• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimized Ensemble Algorithm for Predicting Metamaterial Antenna Parameters

    2022-08-23 02:17:56ElSayedElkenawyAbdelhameedIbrahimSeyedaliMirjaliliYuDongZhangShaimaElnazerandRokaiaZaki
    Computers Materials&Continua 2022年6期

    El-Sayed M.El-kenawy,Abdelhameed Ibrahim,Seyedali Mirjalili,Yu-Dong Zhang,Shaima Elnazer and Rokaia M.Zaki

    1Department of Communications and Electronics,Delta Higher Institute of Engineering and Technology,Mansoura,35111,Egypt

    2Faculty of Artificial Intelligence,Delta University for Science and Technology,Mansoura,35712,Egypt

    3Computer Engineering and Control Systems Department,Faculty of Engineering,Mansoura University,Mansoura,35516,Egypt

    4Centre for Artificial Intelligence Research and Optimization,Torrens University Australia,Fortitude Valley,QLD 4006,Australia

    5Yonsei Frontier Lab,Yonsei University,Seoul,03722,Korea

    6School of Computing and Mathematical Sciences,University of Leicester,Leicester,LE1 7RH,UK

    7Nile Higher Institute for Engineering and Technology,Mansoura,Egypt

    8Computer and Information Technology College,Taif University,Taif,Saudi Arabia

    9Higher Institute of Engineering and Technology,Kafrelsheikh

    10Department of Electrical Engineering,Shoubra Faculty of Engineering,Benha University,Egypt

    Abstract: Metamaterial Antenna is a subclass of antennas that makes use of metamaterial to improve performance.Metamaterial antennas can overcome the bandwidth constraint associated with tiny antennas.Machine learning is receiving a lot of interest in optimizing solutions in a variety of areas.Machine learning methods are already a significant component of ongoing research and are anticipated to play a critical role in today’s technology.The accuracy of the forecast is mostly determined by the model used.The purpose of this article is to provide an optimal ensemble model for predicting the bandwidth and gain of the Metamaterial Antenna.Support Vector Machines (SVM),Random Forest, K-Neighbors Regressor, and Decision Tree Regressor were utilized as the basic models.The Adaptive Dynamic Polar Rose Guided Whale Optimization method, named AD-PRS-Guided WOA, was used to pick the optimal features from the datasets.The suggested model is compared to models based on five variables and to the average ensemble model.The findings indicate that the presented model using Random Forest results in a Root Mean Squared Error(RMSE)of(0.0102)for bandwidth and RMSE of(0.0891)for gain.This is superior to other models and can accurately predict antenna bandwidth and gain.

    Keywords:Metamaterial antenna;machine learning;ensemble model;feature selection;guided whale optimization;support vector machines

    1 Introduction

    Metamaterials are materials with special physical properties that cannot be reproduced using natural materials, and so metamaterials are popular materials in today’s world and are frequently used in many fields, such as microwave invisibility cloaks, invisible submarines, revolutionary electronics, microwave components, as filters, and antennas that are compact, efficient, and have a negative refractive index.One of its most important uses is the design of antennas made possible by metamaterials[1–3].

    This is due to the fact that metamaterials have unique properties,and as a result,we may construct antennas with innovative features that standard materials cannot provide.One or more layers of metamaterials may be utilized as a substrate or in addition to the antenna design in order to boost the system’s capabilities.Even if a compact antenna with low cost and high efficiency is desired,a slightly larger antenna that costs less money and has better efficiency is the best option.The metamaterial may help increase the bandwidth and gain of tiny antennas.Another advantage is that it reduces their electrical size,but the ability to direct a signal increases.In the case of smaller antennas,metamaterial antennas provide an advantage over traditional antennas since they have more bandwidth[4,5].

    Simulation software is used to estimate the metamaterial effect.The CST Microwave Studio(CST MWS) is an example of a software program that simulates electromagnetic simulations [6].Antenna characteristics like bandwidth,gain,Voltage Standing Wave Ratio(VSWR),and return loss may be calculated after the simulation.In the simulation phase, researchers may make adjustments in Metamaterial Antenna, beginning with trial and error to get the set of antenna characteristics.The amount of time it will take to finish this procedure is completely unpredictable.They are using a machine learning model to estimate antenna characteristics.Numerous studies have examined machine learning applications in antenna design.Machine learning is anticipated to speed the antenna design process while retaining high accuracy, minimizing errors, saving time, and the ability to forecast the antenna behavior, improve computing efficiency, and decrease the number of required simulations[7–9].

    Optimization is the study of finding optimal solutions to problems.Because optimization issues are complex and grow with time,we resort to improved optimization algorithms[10–13].Metaheuristic algorithms are an excellent option for tackling complex issues that are difficult to solve with conventional techniques.Algorithms start with a random population and pass on the best to the next generation.Metaheuristic algorithms are dynamic and widely looking for a solution[14–17].

    In this paper,an Antenna-derived metamaterial ensemble model is presented as a way to estimate the bandwidth and gain of the Antenna.Of the basic models, we utilise Support Vector Machines(SVM) [18,19], Random Forest [20], K-Neighbors Regressor [21,22], and Decision Tree Regressor[23]to be compared with the presented method.Ensemble model is optimized using an optimization method to identify the optimum features based on the adaptive dynamic polar rose guided whale optimization(AD-PRS-Guided WOA)[24]algorithm.A regression analysis using the suggested model indicated that it was superior to the other models,predicting antenna bandwidth and gain efficiencies.

    The structure of this work is organized as follows:Section 2 presents a literature review.Section 3 describes data preparation and the suggested ensemble model in detail.Section 4 displays results and discussion.The last section of the given study(Section 5)examines the conclusion.

    2 Literature Review

    In general, the following steps can be taken to incorporate machine learning into the antenna design problem.The electromagnetic properties of an antenna are first determined via a series of simulations.These attributes are then saved in a database and used to train a machine learning system.Finally,the algorithm determines the Antenna that produces the closest results based on the designer’s requirements.

    2.1 Machine Learning Models

    Machine learning is a technique that relies on algorithms which can learn from data without the need of pre-programming.It can be classified into three types,named supervised,unsupervised and reinforcement learning.To attain high performance in Artificial Neural Networks(ANN),extensive interconnections of“neurons,”which are basic processing cells,are used.When complicated functions with many characteristics are discovered, neural networks provide an alternative method for doing machine learning.Multiple layers comprise neural networks: an input layer, an output layer, and hidden layers between the input and output layers[25].The SVM method is another kind of algorithm for guided learning.It is mainly used in classification and employs kernel techniques to scope with a challenging situation of non-linearly separable patterns.K-Nearest Neighbors (KNN) is considered to be one of the simplest machine learning methods available.After remembering the training set,the algorithm predicts the outcome of each new input using the outputs of its nearest neighbors in the training set.

    Machine learning algorithms have been applied in smart grid networks,where machine learning can be used to anticipate malicious events,communication technology,including antenna selection in wireless communications,wireless networks,where machine learning can be used to forecast wireless users’mobility patterns and content requests,and speech recognition.A technique for using machine learning in antenna design is to train a learning algorithm on data from prior simulations in order to improve the antenna parameters.

    Metaheuristic algorithms solve unexpected issues since they are intelligent and have prior knowledge of random search.These algorithms are either flexible, simple, or able to avoid local perfection.Exploration and exploitation are two elements of population-based heuristic algorithms.The metaheuristic algorithm here selects between Exploration and exploitation.While exploring, the technique examines the search space thoroughly.The area’s local search is currently at the exploitation stage.Several global optimization methods inspired by nature have been developed in recent decades.Population-based metaheuristics, often known as general-purpose algorithms, may be utilized in a variety of situations.Metaheuristics are split into two types:metaphor-based and non-metaphor based.In contrast, metaphors employ algorithms to represent natural phenomena or human behavior in contemporary life[26].

    2.2 Feature Selection

    All machine learning processes rely on feature engineering, which entails the extraction and selection of features, which are critical components of contemporary machine learning pipelines.Despite the fact that feature extraction and feature selection procedures overlap in certain ways,these words are often used interchangeably.Feature extraction is the process of extracting additional variables from raw data in order to make machine learning algorithms function.The feature selection method is focused on identifying the characteristics that are the most consistent,meaningful,and nonredundant.The feature selection issue is unique in that the search space is constrained to two binary values: 0 and 1.As a result, the continuous version of an optimizer should be used and updated to function correctly to address this issue.This method is considered in order to transform the suggested continuous values of AD-PRS-Guided WOA algorithm to binary values,allowing it to be utilised to solve the issue of feature selection.To transform, the Sigmoid form converts continuous values to binary values.

    3 The Proposed Ensemble Model

    Ensemble techniques are getting preferred in addressing various artificial intelligence issues.The average ensemble is among the most basic ensemble strategies that integrate base regressors’outputs and compute the mean.This method aggregates the outcome of various regressors as well as determines the mean value.In this paper,the average ensemble is employed as a reference set version to review the efficiency of the suggested ensemble model.As shown in Fig.1,the presented ensemble model is based on the stages of preprocessing, feature selection and optimized ensemble algorithm for both bandwidth and gain prediction.Ensemble model instead of selecting one ideal version from the candidates combines all the designs by assigning weight to every model.The Ensemble technique is verified as one of the significant methods in enhancing the prescient capability of conventional versions.The ensemble model typically has two stages wherein the first stage,the outcome variable of the best ensemble member,is picked to obtain the final forecast.The second stage blends the ensemble members’output variables using the mixed formula[27].

    Figure 1: The presented ensemble model based on the stages of preprocessing, feature selection and optimized ensemble algorithm for both bandwidth and gain prediction

    3.1 Data Preprocessing

    The dataset utilised in this study includes eleven Metamaterial Antenna characteristics.The dataset was obtained through Kaggle [28].There are 572 records in this collection.Each record contains the following information about the metamaterial antenna:the width and height of the split ring resonator,the distance between rings,the width of the rings,the gap between the rings,the distance between the antenna patch and the array, the number of split ring resonator cells in the array, the gain of the Antenna,the distance between split ring resonator cells in the array,the bandwidth of the Antenna,and the return.Tab.1 summarises the dataset’s characteristics.These characteristics will be utilised to estimate the Antenna’s bandwidth using a machine learning algorithm, and Fig.2 shows the distribution of bandwidth and gain feature.

    Table 1: Description of features of the dataset[28]

    Figure 2:Distribution of bandwidth and gain feature

    The first step is to format the nulls,the second step is to filter out null values,and the third step is to deal with nulls using a formula.Min-max normalisation is one of the most frequently used methods of data normalising.For each feature,the lowest value is converted to a 0,the highest value is converted to a 1,and all other values are converted to a decimal between 0 and 1.The dataset’s correlation matrix,as shown in Fig.3,Wmandtmare strongly correlated with the bandwidth.

    Figure 3:Correlation of metamaterial antenna

    3.2 The AD-PRS-Guided WOA Algorithm

    The AD-PRS-Guided WOA algorithm was first proposed in [24].A binary version of the ADPRS-Guided WOA algorithm is used to select the ideal attributes from the datasets to offer an optimal ensemble design for predicting the bandwidth and gain of the Metamaterial Antenna.The algorithm can check out the search space successfully to improve exploration efficiency.The algorithm also uses three arbitrary solutions as it makes use of significant change to transform between exploration and exploitation processes.According to the most effective remedy,it also calculates a listing of generated walks in a diffusion process as a polar increased feature.The AD-PRS-Guided WOA algorithm is shown in Algorithm 1.

    The updating positions mechanism of the algorithm of AD-PRS-Guided WOA is modified to follow three random solutions ofXo1,Xo2andXo3.These solutions are updated every iteration to enhance the algorithm performance and get the optimal solution.

    whereX(t+1)is the updated solution in iterationt+1 andX(t)is the current solution at iterationt.Qis the optimal solution.w1,w2andw3are random values in[0,0.5],[0,1],and[0,1],respectively.zis updated asz=fortiteration andtmas maximum iterations.

    The algorithm gets the best solution related to the calculated best fitness value.Then, the individuals are split into exploration groups and exploitation groups.Individuals in the exploitation group are moving to the leaders, and individuals in the exploration group are searching for leaders.Individuals in the sub-groups are changed dynamically.For balancing purposes,the algorithm divides the population into(50/50)for the two groups.

    In the algorithm,the polar rose function is used to search the leaders’purpose to find other good solutions.Based on different values of the main parameters of this function namedaandb, Fig.4 shows the output of the polar rose function.The polar rose function is calculated as follows to search around the best solution.

    whereX(t+1)is the updated solution in iterationt+1.Theaandbparameters are within[-10,10]and 0 ≤θ≤12π.kis calculated as

    Figure 4:Changing the values of a and b to generate different polar rose function outputs

    um iterations itersmax.5:Set Q=best agent position 6:while t ≤itersmax do 7: for(i=1:i ≤n)do 8: Select three random solutions Xo1,Xo2,and Xo3 9: Set z=1-images/BZ_804_607_2563_638_2609.png t itersmaximages/BZ_804_779_2563_810_2609.png2(Continued)

    Algorithm 1:Continued 10: Update position of current search agent as X(t+1)=w1*Xo1+z*w2*(Xo2-Xo3)+(1-z)*w3*(Q-X(t))11: end for 12: Update Solutions in exploration group(n1)and exploitation group(n2)13: if(Best Fn is same for three iterations)then 14: Increase solutions of exploration group(n1)15: Decrease solutions of exploitation group(n2)16: end if 17: for(i=1:i ≤n1)do(exploration group update)18: update three random solutions Xo1,Xo2,Xo3,and Q(The best solutions were elitism)19: if(Q <Any of the best solutions)then 20: Mutate the solution by X(t+1)=k+images/BZ_805_803_1106_834_1152.png∑Xo1+Xo2+Xo3 ezkimages/BZ_805_1192_1106_1223_1152.png, k=2- 2×t2(itersmax)2 21: else 22: Update agent position by X(t+1)=w1*Xo1+z*w2*(Xo2-Xo3)+(1–z)*w3*(Q-X(t))23: end if 24: end for 25: for(i=1:i ≤n2)do(exploitation group update)26: update three random solutions Xo1,Xo2,Xo3,and Q(The best solutions were elitism)27: if(Q <Any of the best solutions)then 28: Move towards the best solution by X(t+1)=w1*Xo1+z*w2*(Xo2-Xo3)+(1-z)*w3*-(Q-X(t))29: else 30: Search around the best solution X(t+1)=k sinimages/BZ_805_913_1905_938_1951.pngaimages/BZ_805_996_1905_1021_1951.pngbθ 31: end if 32: end for 33: Amend solutions 34: Update fitness 35: end while 36: Return best agent Q

    3.3 The Binary AD-PRS-Guided WOA Algorithm

    The output solution is updated to a binary solution using (0 or 1) in case of a feature selection problem.The sigmoid function is used in this paper to update the continuous solutions of the optimizer’s output into binary solutions,as shown in Algorithm 2.

    Algorithm 2:Binary AD-PRS-Guided WOA Algorithm 1: Set AD-PRS-Guided WOA population,parameters,configuration.2: Convert solutions to binary[0,1]3: Calculate objective function and select best solutions 4: Train k-NN and calculate error 5: while t ≤itersmax do 6: Apply AD-PRS-Guided WOA algorithm 7: Convert updated solution to binary 8: Calculate fitness 9: Update parameters 10: end while 11: Return best solution

    4 Results and Discussion

    The results in this section are explained as follows.The results, based on the Decision Tree,Multilayer Perceptron(MLP),KNN,Support Vector Regression(SVR),Random Forest,regressors in addition to the Average Ensemble and the proposed Ensemble model based on Random Forest regressor, before applying the feature selection technique are discussed.Then the results are shown after using feature selection to deliver the performance of the proposed model.Tab.2 shows the configuaration of the AD-PRS-Guided WOA algorithm.

    Table 2: Configuration of the AD-PRS-Guided WOA algorithm

    4.1 Performance Metrics

    The performance metrics used in this work are Root Mean Squared Error (RMSE), Mean Absolute Error(MAE),Mean Absolute Error(MBE),and the correlation coefficient(r)[22].Tab.3 shows the different performance metrics whereHp,iindicates a predicted value,Hirepresents the observed value,andnis the total number of observations.andindicate the average predicted and observed values,respectively.

    Table 3: Performance metrics for classification[22]

    4.2 Results Before Applying Feature Selection

    The results based on the bandwidth features of the tested dataset before applying the feature selection technique are shown in Tab.4.Tab.4 shows that the proposed Ensemble model using Random Forest results based on the bandwidth features of RMSE of (0.0320), MAE of (0.0231),MBE of (-0.0069), and r of (0.9752) are better than other compared models.The results using the gain features of the dataset before applying the feature selection are shown in Tab.5.

    Table 4: Results based on the bandwidth features of the dataset before applying feature selection

    Table 5: Results based on the gain features of the dataset before applying feature selection

    Tab.5 shows that the proposed Ensemble model using Random Forest results based on the gain features of RMSE of(0.0982),MAE of(0.0231),MBE of(-0.0152),and r of(0.9165)are better than other compared models.Fig.5 shows the actual and the predicted values for the bandwidth prediction from the tested dataset based on the AD-PRS-Guided WOA algorithm before applying the feature selection process.While Fig.6 shows the actual and predicted values by the AD-PRS-Guided WOA algorithm for the gain prediction before applying the method of feature selection.

    Figure 5:The actual values,in green color,and predicted values,in red color,by the proposed ensemble algorithm for the bandwidth before applying the feature selection

    Figure 6:The actual values,in green color,and predicted values,in red color,by the proposed ensemble algorithm for the gain before applying the feature selection

    4.3 Results After Applying Feature Selection

    After applying the feature selection technique,the results of the bandwidth features from the tested dataset are shown in Tab.6.Tab.6 shows that the proposed Ensemble model using Random Forest results of RMSE of(0.0102),MAE of(0.0344),MBE of(-0.0032),and r of(0.9932)are much better than other compared models.The results of the gain features from the dataset after applying the feature selection are shown in Tab.7.

    Table 6: Results based on the bandwidth features of the dataset after applying feature selection

    Tab.7 shows that the proposed Ensemble model using Random Forest results of the gain features as RMSE of(0.0891),MAE of(0.0234),MBE of(-0.0161),and r of(0.9443)which are much better than other compared models.Fig.7 shows the actual values and predicted values by the AD-PRSGuided WOA algorithm for the bandwidth after applying the feature selection.While Fig.8 shows the actual and predicted values by the AD-PRS-Guided WOA algorithm for the gain after applying the feature selection.

    Table 7: Results based on the gain features of the dataset after applying feature selection

    Figure 7:The actual values,in green color,and predicted values,in red color,by the proposed ensemble algorithm for the bandwidth after applying the feature selection

    Figure 8:The actual values,in green color,and predicted values,in red color,by the proposed ensemble algorithm for the bandwidth after applying the feature selection

    5 Conclusion

    Machine learning methods are already a significant component of ongoing research and are anticipated to play a critical role in today’s technology.The accuracy of the forecast is mostly determined by the model used.This paper uses the AD-PRS-Guided WOA method to pick the optimal features from the metamaterial antenna dataset.Metamaterial antennas can overcome the bandwidth and gain constraints associated with tiny antennas.Machine learning is receiving much interest in optimizing solutions in a variety of areas.The optimal ensemble model achieved good results for predicting the bandwidth and gain of the metamaterial antenna.The basic models have investigated SVM,Random Forest,K-Neighbors Regressor,and Decision Tree Regressor.The AD-PRS-Guided WOA algorithm was utilized to pick the optimal features from the datasets.The suggested model was compared to models based on five variables and to the average ensemble model.The findings indicated that the suggested AD-PRS-Guided WOA algorithm-based model is superior to others and can accurately predict antenna bandwidth and gain.The presented algorithm will be compared with CST software in future work.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    免费观看性生交大片5| 桃色一区二区三区在线观看| 亚洲中文字幕一区二区三区有码在线看| 国产女主播在线喷水免费视频网站 | 两个人视频免费观看高清| 久久久精品欧美日韩精品| 久久久久久久久中文| 亚洲精品国产成人久久av| 久99久视频精品免费| 国产 一区精品| 99久久中文字幕三级久久日本| 国产精品一区二区在线观看99 | 久久久a久久爽久久v久久| 日韩成人av中文字幕在线观看| 91精品国产国语对白视频| 国产精品女同一区二区软件| 最后的刺客免费高清国语| 亚洲av免费高清在线观看| 国产精品一二三区在线看| 晚上一个人看的免费电影| 亚洲精品456在线播放app| 亚洲国产精品成人久久小说| 亚洲欧美中文字幕日韩二区| 女的被弄到高潮叫床怎么办| 精品一区二区三卡| 欧美激情国产日韩精品一区| 成人亚洲欧美一区二区av| 国产免费福利视频在线观看| 日本av免费视频播放| 亚洲美女视频黄频| 国产精品秋霞免费鲁丝片| 99香蕉大伊视频| 波多野结衣一区麻豆| 日韩制服骚丝袜av| 色婷婷av一区二区三区视频| 夫妻午夜视频| 久久 成人 亚洲| 曰老女人黄片| 久久久久久人人人人人| 国产亚洲精品第一综合不卡 | 免费av中文字幕在线| 免费av中文字幕在线| 精品少妇内射三级| 亚洲欧美日韩另类电影网站| 日日啪夜夜爽| 人人妻人人爽人人添夜夜欢视频| 欧美激情极品国产一区二区三区 | 午夜老司机福利剧场| a级毛片黄视频| 熟女人妻精品中文字幕| 人妻 亚洲 视频| 亚洲精品aⅴ在线观看| 五月玫瑰六月丁香| 一本大道久久a久久精品| 亚洲少妇的诱惑av| 亚洲av日韩在线播放| 日韩三级伦理在线观看| 熟女人妻精品中文字幕| 91精品三级在线观看| 街头女战士在线观看网站| 青春草亚洲视频在线观看| 最近的中文字幕免费完整| 另类亚洲欧美激情| 亚洲精品,欧美精品| 国产精品女同一区二区软件| 久久久久久人人人人人| 一级毛片黄色毛片免费观看视频| 国产精品免费大片| 天堂俺去俺来也www色官网| 免费在线观看完整版高清| 欧美精品一区二区免费开放| 亚洲精品av麻豆狂野| 18禁动态无遮挡网站| 亚洲中文av在线| 最黄视频免费看| 91精品国产国语对白视频| 日韩制服丝袜自拍偷拍| 日本-黄色视频高清免费观看| 精品久久蜜臀av无| 亚洲精品第二区| 亚洲,欧美精品.| 只有这里有精品99| 国产1区2区3区精品| 男人舔女人的私密视频| av.在线天堂| av又黄又爽大尺度在线免费看| 亚洲色图综合在线观看| 国产欧美日韩一区二区三区在线| 熟女电影av网| 男女国产视频网站| 久久人人爽人人片av| 18禁国产床啪视频网站| 亚洲欧美成人综合另类久久久| 大片免费播放器 马上看| 内地一区二区视频在线| 欧美xxⅹ黑人| 男女高潮啪啪啪动态图| 国产一级毛片在线| 久久女婷五月综合色啪小说| 美女国产视频在线观看| 一本大道久久a久久精品| 精品一区二区三卡| 欧美日韩视频精品一区| 一区二区三区乱码不卡18| 高清在线视频一区二区三区| 亚洲人成77777在线视频| 色婷婷av一区二区三区视频| 在线 av 中文字幕| 亚洲在久久综合| 日本午夜av视频| 黄色怎么调成土黄色| 国产黄色视频一区二区在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 美女大奶头黄色视频| 亚洲欧洲日产国产| 欧美国产精品va在线观看不卡| 亚洲国产看品久久| 两性夫妻黄色片 | 国产不卡av网站在线观看| 国产精品一国产av| 亚洲成人手机| h视频一区二区三区| 亚洲av国产av综合av卡| 卡戴珊不雅视频在线播放| 日日啪夜夜爽| 日韩av不卡免费在线播放| 一级毛片电影观看| 黑人巨大精品欧美一区二区蜜桃 | 一二三四在线观看免费中文在 | 久久久国产一区二区| 亚洲欧美日韩另类电影网站| 国产免费现黄频在线看| 97在线视频观看| 韩国高清视频一区二区三区| 90打野战视频偷拍视频| 又粗又硬又长又爽又黄的视频| 国产精品熟女久久久久浪| 一区二区日韩欧美中文字幕 | 午夜激情av网站| 97超碰精品成人国产| 制服诱惑二区| 中文字幕精品免费在线观看视频 | 成人18禁高潮啪啪吃奶动态图| 免费看av在线观看网站| 高清黄色对白视频在线免费看| 日韩中文字幕视频在线看片| 热re99久久精品国产66热6| 久久精品人人爽人人爽视色| 啦啦啦在线观看免费高清www| 亚洲精品成人av观看孕妇| 在线精品无人区一区二区三| 亚洲精品色激情综合| 亚洲五月色婷婷综合| 欧美人与善性xxx| 视频区图区小说| 国产在视频线精品| 欧美激情国产日韩精品一区| 啦啦啦在线观看免费高清www| 亚洲精品第二区| 熟女av电影| 久久精品国产自在天天线| 9191精品国产免费久久| 免费少妇av软件| 久久免费观看电影| 中国国产av一级| 丝瓜视频免费看黄片| 亚洲第一区二区三区不卡| av免费在线看不卡| 最后的刺客免费高清国语| 在线观看免费视频网站a站| 免费人妻精品一区二区三区视频| 精品国产国语对白av| 国产色婷婷99| 日韩不卡一区二区三区视频在线| 中文乱码字字幕精品一区二区三区| 亚洲精华国产精华液的使用体验| 亚洲av成人精品一二三区| 亚洲av免费高清在线观看| 日韩精品免费视频一区二区三区 | 国产黄色视频一区二区在线观看| 大陆偷拍与自拍| 国产精品欧美亚洲77777| 亚洲国产欧美日韩在线播放| 边亲边吃奶的免费视频| 国产免费一区二区三区四区乱码| 人人妻人人爽人人添夜夜欢视频| 国产国拍精品亚洲av在线观看| 久久精品久久久久久久性| 色94色欧美一区二区| 五月玫瑰六月丁香| 久久久久网色| 久久久精品免费免费高清| a级毛片在线看网站| 日韩av免费高清视频| 侵犯人妻中文字幕一二三四区| 日本欧美视频一区| 五月开心婷婷网| 日本av免费视频播放| 欧美少妇被猛烈插入视频| 久久久久网色| 亚洲国产看品久久| 国产免费一级a男人的天堂| 少妇的丰满在线观看| 大片免费播放器 马上看| 男人舔女人的私密视频| 黄色一级大片看看| 哪个播放器可以免费观看大片| xxxhd国产人妻xxx| 国产精品一二三区在线看| 国产成人一区二区在线| 午夜av观看不卡| 久久97久久精品| 久久久国产欧美日韩av| 久久精品国产自在天天线| 亚洲欧美中文字幕日韩二区| 成人亚洲精品一区在线观看| 一级a做视频免费观看| 免费黄网站久久成人精品| 永久免费av网站大全| 丰满迷人的少妇在线观看| 性色av一级| 大香蕉久久网| 欧美精品国产亚洲| 亚洲精品第二区| 十八禁网站网址无遮挡| 日韩不卡一区二区三区视频在线| 久久午夜福利片| 国产高清三级在线| 国产成人精品久久久久久| 成人影院久久| 久久精品熟女亚洲av麻豆精品| 免费观看a级毛片全部| av不卡在线播放| 欧美激情国产日韩精品一区| 男女高潮啪啪啪动态图| 精品一区二区三卡| 桃花免费在线播放| 日韩制服丝袜自拍偷拍| 亚洲色图 男人天堂 中文字幕 | 看十八女毛片水多多多| 久久ye,这里只有精品| 国产亚洲精品第一综合不卡 | 国产亚洲av片在线观看秒播厂| 日本与韩国留学比较| 国产精品久久久久成人av| 亚洲久久久国产精品| 国产国拍精品亚洲av在线观看| 熟妇人妻不卡中文字幕| av播播在线观看一区| 欧美 亚洲 国产 日韩一| 大香蕉久久网| 日本av手机在线免费观看| 秋霞伦理黄片| 五月玫瑰六月丁香| 国产亚洲av片在线观看秒播厂| 亚洲色图 男人天堂 中文字幕 | 精品熟女少妇av免费看| av卡一久久| 尾随美女入室| 成人影院久久| 午夜视频国产福利| 777米奇影视久久| 如何舔出高潮| 亚洲美女黄色视频免费看| 国产精品嫩草影院av在线观看| 国产一区二区激情短视频 | 一边摸一边做爽爽视频免费| 国产福利在线免费观看视频| 性色avwww在线观看| 久久鲁丝午夜福利片| 有码 亚洲区| 日日啪夜夜爽| 亚洲国产av影院在线观看| 亚洲成人一二三区av| 一级片免费观看大全| 最后的刺客免费高清国语| 国产一区二区三区综合在线观看 | 岛国毛片在线播放| 亚洲精品久久午夜乱码| 中国美白少妇内射xxxbb| 少妇的逼好多水| av在线app专区| 看非洲黑人一级黄片| 侵犯人妻中文字幕一二三四区| 亚洲第一区二区三区不卡| 美女福利国产在线| 熟女av电影| 久久人人爽人人爽人人片va| av黄色大香蕉| 少妇人妻久久综合中文| 精品99又大又爽又粗少妇毛片| 亚洲精品乱码久久久久久按摩| 热99国产精品久久久久久7| 波野结衣二区三区在线| 一二三四中文在线观看免费高清| 十八禁网站网址无遮挡| 综合色丁香网| 在线精品无人区一区二区三| 欧美精品国产亚洲| 日韩视频在线欧美| 国产成人精品婷婷| 男人添女人高潮全过程视频| 成人国产av品久久久| 丰满乱子伦码专区| 成年女人在线观看亚洲视频| 亚洲av福利一区| 涩涩av久久男人的天堂| 七月丁香在线播放| 国产乱人偷精品视频| 一级片免费观看大全| 日日爽夜夜爽网站| 日本黄色日本黄色录像| 亚洲 欧美一区二区三区| 国产成人午夜福利电影在线观看| 色哟哟·www| tube8黄色片| 26uuu在线亚洲综合色| 黄网站色视频无遮挡免费观看| 成人毛片60女人毛片免费| 久久国产亚洲av麻豆专区| 欧美激情国产日韩精品一区| 观看美女的网站| 中国美白少妇内射xxxbb| 欧美少妇被猛烈插入视频| 日韩视频在线欧美| 亚洲内射少妇av| 日本欧美视频一区| 国产一区亚洲一区在线观看| 欧美精品高潮呻吟av久久| 七月丁香在线播放| 国产精品麻豆人妻色哟哟久久| 亚洲综合色惰| 日日啪夜夜爽| 最近最新中文字幕免费大全7| 男人舔女人的私密视频| 精品一区二区三区四区五区乱码 | 亚洲精品日韩在线中文字幕| 99热全是精品| 蜜臀久久99精品久久宅男| 最近的中文字幕免费完整| av网站免费在线观看视频| www日本在线高清视频| 熟女电影av网| 欧美国产精品va在线观看不卡| 全区人妻精品视频| 亚洲精品国产av成人精品| 大陆偷拍与自拍| av国产久精品久网站免费入址| 国产一区二区三区综合在线观看 | 亚洲国产看品久久| 母亲3免费完整高清在线观看 | 欧美 亚洲 国产 日韩一| av视频免费观看在线观看| 91aial.com中文字幕在线观看| 国产片特级美女逼逼视频| 人人妻人人澡人人爽人人夜夜| 精品一区在线观看国产| 18禁动态无遮挡网站| 国产免费一级a男人的天堂| 九色成人免费人妻av| 免费看av在线观看网站| 91精品三级在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 久久99热6这里只有精品| 老司机影院毛片| 国产高清国产精品国产三级| 亚洲精品一区蜜桃| 久久99精品国语久久久| 精品卡一卡二卡四卡免费| 熟女av电影| 国产欧美另类精品又又久久亚洲欧美| 国产69精品久久久久777片| 亚洲第一区二区三区不卡| 久久精品久久精品一区二区三区| 国产免费又黄又爽又色| 69精品国产乱码久久久| 免费日韩欧美在线观看| 日韩,欧美,国产一区二区三区| 2018国产大陆天天弄谢| 超碰97精品在线观看| 18在线观看网站| 少妇人妻精品综合一区二区| 91aial.com中文字幕在线观看| 999精品在线视频| 美女主播在线视频| 欧美成人午夜免费资源| 亚洲成国产人片在线观看| 国产色爽女视频免费观看| 日韩中文字幕视频在线看片| 久久精品aⅴ一区二区三区四区 | 国产1区2区3区精品| 成人亚洲精品一区在线观看| 国产在视频线精品| 亚洲av欧美aⅴ国产| 亚洲欧美中文字幕日韩二区| 免费高清在线观看视频在线观看| 香蕉精品网在线| 美女主播在线视频| 精品人妻一区二区三区麻豆| 国产成人精品婷婷| 亚洲欧美成人精品一区二区| 国产成人av激情在线播放| 日韩,欧美,国产一区二区三区| 国产1区2区3区精品| 亚洲成色77777| 久久午夜福利片| 全区人妻精品视频| 国产 精品1| 1024视频免费在线观看| 美女视频免费永久观看网站| 国产一区二区在线观看av| 老女人水多毛片| 777米奇影视久久| 日韩一区二区视频免费看| 欧美国产精品一级二级三级| 在线精品无人区一区二区三| 丝袜美足系列| 久久99一区二区三区| 国产精品一区www在线观看| 丝袜人妻中文字幕| 纯流量卡能插随身wifi吗| 日韩精品有码人妻一区| 亚洲欧美色中文字幕在线| 免费久久久久久久精品成人欧美视频 | 女人久久www免费人成看片| 国产免费一区二区三区四区乱码| 最近最新中文字幕大全免费视频 | 日本午夜av视频| 老熟女久久久| 大片电影免费在线观看免费| 久久亚洲国产成人精品v| 啦啦啦中文免费视频观看日本| 久久精品人人爽人人爽视色| 欧美国产精品va在线观看不卡| 一级片免费观看大全| 韩国高清视频一区二区三区| 亚洲欧洲国产日韩| 又黄又爽又刺激的免费视频.| 免费久久久久久久精品成人欧美视频 | 日韩av不卡免费在线播放| 国产亚洲一区二区精品| 国产精品秋霞免费鲁丝片| 国产精品久久久av美女十八| 欧美另类一区| 亚洲在久久综合| 精品卡一卡二卡四卡免费| 寂寞人妻少妇视频99o| 少妇 在线观看| 中文欧美无线码| 丝袜在线中文字幕| 色吧在线观看| 午夜视频国产福利| 亚洲,一卡二卡三卡| 大陆偷拍与自拍| 曰老女人黄片| 亚洲天堂av无毛| 高清毛片免费看| 久久久久久久国产电影| 亚洲伊人久久精品综合| 天天影视国产精品| 成人18禁高潮啪啪吃奶动态图| 久久久久国产网址| 一级毛片我不卡| 伊人亚洲综合成人网| 国产 一区精品| 亚洲美女搞黄在线观看| 欧美精品国产亚洲| 尾随美女入室| 王馨瑶露胸无遮挡在线观看| 中文天堂在线官网| 亚洲精品456在线播放app| 菩萨蛮人人尽说江南好唐韦庄| 国产精品麻豆人妻色哟哟久久| 黑人猛操日本美女一级片| 亚洲国产精品999| 嫩草影院入口| 交换朋友夫妻互换小说| 999精品在线视频| 亚洲av.av天堂| 国产免费又黄又爽又色| 国产精品女同一区二区软件| 老司机影院毛片| 午夜91福利影院| 久久女婷五月综合色啪小说| 咕卡用的链子| 免费观看av网站的网址| 欧美日韩国产mv在线观看视频| 色94色欧美一区二区| 咕卡用的链子| 国产黄色免费在线视频| 亚洲精品国产av蜜桃| 日韩中文字幕视频在线看片| 久久av网站| 毛片一级片免费看久久久久| 人成视频在线观看免费观看| 飞空精品影院首页| xxx大片免费视频| 午夜福利,免费看| 毛片一级片免费看久久久久| 亚洲av欧美aⅴ国产| 美女视频免费永久观看网站| 一本—道久久a久久精品蜜桃钙片| 午夜福利乱码中文字幕| 啦啦啦视频在线资源免费观看| 国产免费福利视频在线观看| 亚洲精品中文字幕在线视频| 99久久中文字幕三级久久日本| 另类亚洲欧美激情| 18禁在线无遮挡免费观看视频| 高清黄色对白视频在线免费看| 国产无遮挡羞羞视频在线观看| 一级毛片 在线播放| 国产成人午夜福利电影在线观看| 18禁在线无遮挡免费观看视频| 一级片免费观看大全| 亚洲精品国产av蜜桃| 又粗又硬又长又爽又黄的视频| 亚洲在久久综合| 2021少妇久久久久久久久久久| av播播在线观看一区| 乱码一卡2卡4卡精品| 激情五月婷婷亚洲| www.av在线官网国产| videossex国产| 母亲3免费完整高清在线观看 | 欧美97在线视频| 看免费av毛片| 国产有黄有色有爽视频| 欧美丝袜亚洲另类| 爱豆传媒免费全集在线观看| 国产日韩欧美在线精品| 午夜久久久在线观看| 18禁国产床啪视频网站| 久久青草综合色| 卡戴珊不雅视频在线播放| 一本大道久久a久久精品| 永久免费av网站大全| 成年人午夜在线观看视频| 男女边摸边吃奶| 国产无遮挡羞羞视频在线观看| 亚洲欧洲国产日韩| 巨乳人妻的诱惑在线观看| 欧美另类一区| 欧美日本中文国产一区发布| av电影中文网址| 亚洲精品视频女| 另类精品久久| 26uuu在线亚洲综合色| 久久精品国产鲁丝片午夜精品| 18禁裸乳无遮挡动漫免费视频| 国产免费又黄又爽又色| 精品一区在线观看国产| 国产一区二区三区综合在线观看 | 国产探花极品一区二区| 日韩欧美精品免费久久| 亚洲激情五月婷婷啪啪| 秋霞在线观看毛片| 69精品国产乱码久久久| 丝袜喷水一区| 欧美另类一区| 亚洲精品美女久久av网站| 精品久久久精品久久久| 国产免费一级a男人的天堂| 一边摸一边做爽爽视频免费| av免费观看日本| 男女午夜视频在线观看 | 国产免费又黄又爽又色| 啦啦啦在线观看免费高清www| 国产亚洲av片在线观看秒播厂| 日韩大片免费观看网站| 国产乱人偷精品视频| 欧美日韩视频精品一区| 男人舔女人的私密视频| av福利片在线| 精品亚洲成国产av| 少妇的逼好多水| 18+在线观看网站| av在线播放精品| 插逼视频在线观看| 国产 精品1| 精品一区二区免费观看| 人人妻人人爽人人添夜夜欢视频| www日本在线高清视频| 成人国产麻豆网| a级片在线免费高清观看视频| 午夜福利影视在线免费观看| 一区在线观看完整版| 两个人免费观看高清视频| 亚洲综合精品二区| 欧美日韩精品成人综合77777| 日韩精品免费视频一区二区三区 | 国产探花极品一区二区| 国产精品一区www在线观看| 日本vs欧美在线观看视频| 99国产精品免费福利视频| a 毛片基地| 女人精品久久久久毛片| 久久久久久久久久成人| 久久久久网色| 亚洲国产精品专区欧美| 精品少妇黑人巨大在线播放| 国产黄色视频一区二区在线观看| 99久久中文字幕三级久久日本| 欧美日本中文国产一区发布| 侵犯人妻中文字幕一二三四区| 久久久久视频综合| 久久久久久久久久久免费av| 在线观看www视频免费| 免费久久久久久久精品成人欧美视频 | 中文字幕人妻熟女乱码| 久热这里只有精品99| 久久精品国产综合久久久 | 国产成人精品一,二区| 在线观看免费高清a一片| 91国产中文字幕|