• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    FSpot:Fast and Efficient Video Encoding Workloads Over Amazon Spot Instances

    2022-08-23 02:20:56AnatoliyZabrovskiyPrateekAgrawalVladislavKashanskyRolandKerscheChristianTimmererandRaduProdan
    Computers Materials&Continua 2022年6期

    Anatoliy Zabrovskiy,Prateek Agrawal,Vladislav Kashansky,Roland Kersche,Christian Timmerer, and Radu Prodan

    1University of Klagenfurt,Klagenfurt,9020,Austria

    2Lovely Professional University,Phagwara,144411,India

    3Petrozavodsk State University,Petrozavodsk,185035,Russia

    4Bitmovin,Klagenfurt,9020,Austria

    Abstract: HTTP Adaptive Streaming (HAS) of video content is becoming an undivided part of the Internet and accounts for most of today’s network traffic.Video compression technology plays a vital role in efficiently utilizing network channels, but encoding videos into multiple representations with selected encoding parameters is a significant challenge.However,video encoding is a computationally intensive and time-consuming operation that requires high-performance resources provided by on-premise infrastructures or public clouds.In turn,the public clouds,such as Amazon elastic compute cloud(EC2),provide hundreds of computing instances optimized for different purposes and clients’budgets.Thus, there is a need for algorithms and methods for optimized computing instance selection for specific tasks such as video encoding and transcoding operations.Additionally,the encoding speed directly depends on the selected encoding parameters and the complexity characteristics of video content.In this paper, we first benchmarked the video encoding performance of Amazon EC2 spot instances using multiple×264 codec encoding parameters and video sequences of varying complexity.Then, we proposed a novel fast approach to optimize Amazon EC2 spot instances and minimize video encoding costs.Furthermore,we evaluated how the optimized selection of EC2 spot instances can affect the encoding cost.The results show that our approach,on average,can reduce the encoding costs by at least 15.8%and up to 47.8%when compared to a random selection of EC2 spot instances.

    Keywords:EC2 spot instance;encoding time prediction;adaptive streaming;video transcoding; clustering; HTTP adaptive streaming; MPEG-DASH;cloud computing;optimization;Pareto front

    1 Introduction

    Nowadays,most Internet traffic represents multimedia content,such as live or on-demand audio and video streaming[1].The streaming experience over the Internet depends on several factors like user location,network speed,traffic congestion,or end-user device,which significantly vary over time[2].Streaming platforms and services use the HAS technology[3]to adapt to these bandwidth variations that provide video sequences in multiple bitrates.The resolution pairs are divided into short-term video and audio segments (e.g., 2 to 10 s), individually as requested by a client device depending on its technical conditions (e.g., screen size, network performance) in a dynamic, adaptive manner[4].Client devices and video players use segment bitrate selection (or rate adaptation) algorithms to optimize the user experience [5,6].The widely used MPEG-DASH HAS implementation allows streaming providers to choose from a set of codecs for video encoding due to its codec independent[3]characteristic,including Advanced Video Coding(AVC)[7],High-Efficiency Video Coding(HEVC)[8],VP9[9],AOMedia Video 1(AV1)[10]and Versatile Video Coding(VVC)[11].However,encoding video segments for adaptive streaming is a computationally-intensive process that can take seconds or even days depending on many technical aspects,such as video complexity or encoding parameters[12]and typically requires expensive high-performance computers.

    Currently, most streaming services and video encoding platforms opt for less expensive and more scalable cloud resources(e.g.,Amazon Web Services(AWS),Google Cloud,Microsoft Azure)rented on demand[13,14],deployed worldwide on low-latency geo-distributed infrastructures[15,16].Amazon EC2 currently operates in eighteen geographical locations and provides different instances for general purposes(m instances),compute-optimized(c instances),memory-optimized(r instances),or burstable (t instances) [17].EC2 spot instances are unused spare compute capacity in the AWS cloud available at a high discount compared to on-demand prices,with the limitation is that AWS can stop them at any time upon a two-minute warning.While modern encoding platforms and services can significantly leverage spot instances to reduce their encoding costs,the unavailability of intelligent models to estimate the video encoding time and costs makes the correct selection of the cloud instances for thousands of encoding tasks still critical [13,18].Cloud infrastructures, dedicated servers and Internet of Things devices[19]are examples of predicting encoding time,cost and stability significantly impacting the provisioning and scheduling of encoding tasks.Therefore, a highly desirable system that estimates the encoding time and costs and optimizes the encoding task schedule on selected spot instances[20].

    To decrease the encoding costs and maximize the utilization of Amazon EC2 spot instances,we propose a new method called the Fast approach for better utilization of Amazon EC2 Spot Instances for video encoding (FSpot) based on four phases: 1) instance benchmarking, 2) fast encoding time estimation, 3) instance set selection and 4) priority and numerical calculation.The first phase tests different EC2 instances using various encoding parameters, extracts the critical features from the video encodings and creates a dataset,and proposes a heuristic for selecting EC2 spot instances.The second phase uses a fast estimate of the encoding speed for videos on a master node hosted on an on-demand EC2 instance that splits video into segments,estimates the encoding time and distributes encoding tasks to worker nodes hosted on spot instances.The third phase selects the required number of EC2 spot instances recommended for optimized video encoding in the Amazon cloud.Finally,the last phase calculates the priorities and number for EC2 spot instances, such that those with the lowest predicted video encoding cost have the highest priority.We evaluated FSpot on a set of ten heterogeneous videos of different genres with different duration and frame rates using three AWS availability zones.Experimental results show that, on average, our model can reduce the encoding costs by at least 15.8%and up to 47.8%when compared to a random selection of EC2 spot instances.

    The significant contributions of the FSpot work are:

    1.We benchmarked on eleven commonly used Amazon EC2 spot instances using different encoding parameters and video sequences.

    2.We developed a novel method for fast encoding time estimation of video segments and proposed an algorithm combining Pareto frontier and clustering techniques to find an appropriate set of spot instances.

    3.We also proposed and implemented a fast method to calculate the instance number and priority for different EC2 spot instances to optimize the Amazon EC2 spot instance selection for encoding task allocation.The proposed FSpot approach reduces the encoding costs by at least 15.8%and up to 47.8%compared to a random selection of EC2 spot instances.

    This paper has five sections-Section 2 highlights related work.Section 3 describes the proposed FSpot approach and its implementation, followed by results evaluation in Section 4.Section 5 concludes the paper and highlights future work.

    2 Related Work

    2.1 General Scheduling Techniques

    Gog et al.[21] studied various scheduling architectures and proposed a min-cost max-flow(MCMF)optimization over a graph and continuously reschedules the entire workload.Authors extend Quincy’s [22] original MCMF algorithm that results in task placement latencies of minutes on a large cluster.In [23], the authors propose global rescheduling with adaptive plan-ahead in dynamic heterogeneous clusters.Malawski et al.[24]presented a mathematical model to optimize the cost of scheduling workflows under a deadline constraint.It considers a multi-cloud environment where each provider offers a limited number of heterogeneous virtual machines and a global storage service to share intermediate data files.Ghobaei-Arani et al.[25]presented an autonomous resource provisioning framework to control and manage computational resources using a fuzzy logic auto-scaling algorithm in a cloud environment.

    Similarly,Rodriguez et al.[26]described a plan-based offline auto-scaler that partitions workflows into bags-of-tasks and then applied a MIP-based approach to make the allocation plan.Another work of Malawski et al.[27]considered the problem of task planning on multiple clouds formulated but in the more general framework of the mixed-integer nonlinear programming problem(MINLP).Garcia-Carballeira et al.[28]combined randomized techniques with static local balancing in a round-robin manner for tasks scheduling.Chhabra et al.[29]combined multi-criteria meta-heuristics to schedule HPC tasks on the IaaS cloud.Ebadifard et al.[30]proposed a dynamic load balancing task scheduling algorithm for a cloud environment that minimizes the communication overhead.Wang et al.[31]performed an empirical analysis of amazon EC2 spot instance features affecting cost-effective resource management.

    2.2 Video Transcoding-specific Scheduling Techniques

    Some recent remarkable works contributed to scheduling the video transcoding tasks [32–34].Kirubha et al.[35]implemented a modified controlled channel access scheduling method to improve the quality of service-based video streaming.Similarly,Jokhio et al.[36]presented a distributed video transcoding method to reduce video bitrates.Li et al.[37]presented a QoS-aware scheduling approach for mapping transcoding jobs to heterogeneous virtual machines.Recently,Sameti et al.[38]proposed a container-based transcoding method for interactive video streaming that automatically calculates the number of processing cores that maintain a specific frame rate for any given video segment and transcoding resolution.The authors performed benchmarking to find the optimal parallelism for interactive streaming video.Li et al.[39] proposed a HAS delivery scheme that combines caching,transcoding for energy and resource-efficient scheduling.Ma[40]proposed a scheduling method for transcoding MPEG-DASH video segments using a node that managed all other servers in the system(rather than predicting the transcoding times)and reported a saving time of up to 30%.

    2.3 State-of-the-art Analysis

    Previously listed general and transcoding-specific scheduling techniques are capable of processing a large amount of different computational workloads.Such systems use various scheduling algorithms ranging from general mixed-integer programming (MIP) techniques, flow-based formulations and workload-agnostic techniques to video-specific heuristics[41,42]that maximize the use of processing units and minimize the associated costs.Companies currently prefer on-demand and spot instances by utilizing state-of-the-art video codecs to enable cost-effective video encoding.As the cost of such computing units depends on the time of use (ph or ps), the customers strive to keep the highest possible utilization for all computing resources.They typically deploy the encoding tasks using opportunistic load balancing (OLB) algorithms to utilize the resources at all times.It is relatively easy to achieve maximum resource utilization if all the encoding tasks have similar complexity,require similar execution times on the underlying computing units and all computing units have the same price.However, a problem arises when a simple scheduling algorithm randomly assigns specific encoding tasks to expensive spot instances with a low availability probability or is not optimized for selected encoding parameters.This can lead to load imbalance,increased encoding time and costs and degraded video quality on the viewer side.The motivation for our work is to maximize the Amazon EC2 spot instances utilization for video encoding and provide the encoding infrastructure with advanced information on the various video encoding tasks to ensure their fast completion with reduced cost.The relatively straightforward case for the methods mentioned earlier is when all the encoding tasks have similar complexity, require similar execution times on the underlying computing units and all computing units have the same price.However,a problem arises when the scheduling algorithm misses specific knowledge about encoding workload and underlying computational resources behavior.Some methods are simply incapable of solving the problem directly in the case of the even bigger video workloads and smaller segment sizes of 2–4 s.Natural extension led to the flow-based formulations and workload-agnostic techniques that can work on significantly larger scales.However,it can quickly happen that those methods will assign segment encoding tasks to spot instances with a low availability probability or not optimized for selected encoding parameters.It will result in additional expenses and sub-optimal performance.This can also lead to load imbalance,increase encoding time and costs and degrade video quality on the viewer side.Further,some approaches consider only a single objective to optimize.Our multi-objective approach maximizes the Amazon EC2 spot instances utilization,reduces the related costs and increases the execution reliability for large-scale video encoding workloads by reinforcing decisions with advanced information on the various video encoding tasks obtained via the fast benchmark algorithm.

    3 Proposed FSpot Approach

    3.1 EC2 Instance Benchmarking

    3.1.1 Dataset Selection

    First, we selected ten video sequences of different visual complexity from the publicly available dataset[12].Fig.1 shows the SI and TI metrics of the selected videos.The average TI and SI metrics confirm the varying video content complexity.We used video sequences that represent a wide range of possible visual scenes and use cases.Tab.1 presents video categories (or genres) and critical file characteristics of original videos.Using the FFmpeg[42]software v4.1.3,we uncompressed all video sequences into raw Y4M format and divided them into 80 video segments of 4 s duration each.Typically, each segment is a switching point to other video representations.Therefore the segment length becomes an important parameter inHTTP Adaptive Streaming.The 4 s segments are widely used in real video streaming deployments because they show a good trade-off between encoding efficiency and video streaming performance[43].

    Figure 1:Average spatial information(SI)and temporal information(TI)for video sequences

    Table 1: Original video file characteristics

    3.1.2 EC2 Instance Performance Analysis

    We encoded each Y4M segment using the FFmpeg ×264 video codec implementation with the veryslow encoding preset to get the highest possible quality compared to the original videos.The×264 video codec contains nine encodings presets:ultrafast,superfast,veryfast,faster,fast,medium(default preset),slow,slower,veryslow,placebo[44].Encoding bitrate with a slower×264 encoding preset for the same video usually has a slower encoding speed but better visual quality[45].We considered these generated video segments as source files and used them to encode different Amazon EC2 instances.We developed a framework using Python programming language to encode video sequences in the Amazon cloud automatically.Tab.3 shows all encoded video segments on eleven different Amazon 2×large instances(presented in Tab.2)using various encoding parameters,i.e.,bitrates and resolutions.All EC2 spot instances have eight vCPUs and RAM size ranges from 15 GiB for the c5a.2 ×large instance to 64 GiB for the r5.2×large and r5a.2×large instances.We used multiple Amazon 2×large instances commonly used for video transcoding[43].We then extracted several features from the video encodings and created the Amazon EC2 instance encoding dataset.The raw dataset contains 16720 encoding tasks(80 segments*19 bitrates*11 EC2 instances)for the 4 s length video segments on medium encoding preset.Each record in our dataset contains EC2 instance name, EC2 instance availability,EC2 instance price,video segment name,encoding bitrate,file size,segment width,segment height,encoding time.

    Table 2: Amazon instances

    Table 3: Bitrate ladder(bitrate/resolution pairs).Bitrate values are in kbps

    Table 3:Continued

    3.1.3 EC2 Spot Instance Selection Heuristic

    Let us assume we have over one hundred different spot instances to encode segments of a single video.Further,we only want to select the top N spot instances that will minimize the cost.Our work proposes a method that selects a set of computing units,for example,5,for optimized video encoding.The main goal of this method is to reduce the number of computing units for further analysis quickly.We calculate the price ratioβiand the speed factorrifor each EC2 instance with respect to c5.2×large base EC2 instance(see Tab.5),as shown in Eqs.(1)and(2),respectively.

    We then calculate the instance availability speed ratioHias shown in Eq.(3).

    Eq.(3) reflects the adequate speed information of the EC2 spot instanceiby analyzing its actual speed against the availability probabilitypi.αis an adjusted weighting coefficient.We use the availability and pricing information of EC2 spot instances in our proposed FSpot model from the Amazon website [46,47].Instead of the availability metric, Amazon uses the termfrequency of interruption.For example, if the frequency of interruption is<5%, it means that the spot instance interruption of Amazon services based on historical information of the last three months before being terminated intentionally by a client is less than 5%.TheGiparameter in Eq.(3) is a relative time to encode a single video on EC2 spot instanceiand is calculated by Eq.(4).The availability probabilitypiof EC2 spot instanceiis Amazon frequency of interruption between 0 to 1.Tab.4 shows the availability probability calculation from the amazon frequency of interruption converted to percentage.Further,in our proposed work,we useHiandβito select a set of computing units for optimized video encoding

    3.2 Fast Encoding Time Estimation

    We use a sample video file segment to calculate the encoding speed for the different Amazon EC2 instances.First,the system encodes a middle segment of a video sequence at the base node-the master node or the fastest available EC2 instance for a few seconds with selected encoding parameters.It then uses obtained encoding time datafor the middle segment and instance availability speed ratio(Hi)to estimate the encoding speed(in segments/sec)for different EC2 spot instances and video segments as shown in Eq.(5).

    Table 4: The amazon frequency of interruption converted to percentage

    We assume that the encoding time of all segments of the same video sequence has similar values.Recent research[20]shows that the encoding times of segments of the same video file with the same encoding parameters have similar values and do not exceed one second for the×264 video codec.Our approach uses a quick estimate of the encoding speed for each new video and a new set of encoding parameters.

    From our dataset,we extracted×264 codec encoding times for the base EC2 instance(c5.2×large)for middle segments and all unique combinations of encoding parameters for each video sequence.We then used the instance availability speed ratio(Hi)to estimate the encoding speed for video segments on different EC2 spot instances.We only used the information about the encoding time of the middle segment on the base c5.2 × large EC2 instance.We can use our approach to make predictions for different video codecs,for example,for×265.To do this,we need to automatically benchmark EC2 instances for the ×265 video codec and then use the results for the calculations.The output of this implementation phase is an array of estimated encoding speedsfor different video segmentsjand EC2 spot instancesi.

    3.3 EC2 Instance Selection Using Pareto Fronts and Clustering

    We used our dataset to calculateHifor all eleven EC2 spot instances and then calculated theirβiusing the pricing information retrieved from Amazon[46,47].Tab.5 presents an example of different calculated parameters for all selected EC2 spot instances for the AmazonEurope(Frankfurt)region andeu-central-1bavailability zone.Then,we applied Pareto fronts and a clustering approach to finding five EC2 spot instances for optimized video encoding in the cloud.The selected EC2 spot instances used to minimize the encoding costs are t3a.2×large,t3.2×large,c4.2×large,c5a.2×large,c5.2×large.Please note that pricing information on the Amazon website changes in real-time,so in the entire encoding system,our proposed model will ask for new EC2 Spot prices every minute and recalculate the selected EC2 spot instance set.

    For each EC2 spot instance,we calculate the(i)instance availability speed ratioHiand(ii)price ratioβiand use them as input parameters for our Pareto-fronts and clustering model.We calculate different Pareto fronts betweenHiandβifor all selected EC2 spot instances and rank each front in ascending order(see Fig.2).

    Table 5: Example of calculated parameters for different amazon EC2 spot instances

    We then apply K-means clustering on Pareto fronts points to form K clusters (see Fig.2) such that the centroid of each cluster.

    wherexis the number of Pareto fronts andnis the total number of EC2 spot instances.For example,if the number of EC2 spot instances is ten,clusters will be four.Our algorithm first selects EC2 spot instances belonging to the first Pareto front to find a set of optimized EC2 spot instances.Depending on the optimization problem (minimizing encoding time or cost of encoding), the algorithm selects points from the bottom or the top of the first Pareto front.If all EC2 spot instances of the same type in one Pareto front are already in use,the proposed algorithm selects other EC2 instances belonging to the same cluster and same front.If no EC2 spot instance from the same front and the same cluster is available,the proposed algorithm searches different EC2 instances within the same cluster but from another front.If all EC2 spot instances of one cluster are already in use,it requests the remaining EC2 spot instances from the first front,which belong to different cluster(s).If all EC2 spot instances of the first Pareto front are already in use,the algorithm will move to the second Pareto front and so on.We proposed Algorithm 1 to find a set of appropriate EC2 spot instances.This phase results in a set of preselected EC2 spot instances for optimized video encoding in the cloud.

    Figure 2:EC2 spot instance selection by using Pareto fronts and clusters

    3.5 Calculating Priorities and Numbers for EC2 Spot Instances

    This phase only uses EC2 spot instances that belong to the set selected by Algorithm 1.First of all, we represent the constraints.We consider the disk speeddcopyand the network speedkcopyfrom the master node to a cluster of EC2 spot instances as two main parameters influencing segments’distribution time.In actual encoding infrastructure,the open-source tool IPerf can be used to measure the network speedkcopy.The transmission speed of video segmentswcopyis the minimum value betweendcopyandkcopy,as shown in Eq.(7).

    Algorithm 1:Algorithm for selecting EC2 spot instances using Pareto front and clustering techniques.Input:array of EC2 spot instances(ec2[])Input:number of Pareto fronts(n_fronts)Input:number of EC2 to select(n)Output:array of selected instances(s_ec2)//Indexing of array ec2[]starts from one.ec2[]array is sorted by price ratio in ascending order.1.ec2[]←{‘val1’,‘val2’,‘val3’, ... ‘valP’}2.n_fronts[]←val 3.n ←val 4.5.Function select_ec2_set(ec2,n_fronts,n):6.output[]←null 7.for i=1 to n_fronts do 8.current_cluster ←null 9.for ec2 in ec2[]do(Continued)

    Algorithm 1:Continued 10.if ec2 ∈(i front)then 11.output ←ec2 remove ec2 from ec2[]array current cluster=cluster of ec2 if len(output)==n then 12.Break 13.End 14.for all ec2i in(i+1)front do 15.if ec2i ∈current cluster then 16.output ←ec2i remove ec2i from ec2[]array if len(output)==n then 17.Break 18.End 19.End 20.End 21.End 22.End 23.return output 24.End Function 25.s_ec2 ←select_ec2_set(ec2,n_fronts,n)

    Eq.(8)calculates the minimum time to copy all segments of one videoto multiple EC2 spot instances,wherelis the number of segments for encoding andsis the average segment size.In turn,Eq.(9)calculates the minimum time to encode all segments of a video onziEC2 spot instances,whereis the estimated encoding speed(in segments/sec)of EC2 Spot instance typei.

    For continuous encoding of video segments on EC2 spot instances of typei, the following constraint must be met:

    Then the numberziof EC2 spot instances to use can be represented as inequality 11.Also,zimust be less than or equal to the number oflsegments to encode and the maximum numberzmaxof EC2 spot instances that the system can request simultaneously(See 11).The value ofzmaxcan be defined by the encoding infrastructure administrator or be a maximum number of EC2 instances of the specific type available in the cloud.

    By satisfying defined constraints forzi, we calculate the maximum possible value ofzifor each EC2 spot insblencei.The next step is to prioritize EC2 spot instances.To do this, we calculate the predicted encoding timeTpred ias shown in Eq.(12)for all segmentslof a video file for different EC2 spot instancesi.Next,the model uses the predicted encoding time to compute the predicted encoding costof a video for each typeiof EC2 instance,as shown in Eq.(13).

    We sort the predicted encoding cost for all EC2 Spot instances in ascending order.The EC2 spot instance type with the lowest predicted video encoding cost has the highest priority and vise versa.

    We calculated the priorities and optimized the number of EC2 spot instances of each type (i)required for encoding different video sequences(see Tab.1).First,using defined constraints,the model finds the maximum possible number of EC2 spot instanceszito use.Then the model uses the calculated number of EC2 spot instanceszi,EC2 spot instance priceciand the predicted encoding timeto calculate the predicted encoding costof a video for different EC2 spot instances.We sorted the predicted encoding cost for all EC2 spot instances in ascending order in a manner that the EC2 spot instanceiwith the lowest predicted video encoding cost has the highest priority and vise versa.Tab.6 shows the predicted video encoding cost for TOS video and different Amazon EC2 spot instances.We used 285 encoding tasks(15 video segments*19 bitrates)and assumed that a video segment should be delivered to an EC2 spot instance again for each encoding operation.As we can see from Tab.6,the proposed model recommends using eightc5a.2×largeEC2 spot instances to minimize the encoding cost of the TOS video sequence,which results in a cost of$0.04.

    Table 6: Predicted video encoding costs for TOS video sequence Eu-central-1b availability zone

    4 Results and Analysis

    This Section presents the proposedFSpotapproach results to analyze the performance and examine its advantages for utilizing Amazon EC2 spot instances better.We compare the predicted encoding time and cost with the actual encoding time available in the dataset.We calculate the actual encoding timeof a video for each EC2 spot instance using the same number of EC2 spot instanceszipredicted by the model.We calculate the actual encoding cost using Eq.(14)and compare it with the predicted encoding costVpred i.

    Finally, we check how the predicted encoding times and costs are correlated with actual values.The predicted priorities for the EC2 spot instance have to be correct for the actual and predicted values.

    Tab.7 shows various parameters and their defined test values to evaluate our proposed FSpot model performance.We used the encoding times and prices for Amazon EC2 spot instances from our dataset.Tab.8 shows the selected EC2 spot instances marked as‘+’and their count calculated by the proposed FSpot model for Sintel video sequences and three availability zoneseu-central-(1a|1b|1c)of AWSFrankfurtregion.We see that the1aand1bzones have eleven, while the1czone has only nine different Amazon EC2 spot instances.It occurs due to the dynamic availability of EC2 spot instances and dependency on the selected zone.The last column of Tab.8 shows that the calculated numbers for the same EC2 spot instance and different availability zones have the same values.This is because the calculated numbers for EC2 spot instances primarily depend on the encoding speed and availability probability of EC2 spot instances, which remain unchanged for the same EC2 spot instance and Amazon region.

    Table 7: Test input parameters for Sintel video sequence

    Table 8: Predicted numbers for EC2 spot instances.Sintel video sequence

    Fig.3 depicts the estimated numbers of different EC2 spot instances located inthe eu-central-1bavailability zone.It clearly shows that the number of EC2 spot instances for the Sintel video sequence varies from nine to fourteen.The proposed FSpot model calculates a minimum of nine EC2 spot instances for c5a.2 × large type and a maximum of fourteen EC2 spot instances for t3a.2 × large,m4.2 × large and r4.2 × large instance types.Fig.4 shows the predicted and actual encoding time for Sintel video on different EC2 spot instances ofthe eu-central-1bavailability zone.The predicted encoding time for all EC2 spot instances is slightly higher than the actual encoding time extracted from the dataset.There is a slight difference of less than 4%between the predicted and actual encoding times.It occurred because we used only one middle segment encoding information of the video sequence and replicated it to the rest of the segments to estimate the encoding time.

    Figure 3:The calculated number of EC2 spot instances for the sintel video sequence

    Figure 4: Predicted and actual encoding time for different EC2 spot instances for the sintel video sequence

    Tab.9 presents the predicted and actual encoding time results for three video sequences (BBB,Sintel, TOS) on five different EC2 spot instances.We can see that for Sintel and TOS videos, the difference between the average predicted and actual values for all five EC2 spot instances is relatively small,3 and 4 s,respectively.However,for the BBB video sequence,the difference reaches 24 s.This is because the actual encoding time of the middle segment of the BBB video sequence has a significant difference from the average encoding time of all video segments.Tab.10 shows the average actual encoding times for all segments of three video sequences compared to the average encoding times of middle segments of the videos.Tab.10 presents the results for thec5.2×largeEC2 spot instance andeu-central-1bAWS availability zone.We see that the BBB video sequence has the highest difference of 0.64 s(3.94–3.30)between the average actual encoding time for all segments and the middle segment.The difference for Sintel and TOS videos is only 0.09 and 0.17 s,respectively.

    Table 9:Predicted and actual encoding time(in sec)for different video sequences and eu-central-1b availability zone

    Table 10: Average encoding times for segments of three video sequences

    Fig.5 shows the predicted and actual encoding costs for the Sintel video sequence on theeucentral-1bavailability zone.We see that the predicted encoding times for all EC2 spot instances are slightly higher than the actual encoding times.This is because the predicted encoding times for the EC2 spot instances are slightly higher than the actual encoding times(see Fig.4).Our proposed FSpot model selects different EC2 spot instances by prioritizing the low cost.Tab.11 shows that thec5a.2×largespot instance has the highest priority.Both the predicted and actual encoding costs forc5a.2×largeare the lowest compared to other EC2 spot instances.This means that the proposed FSpot model can select the appropriate EC2 spot instance type and the number of EC2 spot instances with minimum video encoding costs.

    Figure 5: Predicted and actual encoding cost (in $) for different EC2 spot instances for sintel video sequence and eu-central-1b availability zone

    Table 11:Predicted and actual encoding cost for the Sintel video sequence and eu-central-1b availability zone

    Additionally,Tab.11 shows all predicted priorities for all EC2 spot instances in ascending order in the last column table.Interestingly,all predicted and actual costs are mapped as per their priority and arranged in ascending order.This shows that the model assigned the correct priorities to all EC2 spot instances.Additionally,the first five EC2 spot instances(fromc5atoc4)belong to a set selected by our FSpot approach.Thus,our FSpot approach outperforms in quickly reduce the number of EC2 spot instances for further and in-depth analysis.

    We compared our proposed FSpot approach to a random method where the system randomly selects2×largeEC2 spot instances to encode video segments.With the proposed FSpot approach,thepercentage decrease of cost(PDC) for Sintel video sequence ranges from 16% fort3a.2×largespot instances to 48% forr4.2×largeandr5a.2×largespot instances.Fig.6 presents the PDC values for ten EC2 spot instances compared toc5a.2×largespot instances.We also compared our FSpot approach with another approach where the lowest price EC2 spot instance has the highest priority.According to Tab.5, the EC2 spot instancet3a.2×largehas the lowest price of 0.1037$.The proposed FSpot model selects c5a.2 × large spot instance type and achieves PDC to 16%with the highest priority compared to the lowest price EC2 spot instance(t3a.2×large).This means that the model can choose the appropriate EC2 spot instance, even with a higher price.The higher price EC2 spot instances typically have higher video encoding speed and vice versa.Tab.12 shows PDC for all ten video sequences compared to the random approach.We can see that theReadySetGovideo sequence has the lowest PDC of 11.8%,whilethe Beautyvideo sequence has the highest PDC of 20.8%.The results show that, on average, our approach can reduce the encoding cost by at least 15.8% and the maximum by 47.8% (see the last row in Tab.12).Ideally, the PDC value will be zero if the random approach selects the best EC2 spot instance and the correct number of EC2 instances.However,the chances of choosing both values correctly are meager.Our proposed FSpot model can select the best EC2 spot instances between different AWS availability zones.

    Figure 6:PDC for ten EC2 spot instances compared to c5a.2×large spot instance

    We proposed the FSpot method by combining the Pareto front with clustering techniques to optimize the AWS EC2 spot instance selection for encoding tasks allocation to minimize the encoding costs.Our model,on average,can reduce encoding costs by at least 15.8%and up to 47.8%compared to the random approach.FSpot can be customized and applied to the Google Cloud,and Microsoft Azure platforms with their own spare compute capacity instances.Deploying our model in an existing encoding infrastructure requires the development of an application programming interface.The encoding infrastructure will interact via the API with the model to calculate the predictions for upcoming encodings.

    Table 12: Percentage decrease of cost (PDC) for all ten video sequences compared to the random approach.Eu-central-1b Amazon availability zone

    5 Conclusion and Future Work

    In this research,we performed benchmarking on Amazon EC2 instances using different encoding parameters and video sequences.We used video sequences and segments of different genres and visual complexity.We proposed a novel FSpot approach for fast estimation of video segments encoding time at the master node and selecting the appropriate set of EC2 spot instances for video encoding.We developed an algorithm by combining Pareto front and clustering techniques to find a set of appropriate EC2 spot instances for video encoding.Our approach calculates the EC2 spot instance count and priorities for optimized video encoding in the cloud.We implemented and tested our FSpot approach to optimize the Amazon EC2 spot instance selection for encoding tasks allocation.Results show that the FSpot approach optimizes Amazon EC2 spot instances utilization and minimizes the video encoding costs in the cloud.On average, FSpot can reduce the encoding costs ranging from 15.8%to 47.8%compared to a random selection of EC2 spot instances.

    We plan in the future to extend our method for predicting the encoding time using multiple video codecs on different cloud computing instances and infrastructures.We will test our model on ARM and GPU processing instances in the cloud.In addition,we plan to develop an intelligent scheduler and auto-tuner to automate the process of optimized video encoding in the cloud.

    Funding Statement:This work has been supported in part by the Austrian Research Promotion Agency(FFG)under the APOLLO and Karnten Fog project.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    午夜免费观看性视频| 国产精品久久久久久久电影| 免费人妻精品一区二区三区视频| 大码成人一级视频| 99久久综合免费| 青春草国产在线视频| 精品一区二区三卡| 国产av精品麻豆| freevideosex欧美| 亚洲精品国产色婷婷电影| 亚洲国产最新在线播放| 亚洲国产精品国产精品| 人人妻人人爽人人添夜夜欢视频| 18在线观看网站| 亚洲国产欧美在线一区| 久久午夜福利片| 久久精品国产亚洲网站| 80岁老熟妇乱子伦牲交| 中文天堂在线官网| 2018国产大陆天天弄谢| 亚洲精品日本国产第一区| 精品亚洲乱码少妇综合久久| 免费高清在线观看日韩| 亚洲av男天堂| 婷婷色综合www| 亚洲av在线观看美女高潮| 亚洲久久久国产精品| 91午夜精品亚洲一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 2021少妇久久久久久久久久久| 亚洲图色成人| 国产高清不卡午夜福利| 99久久中文字幕三级久久日本| 一级二级三级毛片免费看| 午夜激情av网站| 亚洲国产毛片av蜜桃av| 永久网站在线| 爱豆传媒免费全集在线观看| 日本欧美国产在线视频| 美女中出高潮动态图| 国产av精品麻豆| 人人妻人人澡人人看| 国产视频首页在线观看| 国产乱来视频区| 成年女人在线观看亚洲视频| 满18在线观看网站| 亚洲国产av新网站| 美女内射精品一级片tv| 久久精品国产鲁丝片午夜精品| 国产欧美亚洲国产| 婷婷色综合大香蕉| 啦啦啦中文免费视频观看日本| 久久99热6这里只有精品| 人妻 亚洲 视频| 亚洲国产精品一区二区三区在线| 国产成人精品婷婷| a级毛片黄视频| 老女人水多毛片| 99精国产麻豆久久婷婷| 我的女老师完整版在线观看| 国产成人a∨麻豆精品| 婷婷色av中文字幕| 成年人免费黄色播放视频| 91aial.com中文字幕在线观看| 中文字幕最新亚洲高清| 成人二区视频| av有码第一页| 成人国产av品久久久| videos熟女内射| 国产在线视频一区二区| 成人手机av| 成人影院久久| 亚洲人与动物交配视频| 午夜免费男女啪啪视频观看| 欧美日韩视频精品一区| 色视频在线一区二区三区| 久久精品国产亚洲网站| 91精品三级在线观看| 只有这里有精品99| 黄色怎么调成土黄色| 啦啦啦啦在线视频资源| 国产毛片在线视频| 日韩伦理黄色片| 久久久久久久精品精品| 如何舔出高潮| 美女脱内裤让男人舔精品视频| 日日撸夜夜添| a级毛片黄视频| h视频一区二区三区| 国产精品 国内视频| 激情五月婷婷亚洲| 欧美3d第一页| 久久女婷五月综合色啪小说| 精品久久久久久久久av| 我要看黄色一级片免费的| 亚洲av成人精品一区久久| 亚洲av日韩在线播放| 高清av免费在线| 51国产日韩欧美| 91精品一卡2卡3卡4卡| 亚洲色图 男人天堂 中文字幕 | 性色avwww在线观看| 在线观看人妻少妇| 亚洲一区二区三区欧美精品| 一二三四中文在线观看免费高清| 欧美3d第一页| 免费大片黄手机在线观看| 久久久久精品久久久久真实原创| 国产精品熟女久久久久浪| 日韩电影二区| 黄片无遮挡物在线观看| 一本久久精品| 久久毛片免费看一区二区三区| 超色免费av| 一区二区三区四区激情视频| 国产精品99久久99久久久不卡 | 亚洲欧美一区二区三区国产| 日本欧美视频一区| 18在线观看网站| 中国三级夫妇交换| 9色porny在线观看| 18禁动态无遮挡网站| .国产精品久久| av在线观看视频网站免费| 中文精品一卡2卡3卡4更新| 亚洲精品色激情综合| 午夜91福利影院| 国产一级毛片在线| 欧美人与善性xxx| av网站免费在线观看视频| 久久久久久久久大av| 伦理电影免费视频| 亚洲精品国产av成人精品| 丝袜在线中文字幕| 考比视频在线观看| 纵有疾风起免费观看全集完整版| 久久久久视频综合| 日韩免费高清中文字幕av| 女的被弄到高潮叫床怎么办| av在线app专区| 伦理电影大哥的女人| 欧美亚洲 丝袜 人妻 在线| 国产成人免费观看mmmm| 国产一区二区在线观看av| 欧美人与性动交α欧美精品济南到 | 超色免费av| 精品人妻熟女毛片av久久网站| 男人添女人高潮全过程视频| 日韩电影二区| 欧美精品高潮呻吟av久久| 18禁观看日本| 一本久久精品| 色婷婷av一区二区三区视频| 汤姆久久久久久久影院中文字幕| 黑丝袜美女国产一区| 久久久久久久国产电影| 少妇熟女欧美另类| 国内精品宾馆在线| 91久久精品国产一区二区三区| 黄片无遮挡物在线观看| 男女无遮挡免费网站观看| 亚洲欧美中文字幕日韩二区| 国产黄片视频在线免费观看| 日韩大片免费观看网站| 成人国产麻豆网| 久久99一区二区三区| 在线看a的网站| 国产黄色免费在线视频| 如日韩欧美国产精品一区二区三区 | 一区二区三区四区激情视频| 国产乱来视频区| 久久久精品免费免费高清| 精品熟女少妇av免费看| 日韩不卡一区二区三区视频在线| 国产黄片视频在线免费观看| 免费看av在线观看网站| 日韩精品免费视频一区二区三区 | 国产成人av激情在线播放 | 亚洲综合精品二区| 夜夜骑夜夜射夜夜干| 国产精品99久久99久久久不卡 | 黄色配什么色好看| 成人手机av| 在线观看国产h片| 欧美精品亚洲一区二区| 一级a做视频免费观看| 精品少妇内射三级| 亚洲精品中文字幕在线视频| 久久久国产精品麻豆| 国产男人的电影天堂91| 丰满饥渴人妻一区二区三| 亚洲精品美女久久av网站| 成人国产av品久久久| 日韩av在线免费看完整版不卡| 亚洲综合色网址| 国产精品一二三区在线看| 精品国产一区二区三区久久久樱花| 亚洲综合色惰| 免费看av在线观看网站| 久久久久久久久久久久大奶| 国语对白做爰xxxⅹ性视频网站| 成年女人在线观看亚洲视频| a级毛片在线看网站| 一个人看视频在线观看www免费| 亚洲av中文av极速乱| 一本—道久久a久久精品蜜桃钙片| 久久 成人 亚洲| 在线亚洲精品国产二区图片欧美 | 久久99蜜桃精品久久| 亚洲精品乱久久久久久| 亚洲av电影在线观看一区二区三区| 性色avwww在线观看| 国产深夜福利视频在线观看| av有码第一页| 久久精品久久久久久噜噜老黄| 久久久久久久久大av| 成人午夜精彩视频在线观看| 自线自在国产av| 日韩电影二区| 交换朋友夫妻互换小说| 亚洲精品色激情综合| 美女国产高潮福利片在线看| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品一二三| 大话2 男鬼变身卡| 亚洲精品色激情综合| 综合色丁香网| 日韩免费高清中文字幕av| 午夜激情av网站| 国产亚洲精品第一综合不卡 | 日韩 亚洲 欧美在线| 特大巨黑吊av在线直播| 成人综合一区亚洲| 高清视频免费观看一区二区| 男女免费视频国产| 国产一区二区在线观看av| 丰满少妇做爰视频| 老熟女久久久| 女人久久www免费人成看片| 日韩伦理黄色片| 在线观看免费高清a一片| 成年av动漫网址| 黑丝袜美女国产一区| 国产精品偷伦视频观看了| 亚洲av电影在线观看一区二区三区| 免费观看的影片在线观看| 亚洲人成网站在线观看播放| 一级毛片 在线播放| 2021少妇久久久久久久久久久| 午夜视频国产福利| 人体艺术视频欧美日本| 亚洲久久久国产精品| 国产男女超爽视频在线观看| 男女边摸边吃奶| 天美传媒精品一区二区| 在线免费观看不下载黄p国产| 国产精品国产av在线观看| 蜜臀久久99精品久久宅男| 中文字幕最新亚洲高清| 性色av一级| 成年女人在线观看亚洲视频| 91久久精品电影网| 亚洲国产av新网站| 欧美日韩视频高清一区二区三区二| 热99国产精品久久久久久7| 中文字幕制服av| 久久久精品免费免费高清| 欧美最新免费一区二区三区| 国产男人的电影天堂91| 中文乱码字字幕精品一区二区三区| 午夜免费观看性视频| 18在线观看网站| 国产男人的电影天堂91| 亚洲婷婷狠狠爱综合网| 一级毛片我不卡| 亚洲高清免费不卡视频| 欧美日韩亚洲高清精品| 高清在线视频一区二区三区| 不卡视频在线观看欧美| 永久免费av网站大全| 汤姆久久久久久久影院中文字幕| 国产精品国产三级专区第一集| 免费高清在线观看视频在线观看| 各种免费的搞黄视频| 国模一区二区三区四区视频| 色哟哟·www| 人人澡人人妻人| 日韩 亚洲 欧美在线| 久久久a久久爽久久v久久| 高清视频免费观看一区二区| 制服诱惑二区| 有码 亚洲区| 中文字幕av电影在线播放| 少妇 在线观看| 老女人水多毛片| 少妇高潮的动态图| 汤姆久久久久久久影院中文字幕| 69精品国产乱码久久久| 嫩草影院入口| 蜜桃久久精品国产亚洲av| 亚洲在久久综合| 日韩av不卡免费在线播放| 国产精品人妻久久久影院| 日本av手机在线免费观看| 精品久久久精品久久久| 人妻人人澡人人爽人人| 大片免费播放器 马上看| 亚洲精品一二三| 国产日韩欧美在线精品| 99久久人妻综合| 18禁动态无遮挡网站| 在线观看一区二区三区激情| 成人二区视频| 精品视频人人做人人爽| 亚洲精品美女久久av网站| 日产精品乱码卡一卡2卡三| 精品国产乱码久久久久久小说| 国产欧美另类精品又又久久亚洲欧美| 777米奇影视久久| 免费观看性生交大片5| 在现免费观看毛片| 亚洲国产成人一精品久久久| 亚洲精品久久成人aⅴ小说 | 久久国产精品大桥未久av| 69精品国产乱码久久久| 久久影院123| 亚洲精品国产av成人精品| 91精品一卡2卡3卡4卡| 国产黄频视频在线观看| 日日爽夜夜爽网站| 国产成人精品福利久久| 一级毛片 在线播放| 亚洲图色成人| 一区二区三区精品91| 欧美日韩视频高清一区二区三区二| videos熟女内射| 国产一区二区三区综合在线观看 | 亚洲精品久久久久久婷婷小说| 男男h啪啪无遮挡| 亚洲精品第二区| 啦啦啦啦在线视频资源| 国产69精品久久久久777片| 日日摸夜夜添夜夜爱| 五月天丁香电影| 久久久久国产精品人妻一区二区| 午夜视频国产福利| 成人亚洲精品一区在线观看| 日产精品乱码卡一卡2卡三| 亚洲成人一二三区av| 乱码一卡2卡4卡精品| 日韩在线高清观看一区二区三区| 天天操日日干夜夜撸| 亚洲精品,欧美精品| 人人澡人人妻人| 日韩亚洲欧美综合| 欧美成人午夜免费资源| 欧美+日韩+精品| 国产免费一级a男人的天堂| 亚洲欧洲精品一区二区精品久久久 | 欧美xxxx性猛交bbbb| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 黑人巨大精品欧美一区二区蜜桃 | 青春草亚洲视频在线观看| 免费av中文字幕在线| 亚洲国产精品成人久久小说| 日本91视频免费播放| 亚洲性久久影院| 蜜臀久久99精品久久宅男| 免费播放大片免费观看视频在线观看| 桃花免费在线播放| 美女国产视频在线观看| 国产av国产精品国产| 99热全是精品| 国产午夜精品一二区理论片| 久久人妻熟女aⅴ| 视频区图区小说| 人人妻人人添人人爽欧美一区卜| 九色亚洲精品在线播放| 日韩精品免费视频一区二区三区 | 视频在线观看一区二区三区| 久久久久久久久大av| 日韩欧美精品免费久久| 久久精品国产亚洲av天美| 欧美老熟妇乱子伦牲交| 2022亚洲国产成人精品| 欧美另类一区| 久久久精品区二区三区| 一区在线观看完整版| 一本一本综合久久| 亚洲人成77777在线视频| 亚洲成人手机| 伦精品一区二区三区| 久久久久视频综合| 亚洲不卡免费看| 我的老师免费观看完整版| 制服人妻中文乱码| 日本黄色片子视频| 亚洲怡红院男人天堂| 亚洲综合色惰| av免费观看日本| 国国产精品蜜臀av免费| 高清av免费在线| 国产亚洲精品久久久com| 精品99又大又爽又粗少妇毛片| 免费观看av网站的网址| 久久青草综合色| 妹子高潮喷水视频| 精品视频人人做人人爽| 两个人的视频大全免费| 精品午夜福利在线看| 精品久久久精品久久久| 又黄又爽又刺激的免费视频.| 99视频精品全部免费 在线| 菩萨蛮人人尽说江南好唐韦庄| 一级毛片电影观看| 香蕉精品网在线| 最黄视频免费看| 国产精品一区www在线观看| 亚洲av中文av极速乱| 国产亚洲精品久久久com| 成人毛片60女人毛片免费| 在线观看免费高清a一片| 秋霞伦理黄片| 视频中文字幕在线观看| 免费av不卡在线播放| 免费观看的影片在线观看| 亚洲精品aⅴ在线观看| 亚洲五月色婷婷综合| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久久久精品古装| 欧美bdsm另类| 乱码一卡2卡4卡精品| 又粗又硬又长又爽又黄的视频| 两个人免费观看高清视频| 搡老乐熟女国产| 日韩欧美一区视频在线观看| 18禁在线播放成人免费| 久久毛片免费看一区二区三区| 天堂8中文在线网| 考比视频在线观看| 色视频在线一区二区三区| 少妇被粗大的猛进出69影院 | 男女免费视频国产| 亚洲欧美一区二区三区国产| 成年美女黄网站色视频大全免费 | 久久鲁丝午夜福利片| 日日撸夜夜添| 久久久久久久久久久丰满| 天堂中文最新版在线下载| 国产成人aa在线观看| 日本免费在线观看一区| 亚洲精品成人av观看孕妇| 一区二区三区精品91| 精品99又大又爽又粗少妇毛片| 我的女老师完整版在线观看| 黄色欧美视频在线观看| 99九九线精品视频在线观看视频| 国产精品一区二区三区四区免费观看| 美女cb高潮喷水在线观看| 人成视频在线观看免费观看| 国产视频内射| 极品人妻少妇av视频| 成人综合一区亚洲| 十分钟在线观看高清视频www| 久久这里有精品视频免费| 色视频在线一区二区三区| 亚洲内射少妇av| 国产 精品1| 人体艺术视频欧美日本| 国产精品三级大全| 亚洲第一av免费看| 亚洲精品aⅴ在线观看| 日本vs欧美在线观看视频| 热re99久久国产66热| 午夜福利,免费看| 亚洲国产av影院在线观看| 久久久久网色| 全区人妻精品视频| 狂野欧美激情性xxxx在线观看| 久久精品久久久久久久性| 亚洲经典国产精华液单| 成人漫画全彩无遮挡| 精品亚洲成a人片在线观看| 中文天堂在线官网| 99久久精品国产国产毛片| 午夜免费男女啪啪视频观看| 少妇丰满av| 飞空精品影院首页| 在线看a的网站| 在线观看国产h片| 成人免费观看视频高清| 一二三四中文在线观看免费高清| 国产免费福利视频在线观看| 男人爽女人下面视频在线观看| 欧美精品一区二区免费开放| 国产黄色视频一区二区在线观看| 看非洲黑人一级黄片| 久热久热在线精品观看| 99热网站在线观看| 韩国高清视频一区二区三区| 99热国产这里只有精品6| 久久久a久久爽久久v久久| 亚洲伊人久久精品综合| 午夜福利视频在线观看免费| 极品人妻少妇av视频| 十八禁高潮呻吟视频| 欧美少妇被猛烈插入视频| 免费黄网站久久成人精品| 日韩中文字幕视频在线看片| 亚洲精品成人av观看孕妇| 亚洲美女视频黄频| 特大巨黑吊av在线直播| 国产欧美另类精品又又久久亚洲欧美| 国产一区有黄有色的免费视频| 欧美性感艳星| 欧美变态另类bdsm刘玥| 国产精品久久久久久av不卡| 久久精品国产亚洲av涩爱| 春色校园在线视频观看| 国产男女超爽视频在线观看| 狂野欧美激情性bbbbbb| 久久国产精品大桥未久av| 黄色视频在线播放观看不卡| 人妻夜夜爽99麻豆av| 国产无遮挡羞羞视频在线观看| 亚洲精品久久久久久婷婷小说| 精品亚洲乱码少妇综合久久| 欧美bdsm另类| 欧美一级a爱片免费观看看| 看非洲黑人一级黄片| 精品视频人人做人人爽| 亚洲av.av天堂| 乱人伦中国视频| 亚洲熟女精品中文字幕| 中文字幕久久专区| 国产亚洲最大av| 赤兔流量卡办理| 好男人视频免费观看在线| 女人久久www免费人成看片| 久久国内精品自在自线图片| 成年美女黄网站色视频大全免费 | 伦理电影大哥的女人| 国产欧美另类精品又又久久亚洲欧美| 美女福利国产在线| 热re99久久国产66热| 午夜影院在线不卡| 黄片无遮挡物在线观看| 青春草亚洲视频在线观看| 少妇被粗大的猛进出69影院 | 高清不卡的av网站| 在线精品无人区一区二区三| 日本猛色少妇xxxxx猛交久久| 欧美亚洲日本最大视频资源| 永久免费av网站大全| 国产精品99久久99久久久不卡 | 欧美bdsm另类| 欧美成人午夜免费资源| 男女啪啪激烈高潮av片| 99久久综合免费| 考比视频在线观看| 国产高清国产精品国产三级| 亚洲成色77777| 成人无遮挡网站| 夫妻性生交免费视频一级片| 国产精品嫩草影院av在线观看| 寂寞人妻少妇视频99o| 久久久久网色| 视频在线观看一区二区三区| 九色亚洲精品在线播放| 亚洲国产av新网站| 伊人久久国产一区二区| 久久精品久久久久久噜噜老黄| h视频一区二区三区| 欧美少妇被猛烈插入视频| 亚洲精华国产精华液的使用体验| 美女cb高潮喷水在线观看| 91久久精品电影网| 国产在线一区二区三区精| 免费大片黄手机在线观看| 精品一区二区免费观看| 午夜视频国产福利| 亚洲av电影在线观看一区二区三区| 国产成人一区二区在线| av女优亚洲男人天堂| 欧美精品一区二区大全| 十八禁高潮呻吟视频| 爱豆传媒免费全集在线观看| 免费观看性生交大片5| 日韩人妻高清精品专区| 国产成人aa在线观看| 成人手机av| 蜜桃久久精品国产亚洲av| 蜜臀久久99精品久久宅男| 午夜日本视频在线| 一级二级三级毛片免费看| 乱码一卡2卡4卡精品| av网站免费在线观看视频| 日韩成人av中文字幕在线观看| 久久久久久久国产电影| 国产男女超爽视频在线观看| √禁漫天堂资源中文www| 自线自在国产av| 亚洲激情五月婷婷啪啪| 亚洲国产最新在线播放| 久久久久国产网址| 久久97久久精品| 欧美老熟妇乱子伦牲交| 国产精品三级大全| 99久久人妻综合| 99热国产这里只有精品6| 丰满饥渴人妻一区二区三| 边亲边吃奶的免费视频| 久久久久网色| 国产精品国产三级专区第一集| 色婷婷久久久亚洲欧美|