• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Efficient Scheme for Data Pattern Matching in IoT Networks

    2022-08-24 06:57:58AshrafAliandOmarSaraereh
    Computers Materials&Continua 2022年8期

    Ashraf Aliand Omar A.Saraereh

    Department of Electrical Engineering,Engineering Faculty,The Hashemite University,Zarqa,13133,Jordan

    Abstract: The Internet has become an unavoidable trend of all things due to the rapid growth of networking technology,smart home technology encompasses a variety of sectors,including intelligent transportation,allowing users to communicate with anybody or any device at any time and from anywhere.However,most things are different now.Background:Structured data is a form of separated storage that slows down the rate at which everything is connected.Data pattern matching is commonly used in data connectivity and can help with the issues mentioned above.Aim:The present pattern matching system is ineffective due to the heterogeneity and rapid expansion of large IoT data.The method requires a lot of manual work and has a poor match with real-world applications.In the modern IoT context,solving the challenge of automatic pattern matching is complex.Methodology:A three-layer mapping matching is proposed for heterogeneous data from the IoT,and a hierarchical pattern matching technique.The feature classification matching,relational feature clustering matching,and mixed element matching are all examples of feature classification matching.Through layer-by-layer matching,the algorithm gradually narrows the matching space,improving matching quality,reducing the number of matching between components and the degree of manual participation,and producing a better automatic mode matching.Results:The algorithm’s efficiency and performance are tested using a large number of data samples,and the results show that the technique is practical and effective.Conclusion:the proposed algorithm utilizes the instance information of the data pattern.It deploys three-layer mapping matching approach and mixed element matching and realizes the automatic pattern matching of heterogeneous data which reduces the matching space between elements in complex patterns.It improves the efficiency and accuracy of automatic matching.

    Keywords: Internet of things;distributed computing;optimization;feature classification

    1 Introduction

    According to statistics from the Internet of Things(IoT)industry,the scale of industry reached 580 billion yuan in 2014,an increase of 18.46%year-on-year.In 2015,the global IoT market reached USD 62.4 billion,a year-on-year increase of 29%.By 2018,the global IoT equipment market size is expected to reach 103.6 billion USD,and the number of new IoT device accesses in 2019 will increase from 1.691 billion in 2015 to 3.054 billion[1-5].

    With the rapid development of the IoT and the gradual maturity of the IoT platform,ubiquitous terminal equipment and facilities,such as smart sensors,mobile terminals,etc.are connected through the IoT,and the Internet of Everything (IoE) has become an inevitable trend [6-10].The IoT technology that has emerged has been widely used in various fields and has produced a large number of differences structure data.The concept of“data gravity”is proposed for comparing data,software applications,interface services,etc.to stars,which contain their respective masses and densities[11-14].The quality of data continues to increase and is much larger than other“stars”,and other“stars”will be attracted by huge gravity and centered on the data“stars”.It can be seen that the development of processing technology for heterogeneous data in the IoT will directly affect the development of the entire IoT technology progress[15-18].

    At present,most of the heterogeneous data are stored independently and dispersedly in various regions,forming a large number of information islands,consisting of structured data (such as relational databases),semi-structured data such as extensible markup language (XML),hypertext markup language (HTML) and non-structured data.Structured data such as not-only structured query language (NoSQL) databases,pictures,videos and other forms of composition.How to interconnect these islands of information through “two collections”has attracted people’s attention[19,20].

    Pattern matching technology plays a vital role in the process of data interconnection [21].Although heterogeneous data in the IoT can be interconnected through the development of a unified data interface standard,it is difficult to achieve in practical applications because it is difficult to achieve The transformation cost of the existing massive data storage model is huge.It can be said that the problem of data heterogeneity is inevitable.Data pattern matching technology provides a good solution to solve the above problems[22].

    Pattern matching is a construction source model and goal The process of mapping relationships between elements in the pattern,and traditional pattern matching operations are mostly done manually by information technology (IT) technicians.With the expansion of data scale and the increase of pattern complexity,manual matching will consume huge manpower and material resources,and is easy to destroy data integrity and accuracy [23].At present,the existing research results use element information,semantic information,data instance information and structural information to mine the correct element mapping relationship.

    The heterogeneous data conversion model of the IoT realizes fast and efficient interconnection of heterogeneous data in the IoT.However,the manual participation in the pattern matching process in the interconnection process is too high and the matching efficiency is low [24].In order to solve this problem,we first analyzed the heterogeneous IoT characteristics of the data,that is,the time series characteristics and using this as the starting point.Through the analysis of time series data to classify and recognize the heterogeneous data of the IoT,it provides the possibility for automatic pattern matching[25].

    Based on the above research results,this paper proposes a hierarchical data matching algorithm for heterogeneous data in the IoT.The proposed algorithm is based on the instance information of the data pattern and uses three-layer mapping matching:feature classification matching,relational feature clustering matching,and mixed element matching.It realizes the automatic pattern matching of heterogeneous data in the IoT,reduces the matching space between elements in complex patterns,and improves the efficiency and accuracy of automatic matching.

    2 Literature Review and Problem Analysis

    2.1 Literature Review

    At present,the more typical and widely used matching algorithms include auto-match,Clio,computer operations management associations(COMA),internet messagge access protocol(iMAP),communications provider identifier (Cupid),large-scale distributed (LSD),graphical user interface logic user engineering(GLUE),etc.Reference[26]uses pattern information such as attribute names and data types to calculate the semantic similarity between attributes,Combine semantic similarity and structural similarity for matching.Reference [27]uses a variety of matchers to work together to improve the accuracy and efficiency of matching results through filtering and screening.Reference[28]applies machine learning algorithms to achieve matching and automatically integrate the matching results,and find 1:1 and 1:nmatches well.Reference[29]deploys the iMAP method of pattern matching based on data instance information is a comprehensive utilization of multiple types of information in the pattern and simultaneously obtains the pattern between the patterns.The method of simple and complex mapping relationship can find the match of 1:1 and 1:nvery well.

    2.2 Analysis

    Reference [30]proposed a database pattern matching method based on entity classification,which extracts features according to the semantic information of the data instance information,uses the naive Bayes algorithm to classify the features,and finally performs corresponding pattern matching on the sub-patterns.The massive and heterogeneous nature of IoT data,no matter how standardized the database design is,the definition of its attribute names and meanings varies from person to person.It is not advisable to use only the attribute names and other semantic information for fuzzy classification,because this classification is only based on human understanding rather than the essential characteristics of the source data.Reference[31]uses the statistical characteristics of the probability distribution of the data to extract the data characteristics from another angle,and uses the BP neural network algorithm to improve the efficiency and accuracy of pattern matching.However,the algorithm is only for the matching between 1:1 column,and is not suitable for complex pattern matching.As the data size continues to increase,the matching space and the number of matching will also increase sharply,resulting in low matching efficiency.As compared with above literature,the proposed algorithm can better solve the problem of the difficulty in automatically obtaining and analyzing data source pattern information in real applications.By analyzing massive heterogeneous raw data,according to the time series of IoT data characteristics classify the analyzed characteristics to represent the pattern characteristics of the data source.Secondly,the relational feature clustering method in the(hierarchical sequence matching attributes)HSMA algorithm is innovative,especially for the feature clustering of the sensor data of the IoT.The impact of the difference of different data types between the data set data.Finally,it uses a layered method to gradually reduce the matching space,reduce the number of matching,and improve the efficiency of matching.

    3 Proposed Framework

    In order to realize the intelligentization of the pattern matching of heterogeneous data(structured data) of the IoT,we designed a pattern matching algorithm HSMA.For the input of an unknown source data,we first compare the characteristics of time series and all types data sets are classified to obtain sub-pattern collections.At the same time,through the previous research results from IoT field recognition algorithm based on time-series data(IFRAT)algorithm,the domain feature information of unknown data sources is obtained,and the corresponding domain standard set and standardized database are initialized according to the different domains for relational feature aggregation.Class matching is performed to establish the mapping relationship between the source data set and the target database in various types(1st level matching).Then according to the extracted data set characteristics,use machine learning algorithms to cluster the data sets in each sub-pattern,to further reduce the matching space and scope,calculate the similarity between the clustering results and the corresponding standard set data set,and establish a matching mapping(second-level matching).Finally,the elements in the matching clusters are mixed and the similarity calculation is performed (3rd layer matching),which produces pattern matching results between the source data and the target database.Through the above three layers of matching,the proposed algorithm gradually reduces the matching space,reduces the number of matches,and thus improves the matching efficiency.The overall architecture of the proposed algorithm is shown in Fig.1.

    3.1 Source Data Normalization

    There are multiple types of data in each data set.In the past,the pattern matching algorithm used to process different types of elements in the same data set separately.There are various processing methods.Although it can retain the characteristics of a single element,it destroys the association between different types of elements and losing the characteristics of the entire data set.Therefore,for the common data formats(such as values,characters,dates,etc.)in the data set,it is necessary to find a unified data processing method to ensure the integrity of its characteristics.First,the structured data set is regarded as a two-dimensional matrix with a row-column relationship.The difference change result of adjacent row elements in the matrix is used as the row of the new matrix.We turn the new matrix into a relational matrix.The difference change result is used-,0,+means that through this method,we replace the original content value with the relationship value,convert different types of data into the same standard,and finally get the relationship matrix.As a standardized form of the data set,the relationship matrix can be better ground is used for feature mining of the data set.

    In order to better understand the proposed algorithm,we define some terms used in this paper.

    Definition 1:Relation matrix.For any common structured dataDm×n,the difference can be done through adjacent rows.The difference result is represented by the three symbols-,0,+.We define this matrix relationship matrix withMexpressed.

    Figure 1:Proposed architecture

    Definition 2:Relational key pair.The key pair formed by the pairwise combination of elements in each row of the relational matrixM.

    Definition 3:Characteristic column.For any column of the relational matrixM,if and only if two conditions are met at the same time:1)The value type of the column element is a date type or other data types that can be converted into a date type;2)the column The element“+”or element“-“in the frequency of occurrence is greater than the thresholdθ(we takeθ=90%),such a column is called a time series feature column.If only condition 2 is met,the column is called the main feature column.

    Definition 4:Time series data.The raw data generated by IoT sensors are stored in a structured form in chronological order.Such a data set is called time series data.

    3.2 Three-Layer Map Matching

    This section gives a detailed description of proposed algorithm,which is divided into three layers.The first layer is feature classification matching (time series features and data type features).The second layer is relational feature cluster matching.The third The layer is mixed element matching.Based on the idea of layering,we divide the complex heterogeneous data pattern matching process into three steps,and gradually narrow the matching space.For each step of matching,it is based on the characteristics of the heterogeneous data of the IoT.The similarity between the source data and the standard data,build the mapping relationship,and finally realize the automatic matching of the heterogeneous data pattern of the IoT.

    3.2.1 Feature Classification Matching

    The proposed algorithm provides two classification methods in the feature classification matching process:

    1) Time series feature classification

    Time series is a hallmark feature of IoT heterogeneous data,which can be used to classify IoT heterogeneous data.First,we divide IoT heterogeneous data into three categories according to the time series characteristics:

    a) Time series data categoryP.All data sets containing time series feature columns belong to the time series data category(such as sensor network sensor data).

    b) Time series attribute classQ.The data set containing the main feature column belongs to the time series data attribute class(such as sensor network monitoring object metadata),such as related information describing time series attributes.

    c) Non-time seriesR.Contains data sets that have nothing to do with time series,and generally consist of many relevant auxiliary information.

    The proposed algorithm classifies the heterogeneous data of the IoT according to time series characteristics,and finally obtains the data classification set{time series data class,time series attribute class,non-time series class},and the specific steps are shown in Algorithm 1.

    2) Data type feature classification

    In the heterogeneous IoT data,the source data collections in different fields have different data type distribution characteristics.According to this feature,the heterogeneous IoT data is classified.The data types are divided into five categories according to the common types of heterogeneous IoT data:Numerical value Type(value),character type(char),time type(date),character-numerical type(char-value),character-time type(char-date).Considering that the same data may be assigned under complex pattern matching for different data types,the mutual conversion between data types will cause their distribution characteristics to deviate.Therefore,the conditions that can be converted between string and numeric values are included in the data type characteristics.Use the frequency value of each data type to construct a 5 dimensional feature vector,and then classify the heterogeneous data of the IoT according to the feature vector:

    a) Time-dominant categoryE.Due to the particularity of the time type,as long as the data set containing the time type belongs to the time-dominant category.

    b) Numerical-dominant categoryF.Data sets with significant numerical types(such as int,long,float,double,etc.)belong to the numeric-dominant category.

    c) Character-dominant classG.Data sets with a significant proportion of character types(such as char,varchar,nvarchar,etc.)belong to the character-oriented class.

    The proposed algorithm classifies the heterogeneous data of the IoT according to the characteristics of the data type,and finally obtains the data classification set {E,F,G},and the specific classification process is shown in Algorithm 2.

    Algorithm 1:Time series feature classification algorithm Input:IoT heterogeneous data collection X={x1,x2,...,xn}(structured data)Output:Time series feature classified set{P, Q, R}1:Obtain the structured data 2:Normalize X to obtain the corresponding relationship matrix set Y={M1, M2,...,Mn}3:Traverse each column of x1;?xi ∈X according to the time series feature classification 4:for each xi ∈X do 5:for each col belonging Mi set of columns do 6:n=Column_num(Mi)7:θ ←maxCount(+)∑ni=1 i ,Count(-)∑ni=1 i8:if θ ≥90%9:if Col ∈Type.date 10:xi ∈P 11:else 12:xi ∈Q 13:end if 14:else 15:if all the columns of xi are traversed to end 16:xi ∈R 17:end if 18:end if 19:end for 20:end for 21:return{P, Q, R}

    3.2.2 Feature Cluster Matching

    Through the feature classification matching in Section 3.2.1,the time series feature classification and data type feature classification are performed on the source dataSand the data in the standardized databaseTrespectively,and the result sets obtained are collectively referred to asSclaandTcla.In this section,we use the SOM clustering method to classify the data sets inSclaandTclato further reduce the matching space.In the clustering process,we use the relation matrixMas the feature matrix of the data set,because the relation matrixMhas the following characteristics:1)Mcan convert different types of data in the data set into a unified symbolic representation;2)Mcan preserve the interrelationship between elements,but traditional matching methods ignore this;3)Msolves the problem of elements in complex pattern matching The problem of variable arrangement order can better represent the characteristics of the data set.In the relationship matrixM,all items in each row are combined to form a relationship key pair.The proposed algorithm traverses the data set to extract the relationship key pair of the data set frequency distribution feature vector,as the data setvi,clustering feature vectors obtained based on matching algorithm as detailed Algorithm 3.

    Algorithm 2:Data type feature classification algorithm Input:IoT heterogeneous data collection X={x1,x2,...,xn}(structured data)Output:Data type feature classified set{E, F, G}1:Obtain the structured data 2:Standardize the data collection of all data sets xi in X 3:?xi ∈X,traversing X each column,based on distribution data type construct eigenvectors vi,to give corresponding feature matrix V=(v1,v2,...,vn)4:for each xi ∈X do 5:for each col ∈xi do 6:Determine the number of occurrences of each data type in the statistical process in step 1 7:end for 8:Build data type feature vector vi 9:n=Column_num(xi)10:vi ←Count(“value”)∑n i=1 i , Count(“char”)∑n i=1 i , Count(“date”)∑n i=1 i , Count(“char-value”)11:if Count(“date”)∑ni=1 i≠or Count(“char-date”)∑n i=1 i , Count(“char-date”)∑n i=1 i∑ni=1 i≠0 12:xi ∈E 13:else 14:ifCount(“value”)∑n i=1 i+ Count(“char-value”)∑n i=1 i Count(“char”)>15:xi ∈F 16:else xi ∈G 17:end if 18:end if 19:end for 20:return{E, F, G}∑n i=1 i+ Count(“char-date”)∑n i=1 i

    Algorithm 3:Feature cluster matching algorithm Input:Scla,Tcla Output:Cluster set of Scla and Tcla 1:Get the classification set in Scla and Tcla:Scla or Tcla={Classification1,Classification2,Classi fication3}2:dataset ∈{E,F,G}3:for each classification ∈Scla do 4:for each ds ∈dataset do 5:ds →M 6:for each row belongs to the set of M 7:Relation Key ←{(-,-),(-,0),(-,+),(0,0), (0,+),(+,+)}8:Count the number of occurrences of each relationship Key 9:end for 10:n ←Count the total number of occurrences of all relation Key 11:vi ←Count(-,-)∑n i=1 i ,Count(-,0)∑n i=1 i , Count(-,+)∑n i=1 i ,Count(0,0)∑n i=1 i ,Count(0,+)∑n i=1 i , Count(+,+)∑ni=1 i(Continued)

    Algorithm 3:Continued 12:end for 13:end for 14:Obtain the eigenvector matrix Vs of all datasets Scla using steps 2 to 11 15:Obtain the eigenvector matrix VT of Tcla using steps 2 to 11 16:Cluster the eigenvectors belonging to Vs via SOM,calculates its cluster centers(average method),and obtains the cluster center set C={{c1,c2,...,cp},{cp+1,cp+2,...,cq},{cq+1,cq+2,...}}17:For VT to any one feature vector vi,which is calculated with the Euclidean distance from the cluster center C similarity 18:for each vi ∈VT do 19:for each cj ∈C do 20:sim(vi,cj)21:end for 22:The max:sim(vi,cj)in vi corresponding to the data set into cj corresponding cluster 23:end for 24:return cluster set

    In this section,we cluster all the data sets inSclabased on the feature vector extracted from the relation matrix,and obtain the cluster setD={d1,d2,...,dl},by calculating the Euclidean distance.Determine the most similar cluster set inSclafor each data set inTcla,so as to further reduce the matching space.We assume and assume that each cluster inScorresponds to the only data set in T,that is,the data set is only a 1:nrelationship between.

    3.2.3 Mixed Element Matching

    Based on the obtained set of clusters D.?di∈D,alldielements are mixed together.In [32],the algorithm for a single cluster matching elements,the method can quickly and effectively find the clustering center in a short time,the clustering process can be completed in a short time and the process is streamlined,and finally the matching result setR={r1,r2,...,rl}.Considering the complexity of the actual situation,it is difficult for us to deploy 1:1 for precise matching elements,so that ?ri∈R,we requirerithat contains only a standardized data elements andφsource data elements(whereφis artificially set,select hereinφ=.1,2,3),theseφelements of source data are recommended to users as the most similar elements,as shown in Algorithm 4.

    Algorithm 4:Mixed element matching algorithm Input:Cluster set D ←{d1, d2,...,dl}Output:Matching result set R ←{r1, r2,...,rl}1:Get the cluster set D 2:for each ?di ∈D do 3:Perform element matching 4:Set the value of φ 5:ri ←di 6:end for 7:Return R

    4 Experimental Analysis

    4.1 Data Selector

    In order to prove the feasibility and effectiveness of the proposed algorithm,we selected 30 databases from 13 different manufacturers in the household air-conditioning performance test in the field of industrial Internet of Things appliance product testing as the source data,and used the air-conditioning test database based on the international standard IEEE 1851 as the standardized database(using Oracle),the data details are shown in Tab.1.

    Table 1:Source data

    We believe that there are generally two common heterogeneous forms:rank conversion and splitting.

    1) Row and column conversion.Contents that are not completely in the same column are listed in the same column.In order to eliminate the impact of different structures on matching,we need to perform logical row conversion on this type of column and record the corresponding mapping relationship at the same time,as shown in the Fig.2.

    2) Split.Generally,the following merges are either string separated by special characters,or Boolean merged directly,so find the merged field for logical splitting,and record the corresponding mapping relationship at the same time,as shown in Fig.3.

    Figure 2:Data conversion flow

    Figure 3:Data splitting

    4.2 Algorithms Comparison

    We use different pattern matching algorithms based on data instances and database pattern information to compare with the proposed HSMA algorithm.The detailed comparison information is shown in Tab.2.

    1) Shrink Mobile Edge Computing (SMEC).Through naive Bayesian learning,entities are divided into different classes,and the same class is used to match pattern elements between sub-patterns.

    2) Sequential matrix diagonalization detection(SMDD).A neural network-based pattern matching algorithm that automatically completes pattern matching by analyzing the distribution law of the data instances contained in the pattern elements.

    3) iMAP.A method that comprehensively utilizes multiple types of information in patterns to obtain simple and complex mapping relationships between patterns at the same time.When the matching relationship is obtained,the judgment process of each matching relationship is saved.When the user When the final result is adjusted,the saved judgment process is provided to the user as the basis for the user to make adjustments.

    Table 2:Performance comparison of the proposed and existing algorithms

    4.3 Measured Results

    In order to evaluate the matching quality of the proposed algorithm,we use three general indicators[33]for evaluation:

    1) Precision.The ratio of correct matching results among matching results.

    Among them,Tis the matching result that is correctly identified,Pis the matching result returned by the matching method,andFis the wrong match[34,35].

    2) Recall.The ratio of correct matching results to actual matching results in matching results.

    Among them,Ris the result of manual matching.

    3) F1_measure.Statistics that can comprehensively evaluate the quality of matching.

    4.3.1 Self-Test of the Proposed Algorithm

    1) The matching quality of the HSMA algorithm is affected by the selection of the parameterφ[36,37].By setting different values forφ,the precision,recall and F1_measure is analyzed and compared,and the result is shown in Fig.4.Withφ=1 in contrast,whenφ>1,the recall rate,precision rate and comprehensiveness are improved,because the proposed algorithm cannot guarantee accurate 1:1 matching,and the heterogeneity of the pattern leads to multiple similar similarity results.But it is not that the larger the value ofφ,the better,the increase ofφwill increase the matching interference term and reduce the matching quality.Whenφ=3,it can be seen that the matching quality is greater thanφ=1 but less thanφ=2.

    2) The matching quality of the proposed algorithm is affected by the number of input databases.The number of input databases will directly affect the effect of relational feature clustering.Sufficient data will make the data features more obvious.As shown in Fig.5,for differentφvalues,when the number of input databases is in the range of (0,15),the matching quality continuously improves with the increase of the number of input databases and the change is more obvious.But when the number of input databases is greater than 15,the matching quality increases slowly.

    3) The time efficiency of the proposed algorithm is affected by the selection of the parameterφ.Fig.6 compares the influence of the number of source data on the time efficiency of the proposed algorithm under different values ofφ.As shown in Fig.6,the larger theφ,the more the greater the matching time,because the increase in the value ofφleads to an increase in the number of matches in the mixed element matching process,which increases the time complexity.When the value ofφis fixed,the matching time of the proposed algorithm using time series feature classification is lower than that of using data type feature classification.

    4) The time efficiency of the proposed algorithm is affected by the feature classification.We randomly select 15 data sources as the input of the proposed algorithm,respectively use no classification,time series feature classification and data type feature classification and set different values,analyze and compare the time used for each layer of matching is shown in Fig.7.The selection ofφonly affects the matching time of the mixed element matching.The larger the value ofφ,the more time it takes for the mixed element matching process.When the value ofφis fixed,the time is used matching time of the proposed algorithm for sequence classification is relatively small.

    Figure 4:Comparison of matching quality of the proposed algorithm

    Figure 5:Comparison of data type and time series of the proposed scheme

    4.3.2 Performance Comparison with Existing Algorithms

    It can be seen from Section 4.3.1 that whenφ=2 is selected,the proposed algorithm using time series feature classification has the highest performance,so compare it with each pattern matching algorithm in Section 4.2.We have selected 30 heterogeneous databases as the proposed algorithm results of the comparison are shown in Fig.8.As shown in Fig.8a,the matching quality of the proposed algorithm is higher than other algorithms.Among them,the heterogeneity of the source database and the incomplete pattern information lead to the most efficient SMEC.As shown in Fig.8b,because the proposed algorithm uses preprocessing and multiple clustering,the time it takes is significantly higher than other algorithms.

    Figure 6:Comparison of matching time of the proposed scheme with increasing number of database

    Figure 7:Comparison of matching time of the proposed algorithm

    Figure 8:Evaluation of proposed and existing algorithms vs.number of databases

    5 Conclusion

    We designed a hierarchical pattern matching algorithm.For input of unknown source data,initialize the corresponding field standard set and standardized database according to the field to perform feature classification and matching,and establish the source data set and standard database data set in each category.Then extract the relationship features in the source data set and the target database table,use the SOM clustering algorithm to cluster the data sets in each sub-pattern,and perform similarities between the clustering results and the corresponding standard database data sets the degree to establish a matching mapping.Finally,calculate the similarity of the mixed elements in the matching result set to perform a single element matching.Through the above three levels of matching,the proposed algorithm gradually reduces the matching space and reduces the number of matches,thereby improving the quality and efficiency of matching.

    In the process of relation feature cluster matching and mixed element matching,the quality of the clustering algorithm directly determines the final matching quality and overall matching time.Although clustering can reduce the matching space,it may also bring matching errors,resulting in related elements not in the same class.In the future,we will try to use different machine learning algorithms to improve the proposed algorithm,and find the best combination mode to improve the effect of clustering.In addition,this article uses iMAP,SMDD in the experimental verification for comparing the classic algorithms with proposed algorithm has improved the reliability of the comparison results.

    Acknowledgement:The authors would like to thanks the editors and reviewers for their review and recommendations.

    Funding Statement:The Authors would like to thank as well the Royal Academy of Engineering(UK)for supporting this research under grant Transforming Systems through Partnership Project Number TSP1040.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲天堂国产精品一区在线| 不卡一级毛片| 99久久成人亚洲精品观看| 麻豆一二三区av精品| 久久精品91无色码中文字幕| 亚洲专区中文字幕在线| 国产精品 欧美亚洲| 叶爱在线成人免费视频播放| 国产乱人视频| 在线播放国产精品三级| 成人特级av手机在线观看| 国产精品99久久99久久久不卡| 18禁裸乳无遮挡免费网站照片| av天堂在线播放| 一本精品99久久精品77| 99国产精品一区二区蜜桃av| 亚洲18禁久久av| 中文亚洲av片在线观看爽| 人妻久久中文字幕网| 一区二区三区免费毛片| 免费看光身美女| 最后的刺客免费高清国语| 男女下面进入的视频免费午夜| 91在线观看av| 女警被强在线播放| 欧美性感艳星| 国产乱人视频| 亚洲中文字幕日韩| 国产精品99久久久久久久久| 高潮久久久久久久久久久不卡| 久久久国产成人精品二区| 一级作爱视频免费观看| 噜噜噜噜噜久久久久久91| 久久精品国产清高在天天线| 精品人妻1区二区| 国产黄片美女视频| 中文字幕av在线有码专区| 亚洲第一电影网av| 国产成人aa在线观看| 母亲3免费完整高清在线观看| 亚洲18禁久久av| 久久国产乱子伦精品免费另类| 变态另类成人亚洲欧美熟女| 欧美中文综合在线视频| 热99re8久久精品国产| 亚洲aⅴ乱码一区二区在线播放| 99在线人妻在线中文字幕| 啦啦啦免费观看视频1| 黄色女人牲交| 蜜桃久久精品国产亚洲av| 无人区码免费观看不卡| 精品免费久久久久久久清纯| 一本久久中文字幕| 国产真实伦视频高清在线观看 | 亚洲熟妇熟女久久| 亚洲 国产 在线| 一区二区三区高清视频在线| 国产黄片美女视频| 激情在线观看视频在线高清| 久久久久久久亚洲中文字幕 | 国产精品1区2区在线观看.| 99riav亚洲国产免费| 制服丝袜大香蕉在线| 国内揄拍国产精品人妻在线| 日韩欧美 国产精品| 国产精品乱码一区二三区的特点| 免费观看精品视频网站| 国产欧美日韩一区二区精品| 99精品欧美一区二区三区四区| 嫩草影视91久久| 日日夜夜操网爽| 无人区码免费观看不卡| av在线天堂中文字幕| 亚洲美女黄片视频| www.熟女人妻精品国产| 男女下面进入的视频免费午夜| 中文字幕av在线有码专区| 我要搜黄色片| 日韩国内少妇激情av| 熟女人妻精品中文字幕| 波多野结衣高清作品| 五月伊人婷婷丁香| 亚洲色图av天堂| 两个人看的免费小视频| 国产真实乱freesex| 国产av不卡久久| 欧美绝顶高潮抽搐喷水| 亚洲av熟女| 久久中文看片网| 少妇高潮的动态图| 午夜视频国产福利| 亚洲最大成人手机在线| 国内毛片毛片毛片毛片毛片| 亚洲精品美女久久久久99蜜臀| 日韩中文字幕欧美一区二区| 亚洲国产精品久久男人天堂| 亚洲人与动物交配视频| 啦啦啦免费观看视频1| 网址你懂的国产日韩在线| 国产精品电影一区二区三区| 亚洲精品456在线播放app | 丁香欧美五月| 亚洲中文字幕日韩| av天堂中文字幕网| 在线看三级毛片| 国产精品久久久人人做人人爽| 国产爱豆传媒在线观看| 99久久九九国产精品国产免费| 淫妇啪啪啪对白视频| 欧美乱妇无乱码| av在线天堂中文字幕| 欧美性猛交╳xxx乱大交人| 色在线成人网| 又黄又爽又免费观看的视频| 国产成人影院久久av| a级毛片a级免费在线| 欧美在线黄色| 麻豆久久精品国产亚洲av| 在线观看舔阴道视频| 国内久久婷婷六月综合欲色啪| 午夜精品在线福利| 我要搜黄色片| 国产黄a三级三级三级人| 岛国在线观看网站| 日本免费a在线| 黄色女人牲交| 亚洲成人久久性| 国产精品99久久久久久久久| 在线播放国产精品三级| 女生性感内裤真人,穿戴方法视频| 人人妻,人人澡人人爽秒播| 一个人看的www免费观看视频| 国产成人a区在线观看| 首页视频小说图片口味搜索| www.www免费av| 国产蜜桃级精品一区二区三区| 悠悠久久av| 一个人看的www免费观看视频| 国产又黄又爽又无遮挡在线| 亚洲最大成人手机在线| 99国产综合亚洲精品| 九九久久精品国产亚洲av麻豆| 欧美+亚洲+日韩+国产| 天堂av国产一区二区熟女人妻| 黄色片一级片一级黄色片| 国产精品精品国产色婷婷| 黄色女人牲交| 国产高潮美女av| 内射极品少妇av片p| 日韩欧美在线二视频| 草草在线视频免费看| 国产精品亚洲一级av第二区| 欧美最黄视频在线播放免费| 欧美3d第一页| 久久精品91无色码中文字幕| av国产免费在线观看| 亚洲中文日韩欧美视频| 国产日本99.免费观看| 香蕉丝袜av| 色哟哟哟哟哟哟| 亚洲一区高清亚洲精品| 宅男免费午夜| 夜夜夜夜夜久久久久| 国产真实乱freesex| 亚洲片人在线观看| 亚洲成人久久性| 国内精品一区二区在线观看| 中文在线观看免费www的网站| 女人被狂操c到高潮| 男人和女人高潮做爰伦理| 欧美激情在线99| 九九热线精品视视频播放| avwww免费| 日韩欧美精品v在线| 免费人成在线观看视频色| 国产成人啪精品午夜网站| 久久久久性生活片| 久久久久九九精品影院| 丰满乱子伦码专区| 亚洲,欧美精品.| 亚洲片人在线观看| 久久精品人妻少妇| 国产精品一区二区三区四区免费观看 | 丰满人妻一区二区三区视频av | 亚洲成人久久爱视频| 日本一二三区视频观看| 欧美日韩乱码在线| 亚洲av免费在线观看| 国产真实伦视频高清在线观看 | 亚洲国产欧美网| 欧美日韩亚洲国产一区二区在线观看| 无人区码免费观看不卡| 亚洲精品影视一区二区三区av| 国产高清有码在线观看视频| 国产成人影院久久av| 黄片大片在线免费观看| av女优亚洲男人天堂| 国产69精品久久久久777片| 18禁黄网站禁片午夜丰满| 亚洲精品456在线播放app | 99国产精品一区二区三区| 国产精品一区二区三区四区免费观看 | 蜜桃久久精品国产亚洲av| 国产亚洲av嫩草精品影院| 最近最新中文字幕大全免费视频| 亚洲国产欧美人成| 少妇的逼好多水| 欧美bdsm另类| 搡老岳熟女国产| 亚洲美女黄片视频| 亚洲自拍偷在线| 国产一级毛片七仙女欲春2| 国语自产精品视频在线第100页| 国语自产精品视频在线第100页| 日韩国内少妇激情av| 国产精品电影一区二区三区| 嫩草影院入口| 亚洲av熟女| 久久久国产精品麻豆| АⅤ资源中文在线天堂| 草草在线视频免费看| 国产野战对白在线观看| 悠悠久久av| 欧美一区二区精品小视频在线| h日本视频在线播放| 岛国在线观看网站| 国内精品一区二区在线观看| 国产精品乱码一区二三区的特点| 成人精品一区二区免费| 99热这里只有是精品50| 级片在线观看| 在线观看日韩欧美| 99久久无色码亚洲精品果冻| 免费搜索国产男女视频| 女生性感内裤真人,穿戴方法视频| 深夜精品福利| 国产精品久久久久久亚洲av鲁大| 在线观看av片永久免费下载| 午夜两性在线视频| 怎么达到女性高潮| 俺也久久电影网| 亚洲av免费高清在线观看| 国产精品爽爽va在线观看网站| 欧美日韩中文字幕国产精品一区二区三区| 国产av不卡久久| 19禁男女啪啪无遮挡网站| 嫩草影院精品99| 香蕉丝袜av| 黄色片一级片一级黄色片| 人妻丰满熟妇av一区二区三区| 在线十欧美十亚洲十日本专区| 日本黄色视频三级网站网址| 亚洲成人久久性| 日韩欧美精品v在线| 宅男免费午夜| 男女之事视频高清在线观看| 亚洲七黄色美女视频| www.www免费av| 美女 人体艺术 gogo| 国产 一区 欧美 日韩| 国产成+人综合+亚洲专区| 亚洲中文字幕日韩| 黄色成人免费大全| 国产激情偷乱视频一区二区| 一个人看视频在线观看www免费 | h日本视频在线播放| 国产午夜精品论理片| 少妇高潮的动态图| 国产一级毛片七仙女欲春2| 好男人电影高清在线观看| www日本在线高清视频| 精品不卡国产一区二区三区| 两个人的视频大全免费| 男人舔奶头视频| 91av网一区二区| 90打野战视频偷拍视频| 国产高清有码在线观看视频| 国产精品嫩草影院av在线观看 | 丰满人妻熟妇乱又伦精品不卡| www.熟女人妻精品国产| 亚洲在线自拍视频| 免费观看精品视频网站| 国产精品久久电影中文字幕| 欧美日韩亚洲国产一区二区在线观看| 特大巨黑吊av在线直播| 中文在线观看免费www的网站| 精品久久久久久久人妻蜜臀av| 岛国在线观看网站| 日韩中文字幕欧美一区二区| 老汉色∧v一级毛片| 一进一出抽搐gif免费好疼| 此物有八面人人有两片| 日本与韩国留学比较| 欧美bdsm另类| 天堂动漫精品| 国产精品自产拍在线观看55亚洲| 亚洲aⅴ乱码一区二区在线播放| 乱人视频在线观看| 麻豆国产97在线/欧美| 嫩草影院精品99| 香蕉丝袜av| 欧美激情在线99| 最近在线观看免费完整版| 19禁男女啪啪无遮挡网站| 国产黄a三级三级三级人| 国产一区二区激情短视频| 嫩草影院精品99| 精品欧美国产一区二区三| 国产三级黄色录像| 中文字幕人妻丝袜一区二区| 俄罗斯特黄特色一大片| 欧美日韩一级在线毛片| 法律面前人人平等表现在哪些方面| 免费av观看视频| 精品不卡国产一区二区三区| 日韩 欧美 亚洲 中文字幕| 国产精品一区二区三区四区久久| 欧美激情在线99| 老司机午夜福利在线观看视频| 又黄又粗又硬又大视频| 大型黄色视频在线免费观看| 一区福利在线观看| 给我免费播放毛片高清在线观看| 国产综合懂色| 黄色日韩在线| 日韩 欧美 亚洲 中文字幕| 国产黄色小视频在线观看| 亚洲精品456在线播放app | 在线观看美女被高潮喷水网站 | 最新在线观看一区二区三区| 国产在线精品亚洲第一网站| 久久国产乱子伦精品免费另类| 哪里可以看免费的av片| 日韩高清综合在线| 国产成人啪精品午夜网站| 国产探花极品一区二区| 99国产极品粉嫩在线观看| 有码 亚洲区| 久久久国产成人免费| 精品久久久久久久久久免费视频| 热99在线观看视频| 他把我摸到了高潮在线观看| 免费人成视频x8x8入口观看| 日本撒尿小便嘘嘘汇集6| 无限看片的www在线观看| 亚洲美女黄片视频| 一个人免费在线观看的高清视频| 久久久色成人| 欧美国产日韩亚洲一区| 亚洲精品一卡2卡三卡4卡5卡| 色吧在线观看| 色精品久久人妻99蜜桃| 精品午夜福利视频在线观看一区| 一级毛片高清免费大全| 亚洲 国产 在线| 欧美一区二区国产精品久久精品| 国产视频内射| 久久久久久久久中文| 又紧又爽又黄一区二区| 日本精品一区二区三区蜜桃| 国产亚洲av嫩草精品影院| 99久久精品一区二区三区| 91av网一区二区| 黄片大片在线免费观看| 99久久99久久久精品蜜桃| 美女免费视频网站| 日韩av在线大香蕉| 成人欧美大片| 日本与韩国留学比较| 亚洲精华国产精华精| 日韩欧美国产在线观看| 成人永久免费在线观看视频| 91久久精品电影网| 变态另类丝袜制服| 久9热在线精品视频| 亚洲在线自拍视频| 真人做人爱边吃奶动态| 日韩欧美 国产精品| 久久精品国产自在天天线| 国产黄a三级三级三级人| 中文字幕精品亚洲无线码一区| 中文字幕高清在线视频| 国产高潮美女av| 国产伦人伦偷精品视频| 国产单亲对白刺激| 国产视频一区二区在线看| 国产精品三级大全| 桃色一区二区三区在线观看| 老熟妇乱子伦视频在线观看| 国产蜜桃级精品一区二区三区| 免费观看的影片在线观看| 精品久久久久久久久久免费视频| 我的老师免费观看完整版| 精品久久久久久久毛片微露脸| 亚洲国产中文字幕在线视频| 欧美区成人在线视频| 欧美黄色片欧美黄色片| 禁无遮挡网站| 啦啦啦观看免费观看视频高清| 日韩精品青青久久久久久| 偷拍熟女少妇极品色| 亚洲欧美激情综合另类| 又黄又粗又硬又大视频| 久久久成人免费电影| 18禁裸乳无遮挡免费网站照片| 欧美大码av| 国内少妇人妻偷人精品xxx网站| 少妇的逼好多水| 首页视频小说图片口味搜索| 在线播放无遮挡| eeuss影院久久| 十八禁人妻一区二区| 国产探花在线观看一区二区| 伊人久久大香线蕉亚洲五| 黄色视频,在线免费观看| 法律面前人人平等表现在哪些方面| 国内少妇人妻偷人精品xxx网站| 少妇丰满av| 免费在线观看亚洲国产| 国产极品精品免费视频能看的| 搡老妇女老女人老熟妇| 在线国产一区二区在线| 婷婷精品国产亚洲av在线| 99在线视频只有这里精品首页| 全区人妻精品视频| 精品免费久久久久久久清纯| 最近最新中文字幕大全电影3| 此物有八面人人有两片| 一个人免费在线观看电影| 亚洲av电影不卡..在线观看| 精品久久久久久,| 久久天躁狠狠躁夜夜2o2o| 成人精品一区二区免费| 国产私拍福利视频在线观看| 首页视频小说图片口味搜索| 在线观看免费视频日本深夜| 亚洲,欧美精品.| 国产视频内射| 国产精品99久久99久久久不卡| 欧美一区二区国产精品久久精品| 日本黄色片子视频| 国语自产精品视频在线第100页| 岛国视频午夜一区免费看| 国内精品久久久久久久电影| 99久久九九国产精品国产免费| 国产精品久久久人人做人人爽| a在线观看视频网站| 可以在线观看毛片的网站| 村上凉子中文字幕在线| 中国美女看黄片| 在线国产一区二区在线| 国产高清激情床上av| 日韩人妻高清精品专区| 欧美乱码精品一区二区三区| 在线观看一区二区三区| 很黄的视频免费| 亚洲国产中文字幕在线视频| 白带黄色成豆腐渣| 国产黄色小视频在线观看| 无限看片的www在线观看| 日韩欧美免费精品| 成人永久免费在线观看视频| 极品教师在线免费播放| 日日夜夜操网爽| 色在线成人网| 无人区码免费观看不卡| 不卡一级毛片| 亚洲五月婷婷丁香| 免费看光身美女| 叶爱在线成人免费视频播放| 欧美大码av| 色噜噜av男人的天堂激情| 午夜精品在线福利| 成人精品一区二区免费| 国产伦一二天堂av在线观看| 每晚都被弄得嗷嗷叫到高潮| 制服丝袜大香蕉在线| 免费观看精品视频网站| 亚洲国产精品999在线| 成人av在线播放网站| 免费无遮挡裸体视频| 俄罗斯特黄特色一大片| 亚洲av成人精品一区久久| 日本与韩国留学比较| 午夜精品在线福利| 天天一区二区日本电影三级| 舔av片在线| 啦啦啦韩国在线观看视频| 中文字幕人妻丝袜一区二区| 一级黄片播放器| 日韩中文字幕欧美一区二区| 欧美性猛交╳xxx乱大交人| 美女被艹到高潮喷水动态| 97人妻精品一区二区三区麻豆| 免费在线观看亚洲国产| 欧美最新免费一区二区三区 | 精品熟女少妇八av免费久了| 亚洲在线观看片| 男女下面进入的视频免费午夜| x7x7x7水蜜桃| 九九在线视频观看精品| av在线天堂中文字幕| 久久久久精品国产欧美久久久| 免费看a级黄色片| 岛国视频午夜一区免费看| 免费电影在线观看免费观看| 欧美成人一区二区免费高清观看| 免费一级毛片在线播放高清视频| 搡老岳熟女国产| 操出白浆在线播放| 成人高潮视频无遮挡免费网站| 18禁在线播放成人免费| 亚洲天堂国产精品一区在线| 亚洲精品一区av在线观看| 国产精品嫩草影院av在线观看 | 最好的美女福利视频网| 久久午夜亚洲精品久久| 欧美激情久久久久久爽电影| 淫秽高清视频在线观看| 小蜜桃在线观看免费完整版高清| 国产欧美日韩精品亚洲av| 看免费av毛片| 搡女人真爽免费视频火全软件 | 99在线人妻在线中文字幕| 国产精品久久电影中文字幕| 1000部很黄的大片| 夜夜爽天天搞| 内射极品少妇av片p| 亚洲av成人av| 成熟少妇高潮喷水视频| 男人舔奶头视频| 亚洲最大成人手机在线| 天天一区二区日本电影三级| 琪琪午夜伦伦电影理论片6080| 日韩欧美国产在线观看| 亚洲精品日韩av片在线观看 | 国产在视频线在精品| 亚洲真实伦在线观看| 成年人黄色毛片网站| 岛国在线观看网站| 欧美一区二区国产精品久久精品| 黑人欧美特级aaaaaa片| 午夜a级毛片| 日本撒尿小便嘘嘘汇集6| 一区二区三区激情视频| 丝袜美腿在线中文| 香蕉久久夜色| 女生性感内裤真人,穿戴方法视频| 国产高清videossex| 亚洲成人中文字幕在线播放| 中文字幕精品亚洲无线码一区| 亚洲精品在线美女| 嫩草影院入口| 国产伦在线观看视频一区| 十八禁网站免费在线| 丰满人妻熟妇乱又伦精品不卡| 18禁黄网站禁片免费观看直播| 午夜激情福利司机影院| 免费在线观看影片大全网站| 亚洲精华国产精华精| 波野结衣二区三区在线 | 中国美女看黄片| www日本在线高清视频| 最近视频中文字幕2019在线8| 观看免费一级毛片| 久久这里只有精品中国| 亚洲精品456在线播放app | 男人和女人高潮做爰伦理| 免费无遮挡裸体视频| or卡值多少钱| 国产欧美日韩精品一区二区| 亚洲精品色激情综合| 黄色丝袜av网址大全| 久久精品国产亚洲av香蕉五月| 99久国产av精品| 亚洲av成人不卡在线观看播放网| 国产亚洲精品久久久com| 亚洲国产高清在线一区二区三| 日本 欧美在线| 国产精品1区2区在线观看.| 床上黄色一级片| 两个人看的免费小视频| 久久中文看片网| 日本三级黄在线观看| 一区福利在线观看| 国产精品久久电影中文字幕| a在线观看视频网站| 亚洲最大成人中文| 岛国在线免费视频观看| 一个人看视频在线观看www免费 | 免费人成在线观看视频色| 精品国产美女av久久久久小说| 婷婷丁香在线五月| eeuss影院久久| 国产精品亚洲av一区麻豆| 99国产极品粉嫩在线观看| 很黄的视频免费| 精品电影一区二区在线| 午夜精品久久久久久毛片777| 99久久久亚洲精品蜜臀av| 亚洲欧美日韩高清专用| 夜夜看夜夜爽夜夜摸| 国产精品嫩草影院av在线观看 | 在线视频色国产色| 亚洲在线自拍视频| 国产精品,欧美在线| 欧美大码av| 亚洲av美国av| 啦啦啦韩国在线观看视频| 亚洲内射少妇av| 免费观看精品视频网站| 国产亚洲欧美在线一区二区| 脱女人内裤的视频| 九色成人免费人妻av| 国产激情欧美一区二区|