• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    DNA Sequence Analysis for Brain Disorder Using Deep Learning and Secure Storage

    2022-08-23 02:21:48AlaSalehAlluhaidan
    Computers Materials&Continua 2022年6期

    Ala Saleh Alluhaidan

    Departmemt of Information Systems,College of Computer and Information Science,Princess Nourah Bint Abdulrahman University,Riyadh 11671,Saudi Arabia

    Abstract: Analysis of brain disorder in the neuroimaging of Magnetic Resonance Imaging(MRI),Positron Emission Tomography(PET),and Computed Tomography(CT)needs to understand the functionalities of the brain and it has been performed using traditional methods.Deep learning algorithms have also been applied in genomics data processing.The brain disorder diseases of Alzheimer,Schizophrenia,and Parkinson are analyzed in this work.The main issue in the traditional algorithm is the improper detection of disorders in the neuroimaging data.This paper presents a deep learning algorithm for the classification of brain disorder using Deep Belief Network (DBN) and securely storing the image using a Deoxyribonucleic Acid (DNA) Sequence-based Joint Photographic Experts Group (JPEG) Zig Zag Encryption Algorithm(DBNJZZ).In this work, DBNJZZ implements an efficient and effective prediction model for disorders using the open-access datasets of Alzheimer’s Disease Neuroimaging Initiative(Adni),the Center for Biomedical Research Excellence (Cobre), the Open Access Series of Imaging Studies (Oasis), the Function Biomedical Informatics Research Network (Fbirn), a Parkinson’s dataset of 55 patients and 23 subjects with Parkinson’s syndromes (Ntua),and the Parkinson’s Progression Markers Initiative(Ppmi).This algorithm is implemented and tested using performance metric measures of accuracy,Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Mean Absolute Percentage Error (MAPE).DBNJZZ gives better performance with an accuracy of 99.21%and also surpasses previous methods on other measures.

    Keywords:DBN;Zig zag;deep learning;MAPE;RMSE;DNA;genomics

    1 Introduction

    Genomics is an associative field of biology that concentrates on the genomes structure,genomes function, genomes evolution, and genomes mapping, and editing.A complete DNA set is called the genome of an organism and includes all its genes.Deep learning algorithms have been applied within the areas of genetics and genomics.When any specific gene is damaged or affected and prone to some disorder it results in what is known as a genetic disorder.The genetic disorder diseases of Alzheimer,Schizophrenia and Parkinson are affecting humans by disrupting normal brain functions[1–3].Medical imaging has become the foremost and effective tool to represent various modalities of an image like X-ray,MRI,CT,mammography,and PET[4].Storing sensitive information of medical images securely and privately also plays a vital role in the medical field.Traditional approaches of DNA-based molecular cryptography design and DNA writing techniques to store images securely became very interesting in the field of research.The main issue with these traditional techniques is that they cannot resist brute force attacks.Therefore,this paper implements a DNA Sequence-based JPEG Zig Zag Encryption Algorithm(DBNJZZ).

    For detecting the above mentioned brain disorders,many traditional algorithms are implemented.The drawbacks of the traditional algorithm are pre-processing and feature extraction which are not clearly defined and are inefficient in handling complicated genomic data.To overcome these drawbacks, the proposed work, DBNJZZ, presents exploring pre-processing methods and feature extractors with the open access datasets of Adni,Cobre,Oasis,Fbirn,Ntua,Ppmi[5–10].

    This proposed work consists of image registration,image enhancement,normalized filtering and smoothening for pre-processing, and implements an unsupervised feature extractor of Deep Belief Network(DBN).This approach of extraction maps the input values with multiple hidden layers.The features extracted in DBN will improve the prediction performance of the image.For performance evaluation, accuracy, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) were calculated.To summarize, the main contributions of this work are:

    1.Implementing the analysis of brain disorder diseases using a deep learning algorithm and showing how to store sensitive information securely in image format using DNA based encryption algorithm.

    2.Evaluating the accuracy of the pre-processed image in terms of image registration, image enhancement,normalized filtering,and smoothening.

    The paper has been organized as follows: Section 2 includes the literature review, Section 3 introduces the proposed algorithm,Section 4 discusses the experiment results,and Section 5 concludes the paper with future directions.

    2 Literature Review

    The rapid development of advanced technology has contributed various tools to diagnose brain disorder diseases,effectively.Deep learning techniques have helped in many ways to tackle the complicated problems of genomic data and analysis the diseases.Neurological diseases such as Alzheimer’s,Schizophrenia,and Parkinson’s are related to the disruption of brain functions.Traditional methods are employed in handling genomic data for brain disorder diseases.The main drawback of these methods is they are still inefficient to handle complicated genomic data for the brain image with disorder.

    This paper presents DBN feature extraction for images of Alzheimer’s, Schizophrenia, and Parkinson’s to improve the quality of performance.For Alzheimer’s disease, data collected in the ADNI dataset, which are derived from MRI, CT, and PET images, was validated and processed.Genetics and biomarkers were used for prediction of disorder disease[11].A deep learning algorithm is designed to diagnose Parkinson’s disease using Single-photon Emission Computed Tomography(SPECT) image dataset.Features of Sparse filtering, a new framework for automated diagnosis of Parkinson’s disease, is designed [12].Using MRI images to diagnose schizophrenia patients, a novel DBN architecture was designed that can explore statistical values from observed data and easily detect the affected region[13].

    DNA sequencing is used to improve the speed of processing genomic data[14].The classification of DNA sequence is performed using a machine learning algorithm for extracting features that will be stored in a vector format.The classification mentioned here is a supervised learning process.Its’drawback is that it cannot read by machine and also it has a high dimensionality of data.The genome sequences extracted from images as features using deep learning algorithms are used in various fields of genomic medicine,bioinformatics application,and medical imaging analysis[15].Tab.1 shows the survey summary of brain disorder analysis using a deep learning algorithm.

    Table 1: Survey Summary of brain disorder analysis

    3 Proposed DNA Sequence-based JPEG Zig Zag Encryption Algorithm(DBNJZZ)

    Medical imaging is an effective tool to diagnose a disease.For analyzing brain disorders,this paper implements a deep learning algorithm of DBN.This workflow(DBNJZZ)consists of two modules:

    Module 1:Pre-processing

    Module 2:Feature extraction of image with disorder and DNA Sequence-based privacy storage of brain image DBN-JPEG Zig Zag encryption algorithm (DBNJZZ).(Proposed) Fig.1 shows the workflow of the DBNJZZ.

    Figure 1:Workflow of DBNJZZ

    3.1 Pre-processing(Module 1)

    Neuroimaging modalities of brain images are CT,MRI,and PET.To improve the quality of an image,it is adjusted in a pre-processing stage.The steps involved in the pre-processing phase are given in Fig.2.

    Figure 2:Pre-processing steps

    3.1.1 Image Registration

    Image registration acquires two or more of same image features with different time frame variations into a single informative image.Linear regression algorithm is used for image registration which includes the functions of rotation,translation,and scaling for an image on the axes of x,y,z.At all angles,the algorithm will align the spatial correlation of the image.In general,image registration is given by:

    where,Ib′is the coordinate value of the image b,βis the set of parametric values of transformation.

    3.1.2 Image Enhancement

    It improves the quality of the image by filtering with contrast Contrast-limited Adaptive Histogram Equalization(CLAHE).This approach will enhance the image brightness with its background to improve visibility.

    3.1.3 Normalization

    It is the process of aligning the image in terms of size and shape to interpret them into common features of the image.This process maps the data point acquired from discrete space value to the reference space value.

    3.1.4 Filtering

    Using Weiner filtering, unwanted features will be removed from the image which consequently will minimize the image noise.

    where k is the low-frequency value of the Wiener filter;the high pass filter value is used to blurred the image.

    3.1.5 Smoothening

    It is the process of reducing the noise of the image.Spatial smoothing is applied which calculates the average value of pixels from the adjacent pixel elements.With smoothing,the Signal-to-noise ratio(SNR)value is enhanced and spatial resolution value is reduced.

    3.2 Feature Extraction of Image with Disorder and DNA Sequence-Based Privacy Storage of Brain Image DBN-JPEG Zig Zag Encryption Algorithm(DBNJZZ).

    In this work, Deep Belief Network (DBN) is used to extract features type from biomarkers of the image.Biomarker acts as a tool for the diagnostic purpose and it is used to identify the abnormal condition of the image.DBN here is based on Restricted Bolztman Machines (RBM) architecture[16–18].DBN is unsupervised feature extractor that extracts the features from the image for performance improvement.In this context,it will extract the normal structure features from the brain image to identify brain-related disorders.Fig.3 shows the workflow of recommended biomarkers.

    DBN architecture is composed of RBM stacks which contain one visible layer and multiple hidden layers.Each layer consists of nodes.The connection between the input layer and hidden layers is established by assigning a weight value.During the process of training the network,the weight vector value will be adjusted.The structure of DBN is given in Fig.4.The architecture of RBM is given in Fig.5.

    Figure 3:Workflow of generating biomarker

    Figure 4:DBN layer

    Figure 5:RBM architecture

    The algorithm for training the DBN is given below:

    Algorithm 1:Training DBN Step 1: Let Ii; 0 ≤i ≤N is input neuron that contains binary values and N is the total number of input neurons.Step 2:Let hii; 0 ≤i ≤K is a hidden neuron that contains binary values and K is the total number hidden neurons.Step 3:Calculate the energy function Er(i,j)between input neurons and hidden neurons by using:Er(I,hi)=∑i biiIi- ∑i ajhij-∑i∑j IiWiijhij (3)Step 4:Train the RBM’s first layer(visible layer)by applying input values to all neurons.Step 5:The output of Step 4 will be used as input of the next layer(hidden layer).Step 6:D(I,hi)= 1 F e-Er(I,hi) (4)The pair values of visible and hidden values are summed up and produce F as a function.Step 7:Evaluate the unbiased value between visible neurons and hidden neuron Dimages/BZ_1737_307_2395_338_2441.pnghij = 1 I =σimages/BZ_1737_566_2395_597_2441.pngbij+∑iIiWiijimages/BZ_1737_860_2395_891_2441.pngimages/BZ_1737_891_2395_922_2441.pngσ is a sigmoid function.Step 8:Repeat steps 6,7 until all layers are evaluated.Step 9:Output Binary Values Bij

    In algorithm 1, the image was trained to detect the disorder in the image.The resulted output will be stored in a secure way using DBNJZZ Encryption Algorithm.DNA is made up of monomers in a polymer structure which are called Deoxyribonucleotides.The basic components of nucleotide are phosphate, deoxyribose sugar, and nitrogenous [19,20].The bases of nitrogenous are Adenine(A),Cytosine(C),Thymine(T),and Guanine(G).After implementation of algorithm 1,the output values are plotted in a matrix format corresponding to the four base variables of DNA:A,C,T,and Gnucleotides.The encoded value of A is[0,0,0,1],C’s encoded value is[0,0,0,1],T’s encoded value is[0,0,0,1]and G’s encoded value is[0,0,0,1].Therefore,the disorder image value can be represented as an equivalent DNA sequence of code.The encryption key of DNA in DBNJZZ is defined by Fig.6.

    Figure 6:JPEG Zig Zag format

    By substituting DNA sequence nucleotides quadruple values by one and translating brain image to one value from randomly selected nucleotides quadruple sequences,a security component is achieved.Specifically,the gene binary sequence value is considered as an encrypted image and is stored securely.The encryption DBNJZZ algorithmis given below:

    ?

    ?

    Both sender and receiver must have the same gene sequence value and store it in a binary format.For each DNA nucleotide sequence in B quadruple value, a binary format file is selected randomly and replaced by an image.Fig.7 shows the result of storing an image using a JPEG Zig Zag pattern.

    Figure 7:Applying JPEG Zig Zag encryption algorithm

    4 Result Analysis

    The four metrics for measuring performance are reported here to evaluate the analysis of DBNJZZ in detecting disorder image.The metrics are:Root Mean Square Error(RMSE),Mean Absolute Error(MAE),accuracy and Mean Absolute Percentage Error(MAPE).

    where,Oiis the observation value of a variable,Piis the prediction value of the variable andNis the number of observations.Eq.(5)is calculated as the square root of the mean of the squared differences between actual outcomes and predictions.Eq.(6)is the absolute difference between the actual or true values and the values that are predicted.The negative sign in the absolute difference result is ignored.Eq.(7) is defined as the error rate of the actual value or observed value minus the forecasted value.Accuracy classification was achieved by 10-fold cross-validation.Tab.2 shows the different disorder diseases and their datasets.

    Table 2: Various disorder diseases and theirs datasets[21]

    In the neurological disorder of Alzheimer’s,the disease is affecting older age people by degrading them mentally and attack the brain function in a specific region.Using Eq.(8) accuracy metric measures for pre-processing activities of Alzheimer’s disease are given in Tab.3 using Tab.2 datasets.

    Table 3: Accuracy of neurological disorder of Alzheimer’s disease

    Tab.3 shows how the proposed work(DBN)has produced a better performance.Using Eq.(8),Tab.4 shows accuracy for a neurological disorder of Schizophrenia disease.Schizophrenia is a psychiatric disorder and it changes a patient’s behavior like emotion and cognition.

    Table 4: Accuracy of neurological disorder analysis of Schizophrenia

    The experiment results in Tab.5 show the accuracy metric measures for Parkinson’s disease in the proposed work DBN.By using Eqs.(5) and (6) RMSE and MAE are plotted in Figs.8–10.Eq.(5)is calculated as the square root of the mean of the squared differences between actual outcomes and predictions.Eq.(6)is the absolute difference between the actual or true values and the values that are predicted.The absolute difference result has a negative sign which is ignored.

    Table 5: Accuracy of neurological disorder analysis of Parkinson disease

    Figure 8:Error Rate using CNN+JPEG ZIG-ZAG

    Figure 9:Error rate using DNN+JPEG ZIG-ZAG

    Figure 10:Error rate using DBN+JPEG ZIG-ZAG

    The experiment results in Figs.8–11 show the superiority of the proposed work, DBN+JPEG ZIG-ZAG.Results prove the better prediction performance of DBN+JPEG ZIG-ZAG compared with existing algorithms in deep learning.In the above analysis,the accuracy metric is used for evaluating deep learning classification algorithms of brain disorder diseases: Alzheimer, Schizophrenia,and Parkinson.Proposed work reveals better performance in the accuracy metric.Visualizing the performance of algorithms in terms of error rate in Fig.11 illustrates the lower error rate of the DBN algorithm and accordingly indicates the correct prediction of the result.

    Figure 11:Result of MAPE in different algorithms DBN+JPEG ZIG-ZAG

    5 Conclusion

    In this research,deep learning algorithms with CNN,DNN,and DBN are evaluated using secure storage of images in the JPEG Zig Zag encryption scheme.The DBN is proposed as an unsupervised feature extractor to extract biomarkers of the image and predict brain disorder diseases of Alzheimer,Schizophrenia,and Parkinson.The proposed work of the DBNJZZ system can process all features of the image and share this image securely.It can also provide a prompt prediction of the disorder using the image.This work has only focused on three diseases.In the future,this work can be extended to cover different case studies with diverse DNA sequences.

    Acknowledgement:This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R234), Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.

    Funding Statement:This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R234), Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    久久久久久久大尺度免费视频| 免费日韩欧美在线观看| 下体分泌物呈黄色| 欧美日韩亚洲高清精品| 亚洲人成网站在线观看播放| 国产精品久久久久久久电影| 亚洲美女黄色视频免费看| 亚洲国产av影院在线观看| 男女高潮啪啪啪动态图| 精品少妇内射三级| 国产精品久久久久久精品古装| 久久精品国产a三级三级三级| tube8黄色片| 欧美最新免费一区二区三区| 2022亚洲国产成人精品| 色吧在线观看| 日本av手机在线免费观看| 中文字幕精品免费在线观看视频 | 国产精品人妻久久久久久| av有码第一页| 国产一区二区三区av在线| 亚洲精品色激情综合| 综合色丁香网| 国产乱来视频区| videos熟女内射| 国产精品不卡视频一区二区| 久久人妻熟女aⅴ| 国产一区二区三区av在线| 又粗又硬又长又爽又黄的视频| av在线播放精品| 国产 精品1| 黑人巨大精品欧美一区二区蜜桃 | 自拍欧美九色日韩亚洲蝌蚪91| 两个人看的免费小视频| 一二三四在线观看免费中文在 | 精品国产一区二区三区久久久樱花| 亚洲av国产av综合av卡| 一级毛片 在线播放| 国产精品女同一区二区软件| 亚洲成人手机| 丝袜在线中文字幕| 亚洲精品一二三| 国产有黄有色有爽视频| 久久精品久久久久久噜噜老黄| 高清av免费在线| 性色avwww在线观看| 热re99久久精品国产66热6| 国产一区有黄有色的免费视频| 91精品三级在线观看| 熟女电影av网| 永久网站在线| 国产麻豆69| 久久97久久精品| 亚洲精品456在线播放app| 亚洲丝袜综合中文字幕| 国产av码专区亚洲av| 国产一区二区三区av在线| 免费久久久久久久精品成人欧美视频 | 久久ye,这里只有精品| 一级毛片我不卡| av黄色大香蕉| 亚洲成色77777| 人人妻人人澡人人看| 久久ye,这里只有精品| 日本欧美国产在线视频| 丝袜喷水一区| 日韩人妻精品一区2区三区| 久久久久久伊人网av| av国产精品久久久久影院| 国产黄色视频一区二区在线观看| 高清在线视频一区二区三区| 99视频精品全部免费 在线| 黄片无遮挡物在线观看| 人人澡人人妻人| 丝袜脚勾引网站| 黑人巨大精品欧美一区二区蜜桃 | 丰满迷人的少妇在线观看| 激情视频va一区二区三区| 国产精品久久久av美女十八| 中文字幕人妻丝袜制服| 免费不卡的大黄色大毛片视频在线观看| 中文字幕精品免费在线观看视频 | 中文字幕人妻熟女乱码| 激情五月婷婷亚洲| 国产亚洲精品久久久com| 在线亚洲精品国产二区图片欧美| 国产片特级美女逼逼视频| 一区二区三区精品91| 交换朋友夫妻互换小说| 五月开心婷婷网| 五月开心婷婷网| 精品酒店卫生间| 人人妻人人爽人人添夜夜欢视频| 亚洲久久久国产精品| www.av在线官网国产| 精品国产一区二区三区久久久樱花| 国产成人精品久久久久久| 大陆偷拍与自拍| 一级毛片黄色毛片免费观看视频| 香蕉丝袜av| 男女下面插进去视频免费观看 | 日本色播在线视频| 菩萨蛮人人尽说江南好唐韦庄| 高清av免费在线| 最后的刺客免费高清国语| 中文字幕亚洲精品专区| 少妇高潮的动态图| 精品国产乱码久久久久久小说| 中文字幕最新亚洲高清| 国产日韩欧美视频二区| 美女中出高潮动态图| 久久女婷五月综合色啪小说| 亚洲国产av影院在线观看| 久久99热这里只频精品6学生| 狂野欧美激情性bbbbbb| 国产av一区二区精品久久| 成年美女黄网站色视频大全免费| 99久久中文字幕三级久久日本| 国产片内射在线| 在现免费观看毛片| 日韩精品免费视频一区二区三区 | 99久久中文字幕三级久久日本| 激情五月婷婷亚洲| 人妻系列 视频| 一区二区日韩欧美中文字幕 | 国产欧美另类精品又又久久亚洲欧美| 一本久久精品| 国产免费又黄又爽又色| 国产成人一区二区在线| 十八禁高潮呻吟视频| 日本色播在线视频| 国产免费一级a男人的天堂| 男女免费视频国产| 男女下面插进去视频免费观看 | 日韩大片免费观看网站| 亚洲内射少妇av| 国产精品一区二区在线不卡| 久久97久久精品| 一本久久精品| 亚洲欧美一区二区三区国产| 久久精品久久久久久久性| 男女午夜视频在线观看 | 男人操女人黄网站| 黑人高潮一二区| 99九九在线精品视频| 久久久久久人人人人人| 亚洲av电影在线进入| 免费在线观看黄色视频的| 欧美性感艳星| 国产精品蜜桃在线观看| 国产免费一级a男人的天堂| 亚洲精品乱久久久久久| 性色av一级| 中国美白少妇内射xxxbb| 午夜日本视频在线| 狂野欧美激情性xxxx在线观看| 99热6这里只有精品| 久久久欧美国产精品| 亚洲精品乱码久久久久久按摩| 欧美国产精品一级二级三级| 少妇熟女欧美另类| a级片在线免费高清观看视频| 如何舔出高潮| 在线天堂中文资源库| 成人国语在线视频| 高清欧美精品videossex| 国产色爽女视频免费观看| 一级毛片黄色毛片免费观看视频| 亚洲成国产人片在线观看| 国产亚洲精品久久久com| 人妻 亚洲 视频| 天天躁夜夜躁狠狠久久av| 免费av中文字幕在线| 日本欧美国产在线视频| 久久亚洲国产成人精品v| 天天躁夜夜躁狠狠久久av| 日日撸夜夜添| www日本在线高清视频| 久久狼人影院| 1024视频免费在线观看| 一区二区三区四区激情视频| 涩涩av久久男人的天堂| 精品熟女少妇av免费看| 国产激情久久老熟女| 侵犯人妻中文字幕一二三四区| av视频免费观看在线观看| 亚洲一区二区三区欧美精品| 免费观看无遮挡的男女| av黄色大香蕉| 制服丝袜香蕉在线| 欧美另类一区| a级毛色黄片| 亚洲久久久国产精品| 69精品国产乱码久久久| 18禁在线无遮挡免费观看视频| 乱人伦中国视频| 老司机影院毛片| 国产一区二区在线观看av| 99九九在线精品视频| 国产精品久久久av美女十八| 亚洲精品久久久久久婷婷小说| 9色porny在线观看| 午夜精品国产一区二区电影| 国产欧美亚洲国产| 黑人高潮一二区| 99久久综合免费| 精品亚洲成国产av| 欧美人与善性xxx| kizo精华| 王馨瑶露胸无遮挡在线观看| 一区二区三区乱码不卡18| 国产精品一区www在线观看| 国产精品一区www在线观看| 熟妇人妻不卡中文字幕| 美女中出高潮动态图| 国产成人精品福利久久| 欧美精品一区二区大全| 久久久久精品久久久久真实原创| 精品午夜福利在线看| 国产成人av激情在线播放| av国产久精品久网站免费入址| 最近2019中文字幕mv第一页| av黄色大香蕉| 男女啪啪激烈高潮av片| 久久青草综合色| 亚洲图色成人| 成年美女黄网站色视频大全免费| 亚洲情色 制服丝袜| 美女视频免费永久观看网站| 90打野战视频偷拍视频| 欧美少妇被猛烈插入视频| 欧美丝袜亚洲另类| 伦理电影大哥的女人| 精品一区二区免费观看| 国产成人aa在线观看| 色5月婷婷丁香| 五月伊人婷婷丁香| 亚洲欧美清纯卡通| 成人综合一区亚洲| 一区二区三区精品91| 国产成人免费无遮挡视频| 免费黄频网站在线观看国产| 天天躁夜夜躁狠狠久久av| 亚洲情色 制服丝袜| 久久久久国产精品人妻一区二区| av有码第一页| 多毛熟女@视频| 天堂俺去俺来也www色官网| www.av在线官网国产| 桃花免费在线播放| 久久精品夜色国产| 成人亚洲精品一区在线观看| 亚洲综合色网址| 一二三四在线观看免费中文在 | 全区人妻精品视频| 丰满乱子伦码专区| 99久久人妻综合| 免费观看在线日韩| 最近中文字幕高清免费大全6| 99久久人妻综合| 永久免费av网站大全| 男女边吃奶边做爰视频| 欧美成人精品欧美一级黄| 老司机影院毛片| 日韩av免费高清视频| 亚洲欧美日韩另类电影网站| 国产在线免费精品| 国产精品人妻久久久影院| 青春草国产在线视频| 女性生殖器流出的白浆| 精品一区在线观看国产| 亚洲伊人色综图| 人成视频在线观看免费观看| 成人漫画全彩无遮挡| 纯流量卡能插随身wifi吗| 99国产综合亚洲精品| 日本猛色少妇xxxxx猛交久久| 亚洲精品中文字幕在线视频| 寂寞人妻少妇视频99o| 成人18禁高潮啪啪吃奶动态图| 高清毛片免费看| 男女免费视频国产| 在线观看免费高清a一片| 免费黄频网站在线观看国产| 在线观看免费日韩欧美大片| 国产精品久久久久久av不卡| 秋霞伦理黄片| 亚洲伊人久久精品综合| 韩国av在线不卡| 成人亚洲精品一区在线观看| 亚洲欧洲日产国产| 国产在线一区二区三区精| 亚洲一码二码三码区别大吗| 午夜免费鲁丝| 精品人妻一区二区三区麻豆| 亚洲精品久久久久久婷婷小说| 国产成人a∨麻豆精品| 亚洲精品一区蜜桃| 免费高清在线观看视频在线观看| 一级毛片我不卡| 亚洲欧美成人精品一区二区| 亚洲色图 男人天堂 中文字幕 | 熟妇人妻不卡中文字幕| 肉色欧美久久久久久久蜜桃| 精品一区在线观看国产| 国产日韩欧美亚洲二区| av在线观看视频网站免费| 毛片一级片免费看久久久久| 日韩在线高清观看一区二区三区| av免费在线看不卡| 国产一级毛片在线| 交换朋友夫妻互换小说| 亚洲精品av麻豆狂野| 日韩视频在线欧美| 亚洲欧洲国产日韩| 97人妻天天添夜夜摸| 日韩熟女老妇一区二区性免费视频| 一本—道久久a久久精品蜜桃钙片| 在线亚洲精品国产二区图片欧美| 男女边摸边吃奶| 91精品伊人久久大香线蕉| 久久精品aⅴ一区二区三区四区 | 久久久国产精品麻豆| 久久久久视频综合| 久久精品国产亚洲av天美| 国产精品 国内视频| 精品少妇内射三级| 伦精品一区二区三区| 七月丁香在线播放| 久久久久久人妻| 1024视频免费在线观看| 国产在视频线精品| 久久鲁丝午夜福利片| 自拍欧美九色日韩亚洲蝌蚪91| www日本在线高清视频| 大香蕉久久网| 亚洲成人手机| 美女脱内裤让男人舔精品视频| 18禁在线无遮挡免费观看视频| 亚洲中文av在线| 日韩成人av中文字幕在线观看| 亚洲国产精品999| 成人18禁高潮啪啪吃奶动态图| 国产精品国产av在线观看| 国国产精品蜜臀av免费| 国产精品人妻久久久久久| 免费av中文字幕在线| 一区二区日韩欧美中文字幕 | 亚洲精品国产av蜜桃| 永久免费av网站大全| av卡一久久| 考比视频在线观看| 亚洲精品色激情综合| 中文字幕制服av| 国产免费一级a男人的天堂| 毛片一级片免费看久久久久| 国产探花极品一区二区| 免费av中文字幕在线| 成年动漫av网址| 日本wwww免费看| 一边摸一边做爽爽视频免费| 日本黄大片高清| 欧美日韩视频高清一区二区三区二| 丝袜喷水一区| 免费播放大片免费观看视频在线观看| 国产乱人偷精品视频| 日本与韩国留学比较| 欧美国产精品va在线观看不卡| 性高湖久久久久久久久免费观看| 欧美日韩视频高清一区二区三区二| 国产又爽黄色视频| 人人妻人人澡人人看| av女优亚洲男人天堂| 女人久久www免费人成看片| 成人漫画全彩无遮挡| 亚洲三级黄色毛片| 草草在线视频免费看| 国产精品国产三级国产专区5o| 寂寞人妻少妇视频99o| 久久韩国三级中文字幕| 80岁老熟妇乱子伦牲交| 又粗又硬又长又爽又黄的视频| 国产深夜福利视频在线观看| 国产一区二区三区av在线| 久久久久网色| 久久精品国产亚洲av涩爱| 一级毛片 在线播放| 麻豆精品久久久久久蜜桃| 国产一区二区三区综合在线观看 | 国产在线一区二区三区精| 只有这里有精品99| 少妇 在线观看| 你懂的网址亚洲精品在线观看| av在线播放精品| 日韩在线高清观看一区二区三区| 99热网站在线观看| 免费黄网站久久成人精品| 亚洲精品久久久久久婷婷小说| 老司机影院成人| 欧美日韩综合久久久久久| 在线观看国产h片| 国产xxxxx性猛交| 成人国产麻豆网| 热re99久久精品国产66热6| 欧美精品一区二区大全| av国产久精品久网站免费入址| 精品人妻熟女毛片av久久网站| 精品久久国产蜜桃| 巨乳人妻的诱惑在线观看| 亚洲国产av新网站| 18禁观看日本| 一区在线观看完整版| 国产精品99久久99久久久不卡 | 亚洲欧美一区二区三区国产| 成年美女黄网站色视频大全免费| 亚洲高清免费不卡视频| 大香蕉久久网| 国产日韩一区二区三区精品不卡| 午夜免费男女啪啪视频观看| 丰满乱子伦码专区| 考比视频在线观看| 日韩av免费高清视频| 丝袜喷水一区| 99久久中文字幕三级久久日本| 女人被躁到高潮嗷嗷叫费观| av免费观看日本| a级毛色黄片| 亚洲精品自拍成人| 男人爽女人下面视频在线观看| 亚洲性久久影院| 久久影院123| 80岁老熟妇乱子伦牲交| 大片电影免费在线观看免费| 男人添女人高潮全过程视频| 狂野欧美激情性xxxx在线观看| 久久久久久久久久成人| 一二三四中文在线观看免费高清| 国产av精品麻豆| 免费日韩欧美在线观看| 交换朋友夫妻互换小说| 老司机影院成人| 免费大片黄手机在线观看| 天美传媒精品一区二区| 久久久久久久久久成人| 两个人看的免费小视频| 成年动漫av网址| 国产高清国产精品国产三级| 考比视频在线观看| 丰满乱子伦码专区| 热99久久久久精品小说推荐| av一本久久久久| 欧美97在线视频| 亚洲一级一片aⅴ在线观看| 建设人人有责人人尽责人人享有的| 国产永久视频网站| 色婷婷久久久亚洲欧美| 日本黄大片高清| 一本大道久久a久久精品| 久久久久久久国产电影| 亚洲av中文av极速乱| 少妇 在线观看| 亚洲精品日韩在线中文字幕| 中文字幕免费在线视频6| 欧美人与性动交α欧美精品济南到 | 各种免费的搞黄视频| 亚洲精品一区蜜桃| 少妇人妻久久综合中文| 亚洲图色成人| 草草在线视频免费看| 久久人人97超碰香蕉20202| 国产一区二区三区av在线| 妹子高潮喷水视频| 亚洲精品日韩在线中文字幕| 51国产日韩欧美| 精品福利永久在线观看| 2021少妇久久久久久久久久久| 最近中文字幕2019免费版| 亚洲国产最新在线播放| 99视频精品全部免费 在线| 好男人视频免费观看在线| 在线免费观看不下载黄p国产| 美女脱内裤让男人舔精品视频| 午夜激情av网站| 久久99蜜桃精品久久| 亚洲美女搞黄在线观看| 久久久国产一区二区| 亚洲欧美成人精品一区二区| 精品卡一卡二卡四卡免费| 交换朋友夫妻互换小说| 晚上一个人看的免费电影| 国产一区二区在线观看av| 在线观看免费视频网站a站| 观看美女的网站| 最近中文字幕2019免费版| 狂野欧美激情性bbbbbb| 中文字幕人妻熟女乱码| 日韩视频在线欧美| 日本爱情动作片www.在线观看| 国产精品.久久久| 美女内射精品一级片tv| 夫妻性生交免费视频一级片| 亚洲人成网站在线观看播放| 亚洲av男天堂| 极品少妇高潮喷水抽搐| 人人妻人人澡人人看| 国产亚洲精品第一综合不卡 | 国产精品嫩草影院av在线观看| 满18在线观看网站| 少妇 在线观看| 街头女战士在线观看网站| 999精品在线视频| 少妇人妻 视频| 久久精品国产鲁丝片午夜精品| 一本色道久久久久久精品综合| 亚洲三级黄色毛片| 久久午夜综合久久蜜桃| 亚洲,欧美,日韩| 久久99热这里只频精品6学生| 精品酒店卫生间| 精品少妇久久久久久888优播| 亚洲精品一二三| 中国国产av一级| kizo精华| 精品第一国产精品| 在线精品无人区一区二区三| www.熟女人妻精品国产 | 欧美另类一区| 午夜福利乱码中文字幕| 免费av中文字幕在线| 在线观看免费视频网站a站| 少妇的逼好多水| 午夜福利乱码中文字幕| 久久久精品94久久精品| 久热这里只有精品99| 十分钟在线观看高清视频www| 日日啪夜夜爽| 亚洲伊人久久精品综合| 久久人人97超碰香蕉20202| 日韩不卡一区二区三区视频在线| 亚洲国产成人一精品久久久| av福利片在线| 高清毛片免费看| 亚洲av.av天堂| 久久久久久久亚洲中文字幕| 亚洲内射少妇av| 日韩成人伦理影院| 99久久精品国产国产毛片| 国产精品一国产av| 午夜影院在线不卡| 久久99热这里只频精品6学生| 午夜福利网站1000一区二区三区| 国产精品久久久久久精品古装| 一本色道久久久久久精品综合| 在线精品无人区一区二区三| 国产片特级美女逼逼视频| 免费在线观看黄色视频的| 人妻 亚洲 视频| 久久午夜福利片| 国产在线视频一区二区| 日韩免费高清中文字幕av| 最近最新中文字幕大全免费视频 | 国产熟女午夜一区二区三区| 天堂俺去俺来也www色官网| 精品人妻偷拍中文字幕| 啦啦啦啦在线视频资源| 久久精品国产自在天天线| 日本91视频免费播放| 伦理电影免费视频| 女性生殖器流出的白浆| 欧美国产精品va在线观看不卡| 欧美精品一区二区大全| 少妇猛男粗大的猛烈进出视频| 国产熟女欧美一区二区| 黄色视频在线播放观看不卡| 少妇被粗大猛烈的视频| 夜夜爽夜夜爽视频| 久久午夜综合久久蜜桃| 精品酒店卫生间| 五月天丁香电影| 午夜日本视频在线| 蜜桃国产av成人99| 美女国产视频在线观看| 精品视频人人做人人爽| 国产精品一区二区在线不卡| 欧美人与善性xxx| 精品卡一卡二卡四卡免费| 中文字幕人妻丝袜制服| 丝袜脚勾引网站| 亚洲精品aⅴ在线观看| 欧美国产精品va在线观看不卡| 伊人亚洲综合成人网| 999精品在线视频| 少妇的丰满在线观看| 午夜福利乱码中文字幕| 黑人欧美特级aaaaaa片| 波野结衣二区三区在线| 97精品久久久久久久久久精品| 婷婷色麻豆天堂久久| 国产一级毛片在线| 亚洲成国产人片在线观看| 午夜福利,免费看| 日韩免费高清中文字幕av| 只有这里有精品99| 国产亚洲精品第一综合不卡 | 欧美激情 高清一区二区三区| av卡一久久| av网站免费在线观看视频| 欧美 日韩 精品 国产| 国产男人的电影天堂91| 国产伦理片在线播放av一区| 一级毛片我不卡| 大香蕉久久成人网| 精品人妻一区二区三区麻豆| 国产精品一区二区在线不卡| 99精国产麻豆久久婷婷|