• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DNA Sequence Analysis for Brain Disorder Using Deep Learning and Secure Storage

    2022-08-23 02:21:48AlaSalehAlluhaidan
    Computers Materials&Continua 2022年6期

    Ala Saleh Alluhaidan

    Departmemt of Information Systems,College of Computer and Information Science,Princess Nourah Bint Abdulrahman University,Riyadh 11671,Saudi Arabia

    Abstract: Analysis of brain disorder in the neuroimaging of Magnetic Resonance Imaging(MRI),Positron Emission Tomography(PET),and Computed Tomography(CT)needs to understand the functionalities of the brain and it has been performed using traditional methods.Deep learning algorithms have also been applied in genomics data processing.The brain disorder diseases of Alzheimer,Schizophrenia,and Parkinson are analyzed in this work.The main issue in the traditional algorithm is the improper detection of disorders in the neuroimaging data.This paper presents a deep learning algorithm for the classification of brain disorder using Deep Belief Network (DBN) and securely storing the image using a Deoxyribonucleic Acid (DNA) Sequence-based Joint Photographic Experts Group (JPEG) Zig Zag Encryption Algorithm(DBNJZZ).In this work, DBNJZZ implements an efficient and effective prediction model for disorders using the open-access datasets of Alzheimer’s Disease Neuroimaging Initiative(Adni),the Center for Biomedical Research Excellence (Cobre), the Open Access Series of Imaging Studies (Oasis), the Function Biomedical Informatics Research Network (Fbirn), a Parkinson’s dataset of 55 patients and 23 subjects with Parkinson’s syndromes (Ntua),and the Parkinson’s Progression Markers Initiative(Ppmi).This algorithm is implemented and tested using performance metric measures of accuracy,Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Mean Absolute Percentage Error (MAPE).DBNJZZ gives better performance with an accuracy of 99.21%and also surpasses previous methods on other measures.

    Keywords:DBN;Zig zag;deep learning;MAPE;RMSE;DNA;genomics

    1 Introduction

    Genomics is an associative field of biology that concentrates on the genomes structure,genomes function, genomes evolution, and genomes mapping, and editing.A complete DNA set is called the genome of an organism and includes all its genes.Deep learning algorithms have been applied within the areas of genetics and genomics.When any specific gene is damaged or affected and prone to some disorder it results in what is known as a genetic disorder.The genetic disorder diseases of Alzheimer,Schizophrenia and Parkinson are affecting humans by disrupting normal brain functions[1–3].Medical imaging has become the foremost and effective tool to represent various modalities of an image like X-ray,MRI,CT,mammography,and PET[4].Storing sensitive information of medical images securely and privately also plays a vital role in the medical field.Traditional approaches of DNA-based molecular cryptography design and DNA writing techniques to store images securely became very interesting in the field of research.The main issue with these traditional techniques is that they cannot resist brute force attacks.Therefore,this paper implements a DNA Sequence-based JPEG Zig Zag Encryption Algorithm(DBNJZZ).

    For detecting the above mentioned brain disorders,many traditional algorithms are implemented.The drawbacks of the traditional algorithm are pre-processing and feature extraction which are not clearly defined and are inefficient in handling complicated genomic data.To overcome these drawbacks, the proposed work, DBNJZZ, presents exploring pre-processing methods and feature extractors with the open access datasets of Adni,Cobre,Oasis,Fbirn,Ntua,Ppmi[5–10].

    This proposed work consists of image registration,image enhancement,normalized filtering and smoothening for pre-processing, and implements an unsupervised feature extractor of Deep Belief Network(DBN).This approach of extraction maps the input values with multiple hidden layers.The features extracted in DBN will improve the prediction performance of the image.For performance evaluation, accuracy, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) were calculated.To summarize, the main contributions of this work are:

    1.Implementing the analysis of brain disorder diseases using a deep learning algorithm and showing how to store sensitive information securely in image format using DNA based encryption algorithm.

    2.Evaluating the accuracy of the pre-processed image in terms of image registration, image enhancement,normalized filtering,and smoothening.

    The paper has been organized as follows: Section 2 includes the literature review, Section 3 introduces the proposed algorithm,Section 4 discusses the experiment results,and Section 5 concludes the paper with future directions.

    2 Literature Review

    The rapid development of advanced technology has contributed various tools to diagnose brain disorder diseases,effectively.Deep learning techniques have helped in many ways to tackle the complicated problems of genomic data and analysis the diseases.Neurological diseases such as Alzheimer’s,Schizophrenia,and Parkinson’s are related to the disruption of brain functions.Traditional methods are employed in handling genomic data for brain disorder diseases.The main drawback of these methods is they are still inefficient to handle complicated genomic data for the brain image with disorder.

    This paper presents DBN feature extraction for images of Alzheimer’s, Schizophrenia, and Parkinson’s to improve the quality of performance.For Alzheimer’s disease, data collected in the ADNI dataset, which are derived from MRI, CT, and PET images, was validated and processed.Genetics and biomarkers were used for prediction of disorder disease[11].A deep learning algorithm is designed to diagnose Parkinson’s disease using Single-photon Emission Computed Tomography(SPECT) image dataset.Features of Sparse filtering, a new framework for automated diagnosis of Parkinson’s disease, is designed [12].Using MRI images to diagnose schizophrenia patients, a novel DBN architecture was designed that can explore statistical values from observed data and easily detect the affected region[13].

    DNA sequencing is used to improve the speed of processing genomic data[14].The classification of DNA sequence is performed using a machine learning algorithm for extracting features that will be stored in a vector format.The classification mentioned here is a supervised learning process.Its’drawback is that it cannot read by machine and also it has a high dimensionality of data.The genome sequences extracted from images as features using deep learning algorithms are used in various fields of genomic medicine,bioinformatics application,and medical imaging analysis[15].Tab.1 shows the survey summary of brain disorder analysis using a deep learning algorithm.

    Table 1: Survey Summary of brain disorder analysis

    3 Proposed DNA Sequence-based JPEG Zig Zag Encryption Algorithm(DBNJZZ)

    Medical imaging is an effective tool to diagnose a disease.For analyzing brain disorders,this paper implements a deep learning algorithm of DBN.This workflow(DBNJZZ)consists of two modules:

    Module 1:Pre-processing

    Module 2:Feature extraction of image with disorder and DNA Sequence-based privacy storage of brain image DBN-JPEG Zig Zag encryption algorithm (DBNJZZ).(Proposed) Fig.1 shows the workflow of the DBNJZZ.

    Figure 1:Workflow of DBNJZZ

    3.1 Pre-processing(Module 1)

    Neuroimaging modalities of brain images are CT,MRI,and PET.To improve the quality of an image,it is adjusted in a pre-processing stage.The steps involved in the pre-processing phase are given in Fig.2.

    Figure 2:Pre-processing steps

    3.1.1 Image Registration

    Image registration acquires two or more of same image features with different time frame variations into a single informative image.Linear regression algorithm is used for image registration which includes the functions of rotation,translation,and scaling for an image on the axes of x,y,z.At all angles,the algorithm will align the spatial correlation of the image.In general,image registration is given by:

    where,Ib′is the coordinate value of the image b,βis the set of parametric values of transformation.

    3.1.2 Image Enhancement

    It improves the quality of the image by filtering with contrast Contrast-limited Adaptive Histogram Equalization(CLAHE).This approach will enhance the image brightness with its background to improve visibility.

    3.1.3 Normalization

    It is the process of aligning the image in terms of size and shape to interpret them into common features of the image.This process maps the data point acquired from discrete space value to the reference space value.

    3.1.4 Filtering

    Using Weiner filtering, unwanted features will be removed from the image which consequently will minimize the image noise.

    where k is the low-frequency value of the Wiener filter;the high pass filter value is used to blurred the image.

    3.1.5 Smoothening

    It is the process of reducing the noise of the image.Spatial smoothing is applied which calculates the average value of pixels from the adjacent pixel elements.With smoothing,the Signal-to-noise ratio(SNR)value is enhanced and spatial resolution value is reduced.

    3.2 Feature Extraction of Image with Disorder and DNA Sequence-Based Privacy Storage of Brain Image DBN-JPEG Zig Zag Encryption Algorithm(DBNJZZ).

    In this work, Deep Belief Network (DBN) is used to extract features type from biomarkers of the image.Biomarker acts as a tool for the diagnostic purpose and it is used to identify the abnormal condition of the image.DBN here is based on Restricted Bolztman Machines (RBM) architecture[16–18].DBN is unsupervised feature extractor that extracts the features from the image for performance improvement.In this context,it will extract the normal structure features from the brain image to identify brain-related disorders.Fig.3 shows the workflow of recommended biomarkers.

    DBN architecture is composed of RBM stacks which contain one visible layer and multiple hidden layers.Each layer consists of nodes.The connection between the input layer and hidden layers is established by assigning a weight value.During the process of training the network,the weight vector value will be adjusted.The structure of DBN is given in Fig.4.The architecture of RBM is given in Fig.5.

    Figure 3:Workflow of generating biomarker

    Figure 4:DBN layer

    Figure 5:RBM architecture

    The algorithm for training the DBN is given below:

    Algorithm 1:Training DBN Step 1: Let Ii; 0 ≤i ≤N is input neuron that contains binary values and N is the total number of input neurons.Step 2:Let hii; 0 ≤i ≤K is a hidden neuron that contains binary values and K is the total number hidden neurons.Step 3:Calculate the energy function Er(i,j)between input neurons and hidden neurons by using:Er(I,hi)=∑i biiIi- ∑i ajhij-∑i∑j IiWiijhij (3)Step 4:Train the RBM’s first layer(visible layer)by applying input values to all neurons.Step 5:The output of Step 4 will be used as input of the next layer(hidden layer).Step 6:D(I,hi)= 1 F e-Er(I,hi) (4)The pair values of visible and hidden values are summed up and produce F as a function.Step 7:Evaluate the unbiased value between visible neurons and hidden neuron Dimages/BZ_1737_307_2395_338_2441.pnghij = 1 I =σimages/BZ_1737_566_2395_597_2441.pngbij+∑iIiWiijimages/BZ_1737_860_2395_891_2441.pngimages/BZ_1737_891_2395_922_2441.pngσ is a sigmoid function.Step 8:Repeat steps 6,7 until all layers are evaluated.Step 9:Output Binary Values Bij

    In algorithm 1, the image was trained to detect the disorder in the image.The resulted output will be stored in a secure way using DBNJZZ Encryption Algorithm.DNA is made up of monomers in a polymer structure which are called Deoxyribonucleotides.The basic components of nucleotide are phosphate, deoxyribose sugar, and nitrogenous [19,20].The bases of nitrogenous are Adenine(A),Cytosine(C),Thymine(T),and Guanine(G).After implementation of algorithm 1,the output values are plotted in a matrix format corresponding to the four base variables of DNA:A,C,T,and Gnucleotides.The encoded value of A is[0,0,0,1],C’s encoded value is[0,0,0,1],T’s encoded value is[0,0,0,1]and G’s encoded value is[0,0,0,1].Therefore,the disorder image value can be represented as an equivalent DNA sequence of code.The encryption key of DNA in DBNJZZ is defined by Fig.6.

    Figure 6:JPEG Zig Zag format

    By substituting DNA sequence nucleotides quadruple values by one and translating brain image to one value from randomly selected nucleotides quadruple sequences,a security component is achieved.Specifically,the gene binary sequence value is considered as an encrypted image and is stored securely.The encryption DBNJZZ algorithmis given below:

    ?

    ?

    Both sender and receiver must have the same gene sequence value and store it in a binary format.For each DNA nucleotide sequence in B quadruple value, a binary format file is selected randomly and replaced by an image.Fig.7 shows the result of storing an image using a JPEG Zig Zag pattern.

    Figure 7:Applying JPEG Zig Zag encryption algorithm

    4 Result Analysis

    The four metrics for measuring performance are reported here to evaluate the analysis of DBNJZZ in detecting disorder image.The metrics are:Root Mean Square Error(RMSE),Mean Absolute Error(MAE),accuracy and Mean Absolute Percentage Error(MAPE).

    where,Oiis the observation value of a variable,Piis the prediction value of the variable andNis the number of observations.Eq.(5)is calculated as the square root of the mean of the squared differences between actual outcomes and predictions.Eq.(6)is the absolute difference between the actual or true values and the values that are predicted.The negative sign in the absolute difference result is ignored.Eq.(7) is defined as the error rate of the actual value or observed value minus the forecasted value.Accuracy classification was achieved by 10-fold cross-validation.Tab.2 shows the different disorder diseases and their datasets.

    Table 2: Various disorder diseases and theirs datasets[21]

    In the neurological disorder of Alzheimer’s,the disease is affecting older age people by degrading them mentally and attack the brain function in a specific region.Using Eq.(8) accuracy metric measures for pre-processing activities of Alzheimer’s disease are given in Tab.3 using Tab.2 datasets.

    Table 3: Accuracy of neurological disorder of Alzheimer’s disease

    Tab.3 shows how the proposed work(DBN)has produced a better performance.Using Eq.(8),Tab.4 shows accuracy for a neurological disorder of Schizophrenia disease.Schizophrenia is a psychiatric disorder and it changes a patient’s behavior like emotion and cognition.

    Table 4: Accuracy of neurological disorder analysis of Schizophrenia

    The experiment results in Tab.5 show the accuracy metric measures for Parkinson’s disease in the proposed work DBN.By using Eqs.(5) and (6) RMSE and MAE are plotted in Figs.8–10.Eq.(5)is calculated as the square root of the mean of the squared differences between actual outcomes and predictions.Eq.(6)is the absolute difference between the actual or true values and the values that are predicted.The absolute difference result has a negative sign which is ignored.

    Table 5: Accuracy of neurological disorder analysis of Parkinson disease

    Figure 8:Error Rate using CNN+JPEG ZIG-ZAG

    Figure 9:Error rate using DNN+JPEG ZIG-ZAG

    Figure 10:Error rate using DBN+JPEG ZIG-ZAG

    The experiment results in Figs.8–11 show the superiority of the proposed work, DBN+JPEG ZIG-ZAG.Results prove the better prediction performance of DBN+JPEG ZIG-ZAG compared with existing algorithms in deep learning.In the above analysis,the accuracy metric is used for evaluating deep learning classification algorithms of brain disorder diseases: Alzheimer, Schizophrenia,and Parkinson.Proposed work reveals better performance in the accuracy metric.Visualizing the performance of algorithms in terms of error rate in Fig.11 illustrates the lower error rate of the DBN algorithm and accordingly indicates the correct prediction of the result.

    Figure 11:Result of MAPE in different algorithms DBN+JPEG ZIG-ZAG

    5 Conclusion

    In this research,deep learning algorithms with CNN,DNN,and DBN are evaluated using secure storage of images in the JPEG Zig Zag encryption scheme.The DBN is proposed as an unsupervised feature extractor to extract biomarkers of the image and predict brain disorder diseases of Alzheimer,Schizophrenia,and Parkinson.The proposed work of the DBNJZZ system can process all features of the image and share this image securely.It can also provide a prompt prediction of the disorder using the image.This work has only focused on three diseases.In the future,this work can be extended to cover different case studies with diverse DNA sequences.

    Acknowledgement:This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R234), Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.

    Funding Statement:This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R234), Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    18禁观看日本| 亚洲经典国产精华液单| 超碰97精品在线观看| 下体分泌物呈黄色| 女性被躁到高潮视频| 亚洲欧美清纯卡通| 久久久久久久久免费视频了| 一级毛片 在线播放| 久久精品国产自在天天线| 精品国产乱码久久久久久小说| 国产一区亚洲一区在线观看| 亚洲,一卡二卡三卡| 国产老妇伦熟女老妇高清| 一区二区三区乱码不卡18| 桃花免费在线播放| av有码第一页| 国产日韩欧美在线精品| 曰老女人黄片| 欧美国产精品一级二级三级| 国产欧美日韩综合在线一区二区| 天天操日日干夜夜撸| 午夜福利视频在线观看免费| 久久午夜综合久久蜜桃| 亚洲在久久综合| 美女午夜性视频免费| 国产深夜福利视频在线观看| 国产成人精品婷婷| 欧美日韩成人在线一区二区| 久久狼人影院| 国产精品免费视频内射| 一级毛片我不卡| 在线看a的网站| 99热全是精品| 亚洲综合色惰| 亚洲欧美一区二区三区黑人 | 波野结衣二区三区在线| 9色porny在线观看| 中文字幕人妻熟女乱码| 汤姆久久久久久久影院中文字幕| 91精品三级在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产免费一区二区三区四区乱码| 免费久久久久久久精品成人欧美视频| 亚洲av中文av极速乱| 精品国产一区二区三区久久久樱花| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品99久久99久久久不卡 | 精品酒店卫生间| 国产精品国产三级国产专区5o| 在线 av 中文字幕| 色视频在线一区二区三区| 国产精品香港三级国产av潘金莲 | 伦精品一区二区三区| 国产亚洲精品第一综合不卡| 九色亚洲精品在线播放| xxxhd国产人妻xxx| 一本色道久久久久久精品综合| 男女啪啪激烈高潮av片| 成年人免费黄色播放视频| 男女午夜视频在线观看| 狂野欧美激情性bbbbbb| 卡戴珊不雅视频在线播放| 一边亲一边摸免费视频| 日本av免费视频播放| 免费观看av网站的网址| 亚洲,欧美,日韩| 一级爰片在线观看| 亚洲精品在线美女| 亚洲四区av| 一级毛片 在线播放| 亚洲国产av新网站| 一级,二级,三级黄色视频| 精品福利永久在线观看| 国产精品一区二区在线观看99| 精品国产超薄肉色丝袜足j| 亚洲欧美一区二区三区久久| 久久久久久久精品精品| 伦理电影免费视频| 欧美国产精品一级二级三级| 中文精品一卡2卡3卡4更新| 国产毛片在线视频| 亚洲精品久久成人aⅴ小说| 亚洲欧美精品综合一区二区三区 | 国精品久久久久久国模美| 十分钟在线观看高清视频www| 香蕉国产在线看| 国产欧美亚洲国产| 涩涩av久久男人的天堂| av不卡在线播放| 亚洲,一卡二卡三卡| 一区在线观看完整版| 国产又色又爽无遮挡免| 免费少妇av软件| 国产av一区二区精品久久| 秋霞在线观看毛片| 久久久久久久精品精品| 亚洲色图综合在线观看| 国产av国产精品国产| 精品少妇内射三级| 婷婷色综合www| 国产成人a∨麻豆精品| 欧美国产精品一级二级三级| 一边亲一边摸免费视频| 大码成人一级视频| 一边亲一边摸免费视频| 爱豆传媒免费全集在线观看| 欧美bdsm另类| 搡女人真爽免费视频火全软件| 一级毛片 在线播放| 自拍欧美九色日韩亚洲蝌蚪91| av网站在线播放免费| 国产视频首页在线观看| 有码 亚洲区| 国产高清国产精品国产三级| 少妇猛男粗大的猛烈进出视频| 欧美精品亚洲一区二区| 日韩视频在线欧美| 九草在线视频观看| 九草在线视频观看| 只有这里有精品99| 精品99又大又爽又粗少妇毛片| 老汉色∧v一级毛片| 考比视频在线观看| 永久免费av网站大全| 人人妻人人澡人人看| 美女xxoo啪啪120秒动态图| 美国免费a级毛片| 国产无遮挡羞羞视频在线观看| 女人高潮潮喷娇喘18禁视频| 亚洲男人天堂网一区| 熟女电影av网| 视频区图区小说| 国产综合精华液| 亚洲欧美中文字幕日韩二区| 国产野战对白在线观看| 熟女av电影| 男女下面插进去视频免费观看| 男人操女人黄网站| 如日韩欧美国产精品一区二区三区| 一级毛片 在线播放| 日日爽夜夜爽网站| av国产久精品久网站免费入址| 777久久人妻少妇嫩草av网站| 如何舔出高潮| 亚洲少妇的诱惑av| 尾随美女入室| 欧美日韩综合久久久久久| 男女边摸边吃奶| 亚洲伊人久久精品综合| 黄色怎么调成土黄色| 97精品久久久久久久久久精品| 亚洲av在线观看美女高潮| 亚洲精品美女久久久久99蜜臀 | 久久久久久久久免费视频了| 国产成人aa在线观看| 丝瓜视频免费看黄片| 18+在线观看网站| 亚洲av电影在线进入| 日本色播在线视频| 国产片内射在线| 国语对白做爰xxxⅹ性视频网站| 欧美日韩亚洲高清精品| 热99久久久久精品小说推荐| 欧美精品一区二区大全| 极品人妻少妇av视频| 久久午夜综合久久蜜桃| 狂野欧美激情性bbbbbb| 黑人巨大精品欧美一区二区蜜桃| 欧美老熟妇乱子伦牲交| 日韩一本色道免费dvd| 国产男人的电影天堂91| 性色avwww在线观看| 伊人久久大香线蕉亚洲五| 蜜桃在线观看..| 美女脱内裤让男人舔精品视频| 欧美日韩精品成人综合77777| 国产精品一区二区在线不卡| 国产在视频线精品| 国产成人欧美| 国产在线免费精品| 成人黄色视频免费在线看| 国产高清国产精品国产三级| 久久人人爽人人片av| 在线亚洲精品国产二区图片欧美| av在线老鸭窝| 日韩熟女老妇一区二区性免费视频| 免费播放大片免费观看视频在线观看| 在线观看国产h片| 少妇 在线观看| 亚洲精品国产av蜜桃| 18禁国产床啪视频网站| 女性生殖器流出的白浆| 交换朋友夫妻互换小说| 少妇的丰满在线观看| 日本猛色少妇xxxxx猛交久久| 男女高潮啪啪啪动态图| videossex国产| 一级a爱视频在线免费观看| www日本在线高清视频| 国产日韩欧美视频二区| 香蕉精品网在线| 精品酒店卫生间| 国产 一区精品| 成年女人毛片免费观看观看9 | 精品人妻在线不人妻| 中文字幕人妻丝袜一区二区 | 不卡视频在线观看欧美| 久久久久久久久久久久大奶| 性少妇av在线| 国产高清国产精品国产三级| 久久 成人 亚洲| 不卡av一区二区三区| 99热全是精品| 午夜福利视频在线观看免费| 欧美激情极品国产一区二区三区| 久久免费观看电影| 亚洲美女视频黄频| 亚洲精品国产色婷婷电影| 一区二区三区四区激情视频| 国产老妇伦熟女老妇高清| 一级爰片在线观看| 老汉色av国产亚洲站长工具| 久久久久久久久久久久大奶| 少妇的丰满在线观看| 精品少妇内射三级| 欧美成人精品欧美一级黄| 一区二区日韩欧美中文字幕| 欧美激情高清一区二区三区 | 2022亚洲国产成人精品| 极品人妻少妇av视频| 在线观看一区二区三区激情| 男人添女人高潮全过程视频| 999久久久国产精品视频| 晚上一个人看的免费电影| 老女人水多毛片| 欧美激情极品国产一区二区三区| 国产精品偷伦视频观看了| 97在线视频观看| 欧美人与性动交α欧美软件| 美女国产高潮福利片在线看| 国产爽快片一区二区三区| 成年动漫av网址| 一级毛片黄色毛片免费观看视频| 26uuu在线亚洲综合色| 亚洲综合色网址| 日韩免费高清中文字幕av| 久久久久久久大尺度免费视频| 亚洲国产看品久久| 夫妻性生交免费视频一级片| 亚洲美女黄色视频免费看| 中文精品一卡2卡3卡4更新| 婷婷色综合www| 精品人妻一区二区三区麻豆| 日韩熟女老妇一区二区性免费视频| 亚洲精品自拍成人| 国产精品 欧美亚洲| 曰老女人黄片| 丁香六月天网| av有码第一页| 亚洲伊人久久精品综合| videossex国产| 欧美成人午夜免费资源| 亚洲视频免费观看视频| 亚洲一码二码三码区别大吗| 男女边吃奶边做爰视频| 久久久久国产精品人妻一区二区| 亚洲精品久久成人aⅴ小说| 日韩人妻精品一区2区三区| 多毛熟女@视频| 美女国产高潮福利片在线看| 最近的中文字幕免费完整| 午夜精品国产一区二区电影| 久久久久久久亚洲中文字幕| 久久久久久久久久久免费av| 99热网站在线观看| 观看美女的网站| 国产1区2区3区精品| 亚洲三区欧美一区| 亚洲国产毛片av蜜桃av| 国产有黄有色有爽视频| 国产97色在线日韩免费| 免费观看性生交大片5| 亚洲精品中文字幕在线视频| 免费少妇av软件| 人体艺术视频欧美日本| 免费不卡的大黄色大毛片视频在线观看| 国产视频首页在线观看| 久久国内精品自在自线图片| 伊人久久大香线蕉亚洲五| 久久久久精品人妻al黑| 精品国产乱码久久久久久小说| 天美传媒精品一区二区| 国产精品久久久久久久久免| 91精品三级在线观看| 街头女战士在线观看网站| 久久综合国产亚洲精品| 少妇 在线观看| 成年动漫av网址| 91午夜精品亚洲一区二区三区| av网站在线播放免费| 欧美国产精品va在线观看不卡| 久久毛片免费看一区二区三区| 大话2 男鬼变身卡| 久久久久人妻精品一区果冻| a 毛片基地| 国产野战对白在线观看| 国产一区二区激情短视频 | 亚洲精品日韩在线中文字幕| 国产一区亚洲一区在线观看| 丝袜美足系列| 飞空精品影院首页| 黄片小视频在线播放| 天天躁夜夜躁狠狠久久av| 少妇的丰满在线观看| 大片免费播放器 马上看| 丝袜在线中文字幕| 亚洲国产精品999| 一级片免费观看大全| 18禁裸乳无遮挡动漫免费视频| 亚洲四区av| 久久久欧美国产精品| 久久久久久久久久久久大奶| 国产精品成人在线| 亚洲欧洲精品一区二区精品久久久 | 伊人久久大香线蕉亚洲五| av有码第一页| 国产亚洲午夜精品一区二区久久| 少妇人妻精品综合一区二区| 国产毛片在线视频| 制服诱惑二区| 观看美女的网站| 亚洲少妇的诱惑av| 亚洲精品日韩在线中文字幕| 观看美女的网站| 午夜免费鲁丝| 亚洲欧美中文字幕日韩二区| 欧美在线黄色| 精品国产露脸久久av麻豆| 最新中文字幕久久久久| 一区二区三区四区激情视频| 日本欧美国产在线视频| 免费黄网站久久成人精品| 久久鲁丝午夜福利片| 亚洲av国产av综合av卡| 99香蕉大伊视频| 久久午夜综合久久蜜桃| 免费看av在线观看网站| 午夜福利,免费看| 五月伊人婷婷丁香| 一级片'在线观看视频| 人妻系列 视频| 国产av码专区亚洲av| 老熟女久久久| 久久国产精品大桥未久av| 熟女少妇亚洲综合色aaa.| 国产精品蜜桃在线观看| 久久av网站| 日本vs欧美在线观看视频| 欧美国产精品va在线观看不卡| 99re6热这里在线精品视频| 亚洲av男天堂| 一区二区三区激情视频| 肉色欧美久久久久久久蜜桃| 天美传媒精品一区二区| 成年女人在线观看亚洲视频| 人人妻人人澡人人看| 亚洲五月色婷婷综合| 叶爱在线成人免费视频播放| 在线观看美女被高潮喷水网站| 亚洲美女搞黄在线观看| 1024视频免费在线观看| 欧美日韩国产mv在线观看视频| 18禁国产床啪视频网站| 成人国语在线视频| 黄色 视频免费看| av网站免费在线观看视频| 男男h啪啪无遮挡| 国产精品不卡视频一区二区| 一区二区av电影网| 麻豆精品久久久久久蜜桃| 精品少妇黑人巨大在线播放| 一级片'在线观看视频| 9热在线视频观看99| 成年女人在线观看亚洲视频| 亚洲精品久久久久久婷婷小说| √禁漫天堂资源中文www| 欧美精品亚洲一区二区| 久久这里有精品视频免费| a级毛片在线看网站| 搡老乐熟女国产| 一边摸一边做爽爽视频免费| 亚洲国产精品999| 久久99蜜桃精品久久| 亚洲色图综合在线观看| 久久久久久久大尺度免费视频| 欧美人与善性xxx| 五月伊人婷婷丁香| 啦啦啦在线免费观看视频4| 免费黄网站久久成人精品| 色94色欧美一区二区| 日韩一卡2卡3卡4卡2021年| 免费日韩欧美在线观看| 亚洲人成网站在线观看播放| 国产精品无大码| 嫩草影院入口| 日韩视频在线欧美| 电影成人av| 精品国产国语对白av| 老女人水多毛片| 亚洲欧美一区二区三区黑人 | 免费黄色在线免费观看| 熟女av电影| 日韩中字成人| 久久精品国产综合久久久| 亚洲欧美色中文字幕在线| 男女下面插进去视频免费观看| 日韩av免费高清视频| 99热全是精品| 在线精品无人区一区二区三| 国产精品秋霞免费鲁丝片| 一本久久精品| 久热这里只有精品99| 久久精品亚洲av国产电影网| 啦啦啦在线免费观看视频4| 韩国精品一区二区三区| 国产免费福利视频在线观看| 国产高清国产精品国产三级| 18禁观看日本| 欧美xxⅹ黑人| 黄片播放在线免费| 国产亚洲av片在线观看秒播厂| 在线看a的网站| 国产日韩一区二区三区精品不卡| 国产一级毛片在线| 午夜福利在线免费观看网站| 精品一区二区三区四区五区乱码 | 久久久a久久爽久久v久久| 亚洲激情五月婷婷啪啪| 中文字幕av电影在线播放| 巨乳人妻的诱惑在线观看| 高清黄色对白视频在线免费看| 一二三四中文在线观看免费高清| 新久久久久国产一级毛片| 欧美精品一区二区大全| 黑人欧美特级aaaaaa片| 国产欧美日韩一区二区三区在线| 美女脱内裤让男人舔精品视频| 亚洲精品国产一区二区精华液| 纵有疾风起免费观看全集完整版| 国产精品久久久av美女十八| 午夜福利在线观看免费完整高清在| 又粗又硬又长又爽又黄的视频| 久久精品久久久久久久性| 精品国产一区二区三区久久久樱花| 黑人猛操日本美女一级片| 久久久久久久国产电影| 满18在线观看网站| 黄色怎么调成土黄色| 午夜影院在线不卡| 国产精品一国产av| 老司机亚洲免费影院| 欧美日本中文国产一区发布| 啦啦啦在线观看免费高清www| 欧美亚洲日本最大视频资源| 亚洲经典国产精华液单| 日韩成人av中文字幕在线观看| 青春草视频在线免费观看| 日韩av在线免费看完整版不卡| 日本av手机在线免费观看| 久久精品国产a三级三级三级| 亚洲第一区二区三区不卡| 久久影院123| 一个人免费看片子| 91aial.com中文字幕在线观看| 超碰成人久久| 99国产精品免费福利视频| xxx大片免费视频| 国产欧美日韩一区二区三区在线| av网站免费在线观看视频| 精品少妇内射三级| 亚洲欧美成人精品一区二区| 亚洲成国产人片在线观看| 成人二区视频| 亚洲一码二码三码区别大吗| 亚洲情色 制服丝袜| 九九爱精品视频在线观看| 亚洲熟女精品中文字幕| 精品国产超薄肉色丝袜足j| 99精国产麻豆久久婷婷| 国产免费视频播放在线视频| 久久久久精品人妻al黑| xxxhd国产人妻xxx| 亚洲久久久国产精品| 久久影院123| 国产精品国产av在线观看| 男女国产视频网站| 久久精品熟女亚洲av麻豆精品| 自拍欧美九色日韩亚洲蝌蚪91| 少妇精品久久久久久久| 久久这里只有精品19| 韩国精品一区二区三区| 免费在线观看黄色视频的| 如何舔出高潮| 成人黄色视频免费在线看| 另类精品久久| 香蕉国产在线看| 韩国高清视频一区二区三区| 午夜激情久久久久久久| 欧美国产精品va在线观看不卡| 狠狠婷婷综合久久久久久88av| 国产精品久久久久久av不卡| 欧美激情极品国产一区二区三区| av国产精品久久久久影院| 日本黄色日本黄色录像| 久久久久久久精品精品| 精品少妇黑人巨大在线播放| 观看美女的网站| 日韩在线高清观看一区二区三区| 宅男免费午夜| 国产精品.久久久| 国产97色在线日韩免费| 丝袜在线中文字幕| 久久久久久久久久久久大奶| 免费观看无遮挡的男女| 亚洲欧美日韩另类电影网站| 纵有疾风起免费观看全集完整版| 午夜福利视频精品| 亚洲精品一二三| 有码 亚洲区| 国产成人精品一,二区| 性少妇av在线| 人人澡人人妻人| 成人免费观看视频高清| 大片免费播放器 马上看| 亚洲精品美女久久久久99蜜臀 | 爱豆传媒免费全集在线观看| 香蕉精品网在线| 日韩中字成人| 999久久久国产精品视频| 国产精品无大码| 国产野战对白在线观看| 日韩三级伦理在线观看| 久久国产精品男人的天堂亚洲| 中国三级夫妇交换| 考比视频在线观看| 久久人人爽av亚洲精品天堂| 免费看不卡的av| 国产一区二区 视频在线| 老司机影院毛片| av国产久精品久网站免费入址| 国产av码专区亚洲av| 热re99久久国产66热| 满18在线观看网站| 97精品久久久久久久久久精品| 18在线观看网站| 人妻少妇偷人精品九色| 老司机亚洲免费影院| 亚洲成人av在线免费| 日韩欧美精品免费久久| 色网站视频免费| 国产免费一区二区三区四区乱码| 91午夜精品亚洲一区二区三区| 男人爽女人下面视频在线观看| 满18在线观看网站| 午夜精品国产一区二区电影| 日韩精品有码人妻一区| 亚洲国产精品国产精品| 婷婷色综合大香蕉| 成年av动漫网址| 色婷婷av一区二区三区视频| 一区二区日韩欧美中文字幕| 97在线视频观看| 国产伦理片在线播放av一区| 国产精品人妻久久久影院| 久久av网站| 啦啦啦视频在线资源免费观看| 老汉色av国产亚洲站长工具| 热99国产精品久久久久久7| 男的添女的下面高潮视频| 免费黄色在线免费观看| 国产黄色免费在线视频| 国产日韩欧美亚洲二区| 啦啦啦在线观看免费高清www| 在线观看一区二区三区激情| 亚洲精品久久午夜乱码| 久久久国产精品麻豆| 国产精品久久久久久av不卡| 久久久亚洲精品成人影院| 777久久人妻少妇嫩草av网站| 一级片免费观看大全| 丰满饥渴人妻一区二区三| 18禁裸乳无遮挡动漫免费视频| 赤兔流量卡办理| 综合色丁香网| 免费观看在线日韩| 最近的中文字幕免费完整| 两性夫妻黄色片| 国产无遮挡羞羞视频在线观看| 又粗又硬又长又爽又黄的视频| 热99久久久久精品小说推荐| 亚洲情色 制服丝袜| 亚洲国产精品一区二区三区在线| 狂野欧美激情性bbbbbb| 丝袜人妻中文字幕| 亚洲国产毛片av蜜桃av| 久久久国产一区二区| 午夜福利乱码中文字幕| 在线观看免费高清a一片| 香蕉丝袜av| 欧美 亚洲 国产 日韩一| 中文天堂在线官网| 97在线人人人人妻| 国产激情久久老熟女| 亚洲中文av在线| 色婷婷久久久亚洲欧美|