2)and group culture trending.To upgrade the social behaviour according to the group and the leader impact,the subsequent formula has been applied:

    Whereasr1andr2indicates random numbers among zero and one.Consider the update equation,the new cost can be attained by:

    A significant part of this technique is its capacity to escape from the local optimal point.

    3 Experimental Validation

    The performance validation of the MFROFS-OSAE technique takes place using two benchmark datasets namely Bot-IoT and UNSW_NB15 datasets.

    Tab.1 and Fig.3 offer a brief result analysis of the MFROFS-OSAE technique under various epochs.The results show that the MFROFS-OSAE technique has effectually attained maximum detection performance.For instance,with 10 epochs,the MFROFS-OSAE technique has obtained accuracy,precision,recall,and F-score of 99.94%,100%,99.94%,and 99.92%respectively.Moreover,with 30 epochs,the MFROFS-OSAE method has achieved accuracy,precision,recall,and F-score of 99.92%,100%,99.95%,and 99.93%correspondingly.Simultaneously,with 50 epochs,the MFROFSOSAE algorithm has gained accuracy,precision,recall,and F-score of 99.91%,100%,99.91%,and 99.91% respectively.Concurrently,with 60 epochs,the MFROFS-OSAE methodology has reached accuracy,precision,recall,and F-score of 99.94%,100%,99.95%,and 99.94%correspondingly.

    Table 1:Result analysis of MFROFS-OSAE technique with different measures

    Figure 3:Result analysis of MFROFS-OSAE technique with varying measures

    Fig.4 illustrates the ROC analysis of the MFROFS-OSAE system on the test dataset.The figure shows that the MFROFS-OSAE technique has reached increased outcomes with the minimal ROC of 99.8869.

    Figure 4:ROC analysis of MFROFS-OSAE technique

    Fig.5 demonstrates the ROC analysis of the OSAE algorithm on the test dataset.The figure depicted that the OSAE method has gained improved outcomes with the lower ROC of 99.8341.

    Figure 5:ROC analysis of OSAE technique

    Fig.6 showcases the ROC analysis of the SAE technique on the test dataset.The figure revealed that the SAE algorithm has achieved enhanced outcomes with the minimal ROC of 99.7124.

    Figure 6:ROC analysis of SAE technique

    The DR analysis of the MFROFS-OSAE method with FS-DNN model on the Bot-IoT dataset is given in Tab.2 and Fig.7.The results show that the MFROFS-OSAE system has resulted in maximal efficiency over the other one.For instance,the MFROFS-OSAE algorithm has classified the instances under DDoS class with the higher DR of 99.21%whereas the FS-DNN technique has obtained lower DR of 99%.Similarly,the MFROFS-OSAE technique has classified the instances under DoS class with the increased DR of 99.30%whereas the FS-DNN method has attained decreased DR of 99%.Followed by,the MFROFS-OSAE method has classified the instances under Information theft class with the superior DR of 99.01%whereas the FS-DNN system has reached a reduced DR of 99%.At last,the MFROFS-OSAE approach has classified the instances under Normal class with the superior DR of 99.30%whereas the FS-DNN technique has attained lower DR of 99%.

    Table 2:Detection rate analysis of MFROFS-OSAE technique on Bot-IoT dataset

    Figure 7:DR analysis of MFROFS-OSAE technique on Bot-IoT dataset

    The DR analysis of the MFROFS-OSAE technique with FS-DNN model on the UNSW_NB15 dataset is given in Tab.3 and Fig.8.The results show that the MFROFS-OSAE technique has resulted in maximum efficiency over the other one.For instance,the MFROFS-OSAE technique has classified the instances under Normal class with the higher DR of 99.92%whereas the FS-DNN technique has attained lower DR of 99.90%.Likewise,the MFROFS-OSAE approach has classified the instances under Backdoor class with the superior DR of 99.93% whereas the FS-DNN system has attained minimum DR of 99.90%.Similarly,the MFROFS-OSAE technique has classified the instances under Generic class with the maixmum DR of 99.93%whereas the FS-DNN technique has gained minimal DR of 99.90%.Eventually,the MFROFS-OSAE methodology has classified the instances under Shellcode class with the higher DR of 99.92%whereas the FS-DNN algorithm has achieved reduced DR of 99.90%.

    Table 3:Detection rate analysis of MFROFS-OSAE technique on UNSW_NB15 dataset

    Figure 8:DR analysis of MFROFS-OSAE technique on UNSW_NB15 dataset

    Finally,a detailed comparative result analysis of the MFROFS-OSAE technique with existing techniques is made in Tab.4.

    Table 4:Comparative analysis of MFROFS-OSAE technique with existing approaches

    Fig.9 offers the accuracy and precision analysis of the MFROFS-OSAE technique with recent methods.The results show that the MLP,DT,and SVM models have obtained ineffectual outcomes with lower values of accuracy and precision.Followed by,the NB model has reported moderate accuracy and precision of 93.20%and 94.80%respectively.Though the FS-DNN and RNN models have demonstrated competitive performance,the MFROFS-OSAE technique has resulted in higher accuracy and precision of 99.93%and 100%respectively.

    Figure 9:Accuracy and precision analysis of MFROFS-OSAE technique

    Fig.10 provides the recall and F-measure analysis of the MFROFS-OSAE technique with recent approaches.The results demonstrated that the MLP,DT,and SVM techniques have obtained ineffectual outcomes with the minimum values of recall and F-measure.Afterward,the NB methodology has reported moderate recall and F-measure of 94.40% and 94.60% correspondingly.But,the FS-DNN and RNN techniques have demonstrated competitive performance,the MFROFS-OSAE approach has resulted in superior recall and F-measure of 99.94%and 99.93%correspondingly.

    Figure 10:Recall and F-measure analysis of MFROFS-OSAE technique

    4 Conclusion

    This study has designed an MFROFS-OSAE technique for intelligent forensic investigation on critical industrial infrastructures.The proposed model effectively determines the presence of abnormal events in critical industrial infrastructures.The MFROFS-OSAE technique involves several subprocesses namely data gathering,data handling,MFRO based feature selection,SAE based classification,and COA parameter tuning.The OSAE based classifier is derived to detect abnormal events and the parameter tuning process is carried out via the COA.The performance validation of the MFROFS-OSAE technique takes place using the benchmark dataset and the experimental results reported the betterment of the MFROFS-OSAE technique over the recent approaches interms of different measures.In future,advanced DL models can be used instead of SAE to accomplish maximum detection rate.

    Acknowledgement:The authors extend their appreciation to the Deputyship for Research &Innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number(IFPIP-153-611-1442)and King Abdulaziz University,DSR,Jeddah,Saudi Arabia.

    Funding Statement:This project was supported financially by Institution Fund projects under Grant No.(IFPIP-153-611-1442).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    天天躁日日操中文字幕| 一个人看的www免费观看视频| 国产大屁股一区二区在线视频| 国产真实乱freesex| 日本a在线网址| 亚洲狠狠婷婷综合久久图片| 午夜福利欧美成人| 亚洲 国产 在线| 亚洲无线观看免费| 天堂网av新在线| 欧美高清性xxxxhd video| 色视频www国产| 日本撒尿小便嘘嘘汇集6| 精品欧美国产一区二区三| 99久久无色码亚洲精品果冻| 有码 亚洲区| 在线观看一区二区三区| 国产男靠女视频免费网站| 99视频精品全部免费 在线| 免费看光身美女| 可以在线观看毛片的网站| 级片在线观看| 久久草成人影院| 国产视频内射| 午夜精品久久久久久毛片777| 亚洲五月天丁香| 一个人免费在线观看电影| 国产一区二区在线av高清观看| 国内揄拍国产精品人妻在线| 国产精品久久久久久亚洲av鲁大| 欧美最新免费一区二区三区 | 亚洲性夜色夜夜综合| 精华霜和精华液先用哪个| 一区二区三区高清视频在线| 亚洲va日本ⅴa欧美va伊人久久| 日日夜夜操网爽| 国产av一区在线观看免费| 国内久久婷婷六月综合欲色啪| 欧美另类亚洲清纯唯美| 国产精品久久久久久久久免 | 欧美最黄视频在线播放免费| 夜夜躁狠狠躁天天躁| 日韩大尺度精品在线看网址| 中文字幕久久专区| 99热精品在线国产| 日韩大尺度精品在线看网址| 成人美女网站在线观看视频| 又爽又黄a免费视频| 亚洲人成网站在线播| 国产精品伦人一区二区| 国产成人欧美在线观看| 在线免费观看不下载黄p国产 | 国产精品1区2区在线观看.| 欧美日韩瑟瑟在线播放| 亚洲欧美日韩东京热| 亚洲一区二区三区不卡视频| 小蜜桃在线观看免费完整版高清| 看片在线看免费视频| a级一级毛片免费在线观看| 人人妻人人看人人澡| 小蜜桃在线观看免费完整版高清| 成人欧美大片| 国产在线男女| 国产亚洲精品av在线| 国产熟女xx| 好看av亚洲va欧美ⅴa在| 国产精品人妻久久久久久| 91在线观看av| 国产精品亚洲美女久久久| 免费看光身美女| 成年版毛片免费区| 日本黄色视频三级网站网址| 我的老师免费观看完整版| 在线观看av片永久免费下载| 好男人电影高清在线观看| 欧美+亚洲+日韩+国产| 神马国产精品三级电影在线观看| 日韩欧美精品v在线| 91av网一区二区| av欧美777| 久久99热这里只有精品18| 国产蜜桃级精品一区二区三区| 美女免费视频网站| 久久精品国产亚洲av香蕉五月| 少妇被粗大猛烈的视频| 婷婷六月久久综合丁香| 色噜噜av男人的天堂激情| 99久久精品热视频| 黄片小视频在线播放| 午夜a级毛片| 午夜福利高清视频| 婷婷精品国产亚洲av在线| 午夜福利18| 99国产极品粉嫩在线观看| 亚洲精品一区av在线观看| 精华霜和精华液先用哪个| 热99在线观看视频| 久久久久久久久大av| 国产欧美日韩精品亚洲av| 九九热线精品视视频播放| 深爱激情五月婷婷| av视频在线观看入口| 啪啪无遮挡十八禁网站| 亚洲精品久久国产高清桃花| 亚洲内射少妇av| 国产精品一区二区三区四区久久| 久久久久亚洲av毛片大全| 亚洲美女黄片视频| 色噜噜av男人的天堂激情| 美女黄网站色视频| 亚洲内射少妇av| 俄罗斯特黄特色一大片| 51午夜福利影视在线观看| 性色avwww在线观看| 51国产日韩欧美| 成熟少妇高潮喷水视频| 国产精品永久免费网站| 国产精品电影一区二区三区| 国产精品人妻久久久久久| 天天一区二区日本电影三级| 久久香蕉精品热| 久久久久久九九精品二区国产| 人人妻,人人澡人人爽秒播| avwww免费| 天堂动漫精品| 乱人视频在线观看| 91在线精品国自产拍蜜月| 天天躁日日操中文字幕| av女优亚洲男人天堂| 99热这里只有是精品在线观看 | 91午夜精品亚洲一区二区三区 | 国产高潮美女av| 97碰自拍视频| 3wmmmm亚洲av在线观看| 九九久久精品国产亚洲av麻豆| 亚洲av免费在线观看| 丰满乱子伦码专区| 在线观看美女被高潮喷水网站 | 欧美中文日本在线观看视频| 日本三级黄在线观看| 欧美一级a爱片免费观看看| 午夜免费男女啪啪视频观看 | 在线观看美女被高潮喷水网站 | 久久久国产成人精品二区| 国产成人啪精品午夜网站| 国产在视频线在精品| 亚洲中文日韩欧美视频| 伊人久久精品亚洲午夜| 网址你懂的国产日韩在线| 亚洲中文字幕日韩| 色在线成人网| 亚洲国产精品sss在线观看| 99久久精品热视频| 亚洲国产欧美人成| 观看美女的网站| 18美女黄网站色大片免费观看| 久9热在线精品视频| 老司机午夜十八禁免费视频| 成人亚洲精品av一区二区| 国产精品一区二区免费欧美| 看片在线看免费视频| 国产精品一区二区三区四区免费观看 | 欧美区成人在线视频| 国产高潮美女av| 婷婷色综合大香蕉| 黄片小视频在线播放| 国产精品自产拍在线观看55亚洲| 丝袜美腿在线中文| 亚洲欧美日韩高清专用| 美女高潮的动态| 在线播放国产精品三级| 人人妻人人看人人澡| 麻豆成人av在线观看| 国产精品综合久久久久久久免费| 色在线成人网| 亚洲,欧美精品.| 日本免费a在线| 国产精华一区二区三区| 禁无遮挡网站| 成人鲁丝片一二三区免费| 亚洲美女搞黄在线观看 | 五月伊人婷婷丁香| 亚洲18禁久久av| 国产一区二区三区在线臀色熟女| 日本免费a在线| 欧美乱妇无乱码| 麻豆av噜噜一区二区三区| 老女人水多毛片| 色5月婷婷丁香| 一区二区三区激情视频| 亚洲乱码一区二区免费版| 久久精品国产亚洲av香蕉五月| 成年女人永久免费观看视频| 日韩av在线大香蕉| 久99久视频精品免费| 如何舔出高潮| 99久久精品一区二区三区| 欧美日韩瑟瑟在线播放| 国产精品一区二区性色av| 欧美bdsm另类| 淫秽高清视频在线观看| 天天躁日日操中文字幕| 51国产日韩欧美| 久久久久精品国产欧美久久久| 日韩欧美在线乱码| 在线观看66精品国产| 欧美又色又爽又黄视频| 久久久久久久久大av| 日韩欧美免费精品| 日韩高清综合在线| 国产v大片淫在线免费观看| 怎么达到女性高潮| 欧美区成人在线视频| 婷婷精品国产亚洲av在线| 97超视频在线观看视频| 欧美激情在线99| 在线免费观看不下载黄p国产 | 成人鲁丝片一二三区免费| 又黄又爽又刺激的免费视频.| 搡老熟女国产l中国老女人| 夜夜看夜夜爽夜夜摸| 精华霜和精华液先用哪个| 亚洲国产欧美人成| 性色avwww在线观看| 欧美中文日本在线观看视频| 啦啦啦韩国在线观看视频| .国产精品久久| 成人国产一区最新在线观看| 看十八女毛片水多多多| 搡老熟女国产l中国老女人| 亚洲国产高清在线一区二区三| 国产欧美日韩一区二区精品| 精品人妻熟女av久视频| 免费看日本二区| 99热精品在线国产| 国产精品98久久久久久宅男小说| 99国产极品粉嫩在线观看| 国产高清视频在线观看网站| 亚洲国产精品成人综合色| 日韩有码中文字幕| 亚洲在线自拍视频| 欧美日韩瑟瑟在线播放| 日韩人妻高清精品专区| 91麻豆精品激情在线观看国产| 有码 亚洲区| 亚洲内射少妇av| 夜夜爽天天搞| 欧美激情在线99| 97超级碰碰碰精品色视频在线观看| 亚洲人成网站高清观看| 老熟妇乱子伦视频在线观看| 最好的美女福利视频网| 亚洲av成人av| 精品久久久久久久末码| 国内精品久久久久久久电影| 啦啦啦韩国在线观看视频| 久久国产精品人妻蜜桃| 757午夜福利合集在线观看| 国产三级中文精品| 在线免费观看的www视频| 亚洲七黄色美女视频| 国产日本99.免费观看| 久久国产精品人妻蜜桃| 亚洲色图av天堂| 午夜福利欧美成人| 国产黄色小视频在线观看| 国产人妻一区二区三区在| 高潮久久久久久久久久久不卡| 欧美最新免费一区二区三区 | 亚洲激情在线av| 亚洲av熟女| 首页视频小说图片口味搜索| 国产色爽女视频免费观看| 看十八女毛片水多多多| 婷婷色综合大香蕉| 亚洲中文字幕日韩| eeuss影院久久| 超碰av人人做人人爽久久| 中文字幕精品亚洲无线码一区| 99热精品在线国产| 在线a可以看的网站| 丁香欧美五月| 观看美女的网站| 久久久国产成人精品二区| 午夜日韩欧美国产| 国产乱人视频| 亚洲国产欧洲综合997久久,| 嫁个100分男人电影在线观看| 欧美极品一区二区三区四区| 少妇熟女aⅴ在线视频| 成人毛片a级毛片在线播放| 在线免费观看的www视频| 欧美xxxx黑人xx丫x性爽| 亚洲av不卡在线观看| 欧美乱色亚洲激情| 亚洲av成人不卡在线观看播放网| 亚洲自偷自拍三级| 欧美乱妇无乱码| 久久久精品大字幕| 国产精品久久久久久久电影| 日韩欧美三级三区| 一本久久中文字幕| 国产成人啪精品午夜网站| h日本视频在线播放| 亚洲美女视频黄频| 欧美黑人巨大hd| 日韩欧美在线二视频| 欧美最新免费一区二区三区 | 90打野战视频偷拍视频| 欧美日韩福利视频一区二区| 国产欧美日韩精品一区二区| ponron亚洲| 国产一区二区在线av高清观看| 久久久国产成人免费| 十八禁国产超污无遮挡网站| 在线观看66精品国产| 丰满的人妻完整版| 日韩欧美精品免费久久 | 日本五十路高清| 国产精品精品国产色婷婷| 亚洲成a人片在线一区二区| 赤兔流量卡办理| 日韩精品青青久久久久久| 亚洲精品粉嫩美女一区| 亚洲人成电影免费在线| 免费一级毛片在线播放高清视频| ponron亚洲| 久久精品综合一区二区三区| 别揉我奶头~嗯~啊~动态视频| 国产欧美日韩精品一区二区| 99久久久亚洲精品蜜臀av| 国产精品日韩av在线免费观看| 中文字幕精品亚洲无线码一区| 在线播放无遮挡| 亚洲自拍偷在线| 亚洲欧美日韩卡通动漫| 国产精品久久电影中文字幕| 少妇熟女aⅴ在线视频| 欧美在线黄色| 亚洲黑人精品在线| 在线播放国产精品三级| 欧美黄色淫秽网站| 国产欧美日韩精品一区二区| 在线观看av片永久免费下载| 床上黄色一级片| 国产成人aa在线观看| 免费一级毛片在线播放高清视频| ponron亚洲| 一个人免费在线观看的高清视频| 色视频www国产| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品国产自在天天线| 亚洲五月天丁香| 精品久久久久久久久久免费视频| 每晚都被弄得嗷嗷叫到高潮| 九色成人免费人妻av| 无人区码免费观看不卡| 午夜日韩欧美国产| 日韩成人在线观看一区二区三区| 久久久久国内视频| 夜夜躁狠狠躁天天躁| 日韩欧美国产一区二区入口| 欧美性猛交黑人性爽| 亚洲第一欧美日韩一区二区三区| 伦理电影大哥的女人| 日韩欧美一区二区三区在线观看| 国产精华一区二区三区| 窝窝影院91人妻| av在线观看视频网站免费| 狠狠狠狠99中文字幕| 国产久久久一区二区三区| 久久香蕉精品热| 色哟哟·www| 中出人妻视频一区二区| 国产精品1区2区在线观看.| 我的女老师完整版在线观看| 好男人在线观看高清免费视频| 真人做人爱边吃奶动态| 午夜福利18| 啪啪无遮挡十八禁网站| 乱码一卡2卡4卡精品| 亚洲专区中文字幕在线| 免费大片18禁| 国产精品综合久久久久久久免费| 久久欧美精品欧美久久欧美| 色哟哟·www| 亚洲av电影不卡..在线观看| 三级男女做爰猛烈吃奶摸视频| 色吧在线观看| 一级作爱视频免费观看| 中文字幕av在线有码专区| 成人毛片a级毛片在线播放| 精品午夜福利在线看| 亚洲人成伊人成综合网2020| 成人国产综合亚洲| 88av欧美| 中文字幕精品亚洲无线码一区| 内射极品少妇av片p| 久久亚洲精品不卡| 国产亚洲av嫩草精品影院| 波多野结衣巨乳人妻| 男人舔女人下体高潮全视频| 国产亚洲av嫩草精品影院| 亚洲成av人片在线播放无| 少妇被粗大猛烈的视频| 高清毛片免费观看视频网站| 国产精品野战在线观看| 久久国产乱子免费精品| 欧美黑人巨大hd| 欧美最黄视频在线播放免费| 嫩草影视91久久| 色播亚洲综合网| 久久久久久久亚洲中文字幕 | 久久久久国内视频| 天堂网av新在线| av在线观看视频网站免费| 在现免费观看毛片| 欧美日韩国产亚洲二区| 国产主播在线观看一区二区| 一级作爱视频免费观看| 成人高潮视频无遮挡免费网站| 亚洲av.av天堂| 国产成人aa在线观看| 免费av不卡在线播放| 国产黄a三级三级三级人| 欧美色欧美亚洲另类二区| 成年版毛片免费区| 国产av不卡久久| 欧美黄色淫秽网站| 精品国产亚洲在线| 亚洲最大成人av| 天堂影院成人在线观看| 国产精品影院久久| 男女视频在线观看网站免费| 淫妇啪啪啪对白视频| 2021天堂中文幕一二区在线观| 夜夜爽天天搞| 日日摸夜夜添夜夜添小说| 亚洲国产精品999在线| 在线观看午夜福利视频| 国产精品不卡视频一区二区 | 精品无人区乱码1区二区| 亚洲av五月六月丁香网| 久久精品影院6| 欧美中文日本在线观看视频| 夜夜看夜夜爽夜夜摸| 欧美性感艳星| 国产综合懂色| 欧美日本亚洲视频在线播放| 桃红色精品国产亚洲av| 国产午夜精品论理片| 丰满人妻一区二区三区视频av| 99热这里只有是精品在线观看 | 日本a在线网址| 国内精品久久久久精免费| 国产野战对白在线观看| 久久午夜亚洲精品久久| 国产精品99久久久久久久久| 88av欧美| 成熟少妇高潮喷水视频| 精品一区二区三区人妻视频| 丝袜美腿在线中文| 精品久久久久久久人妻蜜臀av| 香蕉av资源在线| 好看av亚洲va欧美ⅴa在| 日韩成人在线观看一区二区三区| 在现免费观看毛片| 内射极品少妇av片p| 九色成人免费人妻av| 精品久久久久久成人av| 亚洲 国产 在线| 一边摸一边抽搐一进一小说| 欧美日本视频| 亚洲自偷自拍三级| 欧美丝袜亚洲另类 | 91在线观看av| 久久中文看片网| 国产精品久久久久久久久免 | 国产高清激情床上av| 午夜激情欧美在线| 九九在线视频观看精品| 超碰av人人做人人爽久久| 国产色婷婷99| 最新中文字幕久久久久| 精品熟女少妇八av免费久了| 网址你懂的国产日韩在线| 中文字幕熟女人妻在线| 国产在线精品亚洲第一网站| 日韩中字成人| 三级毛片av免费| 欧美三级亚洲精品| 狠狠狠狠99中文字幕| 亚洲av中文字字幕乱码综合| 亚洲av.av天堂| 男人狂女人下面高潮的视频| 日韩人妻高清精品专区| 一边摸一边抽搐一进一小说| 亚洲va日本ⅴa欧美va伊人久久| 精品久久国产蜜桃| 老女人水多毛片| www日本黄色视频网| 99热6这里只有精品| 亚洲国产高清在线一区二区三| 一夜夜www| 赤兔流量卡办理| 长腿黑丝高跟| 在线播放国产精品三级| 国产真实伦视频高清在线观看 | 99在线视频只有这里精品首页| 亚洲经典国产精华液单 | 成人欧美大片| 欧美午夜高清在线| 蜜桃亚洲精品一区二区三区| 好男人电影高清在线观看| 美女cb高潮喷水在线观看| 国产乱人伦免费视频| 亚洲性夜色夜夜综合| 欧美潮喷喷水| 在线免费观看的www视频| 一本综合久久免费| 日本精品一区二区三区蜜桃| 别揉我奶头 嗯啊视频| 日韩欧美精品v在线| 在线免费观看不下载黄p国产 | 国产成+人综合+亚洲专区| 麻豆国产97在线/欧美| 最近最新中文字幕大全电影3| 国产午夜精品久久久久久一区二区三区 | 最近视频中文字幕2019在线8| 高潮久久久久久久久久久不卡| 精品国产三级普通话版| 国产成人欧美在线观看| 成人国产一区最新在线观看| 日本一二三区视频观看| 黄色日韩在线| 精品免费久久久久久久清纯| 中文字幕高清在线视频| 国产精品一区二区三区四区久久| 又爽又黄a免费视频| 久久精品久久久久久噜噜老黄 | 国产免费男女视频| 女生性感内裤真人,穿戴方法视频| 观看免费一级毛片| 亚洲综合色惰| 久久伊人香网站| www日本黄色视频网| 国产成人aa在线观看| 成人av一区二区三区在线看| 午夜福利视频1000在线观看| 网址你懂的国产日韩在线| 99久久无色码亚洲精品果冻| 亚洲,欧美,日韩| 噜噜噜噜噜久久久久久91| 少妇的逼水好多| 变态另类丝袜制服| 亚洲人成网站高清观看| 一进一出好大好爽视频| 日本三级黄在线观看| 在线观看一区二区三区| 久久精品国产99精品国产亚洲性色| 国产精品影院久久| 精品无人区乱码1区二区| 亚洲精品亚洲一区二区| 国产人妻一区二区三区在| 国产一区二区三区视频了| 日韩欧美精品免费久久 | 成年女人永久免费观看视频| 啦啦啦韩国在线观看视频| 亚洲av成人av| 怎么达到女性高潮| 国产成年人精品一区二区| 尤物成人国产欧美一区二区三区| 一区福利在线观看| 日韩欧美在线二视频| 在线观看一区二区三区| 91麻豆av在线| 成人三级黄色视频| 国产单亲对白刺激| 亚洲国产精品999在线| 国产单亲对白刺激| 国产真实伦视频高清在线观看 | 男人和女人高潮做爰伦理| 全区人妻精品视频| 午夜老司机福利剧场| 精品不卡国产一区二区三区| 欧美成人一区二区免费高清观看| 亚洲精品一卡2卡三卡4卡5卡| 色播亚洲综合网| 久久久久国产精品人妻aⅴ院| 99国产精品一区二区蜜桃av| 99久久九九国产精品国产免费| 成人午夜高清在线视频| 成人高潮视频无遮挡免费网站| 午夜亚洲福利在线播放| 日韩国内少妇激情av| av视频在线观看入口| 亚洲色图av天堂| 亚洲精品影视一区二区三区av| 国产黄片美女视频| 亚洲欧美清纯卡通| 国产一区二区三区视频了| 别揉我奶头~嗯~啊~动态视频| 91久久精品电影网| 国产成人aa在线观看| 波多野结衣高清无吗| 97超级碰碰碰精品色视频在线观看| 色在线成人网| 蜜桃亚洲精品一区二区三区| 少妇被粗大猛烈的视频| 亚洲国产精品久久男人天堂| 香蕉av资源在线| 老女人水多毛片| 一二三四社区在线视频社区8| 欧美最黄视频在线播放免费| 亚洲av日韩精品久久久久久密|