• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Automatic Speaker Recognition Using Mel-Frequency Cepstral Coefficients Through Machine Learning

    2022-08-23 02:20:26UurAyvazseyinlerFaheemKhanNaveedAhmedTaegkeunWhangboandAbdusalomovAkmalbekBobomirzaevich
    Computers Materials&Continua 2022年6期

    Uur Ayvaz,Hüseyin Gürüler,Faheem Khan,Naveed Ahmed,Taegkeun Whangbo,and Abdusalomov Akmalbek Bobomirzaevich

    1Department of Computer Engineering,Istanbul Technical University,Istanbul,34485,Turkey

    2Department of Information Systems Engineering,Mugla Sitki Kocman University,Mugla,48000,Turkey

    3Artificial Intelligence Lab,Department of Computer Engineering,Gachon University,Seongnam,13557,Korea

    4Department of Computer Science,College of Computing and Informatics,University of Sharjah,Sharjah,27272,UAE

    Abstract: Automatic speaker recognition (ASR) systems are the field of Human-machine interaction and scientists have been using feature extraction and feature matching methods to analyze and synthesize these signals.One of the most commonly used methods for feature extraction is Mel Frequency Cepstral Coefficients (MFCCs).Recent researches show that MFCCs are successful in processing the voice signal with high accuracies.MFCCs represents a sequence of voice signal-specific features.This experimental analysis is proposed to distinguish Turkish speakers by extracting the MFCCs from the speech recordings.Since the human perception of sound is not linear,after the filterbank step in the MFCC method,we converted the obtained log filterbanks into decibel (dB) features-based spectrograms without applying the Discrete Cosine Transform (DCT).A new dataset was created with converted spectrogram into a 2-D array.Several learning algorithms were implemented with a 10-fold cross-validation method to detect the speaker.The highest accuracy of 90.2%was achieved using Multi-layer Perceptron(MLP)with tanh activation function.The most important output of this study is the inclusion of human voice as a new feature set.

    Keywords: Automatic speaker recognition; human voice recognition;spatial pattern recognition;MFCCs;spectrogram;machine learning;artificial intelligence

    1 Introduction

    The voice signal contains infinite information and voice instances can be used for extracting information about speech words,expression,style of speech,accent,emotion,speaker identity,gender,age, health state of the speaker etc.Advances in biometrics and computer science have provided identifying some of the characteristics of individuals.ASR systems are widely used in the field of security and forensic science,for instance,to create voice signature and to identify suspects.The main motivation behind ASR is to convert the acoustic voice signal into a computer-readable format and to identify the speakers depending upon their vocal characteristics[1].

    Analysing and synthesizing the voice signal is a complex process.To simplify, two factors have been developed; feature extraction and feature matching.The traditional ASR systems were built on Gaussian mixture models(GMMs)and Hidden Markov models(HMMs)to perform the feature matching process.Herein,HMMs are used to deal with the temporal variability of speech and GMMs used to determine how well each of the HMMs fit into a frame or brief window of coefficients representing acoustic input [2].As an example of the feature extraction methods; Linear Prediction Coefficients(LPCs)and Linear Prediction Cepstral Coefficients(LPCCs)were used to extract feature vectors from acoustic signal data, especially with HMMs.Davis and Mermelstein introduced the MFCC features in the 1980’s [3].These features have been widely used and have been regarded as the state-of-art since that date.

    MFCCs are coefficients that represent the audio based on human perception[4].They are derived from the Fourier Transform of the audio clip.The difference is that in MFCC method the frequency bands are positioned logarithmically.As the perception of the frequency content of the human speech signal by the human does not follow a linear scale,applying logarithmically positioning in MFCCs,makes it more closely to human perception[5].

    In literature, MFCCs are used in various fields; speaker and speech recognition [6,7], emotion detection[8,9]and pre-detection and diagnosis of diseases like Parkinson[10].

    Korkmaz et al.[11]proposed a novel MFCC extraction system,which is faster and more energyefficient method than conventional MFCC realization.They used low-pass filter instead of highpass pre-emphasizing filter.Since pre-emphasizing is also required for enhancing the energy of the signal in high frequencies they implemented a bandpass filter that performs highpass filter.They stated that the most time-consuming part in conventional method is FFT with the cost of 72,67%and they discarded this phase.

    Lalitha et al.[12] changed the conventional MFCC structure and offered a new model to voice activity detection.In contrast to triangular filterbanks employed during the MFCC process, they proposed new smoother and DCT involved method.

    Sangeetha et al.[13] investigated an alternative approach to conventional DCT method.They stated that traditional DCT is not as efficient as the proposed method in terms of de-correlation of filterbank features.They offered a new distributed DCT method for MFCC extraction,which reduces the correlation and feature count.

    Upadhya et al.[14]tried a new method to recognize hand-written numbers using MFCC features and HMM.They used MNIST and Fashion MNIST dataset and converted 2D image arrays to 1D sound array.Then,they extracted MFCCs from this 1D array.They input the HMM model with 39 MFCC feature vectors and an accuracy value of 86.4%is obtained.

    Since the MFCC feature extraction process already have a phase where image patterns called spectrograms are produced,we applied spatial pattern recognition techniques on these mel spectrograms in this study.After applying pre-processing and MFCC processing steps to the speech signals, we obtained mel-scale power spectra,convert them into spectral energy decibels(dB)features and saved each spectrum pixel as a power spectrogram image.Each spectrogram has a characteristic pattern and each pixel of a spectrogram represents our features for the classification model.In signal processing phase,we produced these spectrograms applying MFCC steps and create our dataset instances.Each instance includes a 1D array of pixel values of the spectrogram and a label indicating the speaker.In classification section, we trained machine learning models using the training dataset and chose the model giving the best performance in terms of accuracy.Detailed information about methodology is given in Section 2.

    2 Proposed Methodology

    In this study, we investigated the usage of mel-scale spectrograms as an input to a deep neural network to recognize Turkish speakers.A new voice dataset is created and used to test the real-time performance of the ASR system.The participants are informed about the details of the experiment before the data collection process to minimize the artifacts and noise of voice signal.We also applied the spectral subtraction[15]to obtain clean voice signal.The ASR system proposed in this article is intended for people who use voice-controlled systems in daily life.In such systems, security comes first,the person giving the command is important.That’s why we focused on improving our speaker recognition performance rather than speech recognition.

    The first step in designing an ASR system is to determine the appropriate data set.Although there are many English voice dataset available on the Internet,there are limited Turkish voice dataset.However,each instance in the dataset had to be labeled carefully with the corresponding individual.Whenever we needed a precise command from a particular person,we would have to search for it.This was difficult and time consuming to implement in the real-time system.We collected our own voice dataset from undergraduate and graduate students.In this way,we have full control over the dataset for the system we will develop.More details on the data collection process are given in 2.1.Finally,the real-time performance of the ASR system in voice-controlled systems such as voice command phone unlocking is investigated.The system will unlock a phone only if the command is given by the owner.

    The signal processing is one of the most sensitive parts of ASR systems.Although we recorded voice data in a quiet laboratory environment, noises may occur due to both external factors and the sound recording device.In the first step of signal processing, the noise removal and speech enhancement technique called spectral subtraction is applied to each voice signal in Matlab.

    Speeches are trimmed to a length of 5 s to extract features of the same size.Lyons’Python Speech Features library[16]is used to extract speech features.This library supports the following voice features;MFCCs,Filterbank Energies,Log Filterbank Energies and Spectral Subband Centroids.Log Filterbank Energies were used to get power spectrogram and pixel features.To detect the speaker,we applied several machine learning algorithms on Orange 3.It is basically a python-based visual data mining programming unit.These processes are illustrated in Fig.1.The detailed information about the dataset and the speaker recognition processes is given in the Sections 2.1 and 2.2.

    2.1 Turkish Speakers’Voice Dataset

    The voice dataset is collected from 15 people(7 men and 8 women)in a noiseless laboratory.In the data collection phase,all participants read 40 specific sentences that involve the characteristics of a Turkish speech selected by the Free Software Foundation[16].Each participant read these sentences that were recorded using a smart phone.The sample rate of 48000 Hz and the number of bits per second encoded in the record file of 1411 kbps were set for each record.Each recording lasted 5 s and speakers read a single sentence in each record.These sentences are available in the Google Docs[17].Data acquisition process is represented in Fig.2.Sections 2.2 and 2.3 describe our dataset in depth.

    Figure 1:Flowchart of signal processing and feature extraction

    Figure 2:Part of the Turkish speakers dataset

    Fig.2 shows part of the Turkish speakers dataset.The creation processes of this dataset are described in detail in Sections 2.2 and 2.3.

    2.2 Implementatation Steps of MFCC

    MFCC is based on a concept called cepstrum or spectrum.Cepstrum also known as a quefrency[18].Oppenheim and Schafer [19] defined the Cepstrum transform as composite of the following transactions; Fourier transform, followed by Complex Logarithm and implementation of Inverse Fourier transform.Davis and Mermelstein developed this theory and applied a non-linear filterbank in frequency domain.The implementation steps of their algorithm are given in Fig.3.

    Figure 3:Obtaining the mel-filterbank features from the MFCCs process

    A normal MFCC extraction includes DCT phase.During the MFCC process highly correlated features are extracted.This high correlation may be problematic for conventional machine learning algorithms.DCT decorrelates the highly correlated MFCC features.On the other hand, with the development of deep neural networks which are less sensitive and capable to handle correlated data this will not a big problem anymore [20].In our ASR design, we discarded DCT phase and applied spatial pattern recognition on mel-scale spectrograms.

    The Mel-scale relates the perceived frequency of a pure tone to its actual measured frequency.The actual frequency was converted to the mel-scale frequency by the Eq.(1).

    At the first step, the pre-emphasis process is applied to the speech signal to amplify the high frequencies by Eq.(2).Pre-emphasising is crucial for(1)balancing the frequency spectrum since high frequencies usually have smaller magnitudes compared to lower frequencies, (2) avoiding numerical problems during the Fourier transform operation and(3)improving the Signal-to-Noise Ratio(SNR)[20].

    wherex(t)is speech signal and 0.9 ≤α≤1.

    Finally, the number of triangular filters set 26 as default and log filterbank energy features computed.This step is the difference of MFCC from FFT because filterbanks are non-linear whereas Fourier transform is linear-based.Normally, in the MFCC method, DCT is applied after the implementation of filterbanks.DCT is a linear transformation and it discards some important information in the speech signal that is non-linear [20].Therefore, we didn’t prefer to use DCT, the origin of our features in the dataset are filterbank energy features as shown in Fig.4.

    At the second step,framing and windowing processes were applied.After the speech signals preemphasised and divided into frames,well known windowing method Hamming[21,22]was applied.Then, Discrete Fourier Transform (DFT) was calculated for each windowed spectrum as given in Eq.(3),while the periodogram estimated power spectrum was calculated for the speech frame as given in Eq.(4).

    whereS(n)demonstrates the signal domain andSi(n)is a framed signal.Si(k)represents the frame in the time-domain,Pi(k)denotes the power-spectrum of framei.h(n)isNsample long analysis window(e.g.,hamming window),whileKis the length of the DFT[23].

    Figure 4:Plots of Mel-Scale filterbank and windowed power spectrum[23](a)the full filterbank,(b)example power spectrum of an audio frame,(c)filter 8 from filterbank,(d)windowed power spectrum using filter 8,(e)filter 20 from filterbank,(f)windowed power spectrum using filter 20

    2.3 Creating Spectrogram Feature

    After the extraction of logarithmically positioned mel-scale filterbanks, “l(fā)ibrosa”[24] a Python library for audio and music signal analysis,was used to convert power spectrums(amplitude squared)to decibels (dB).Herein, librosa’s power_to_db method was applied and the units were saved as mel-scale spectrograms with the size of 800 × 600 pixels representing MFCC features.Each spectrogram contained a five-second characteristic speech signal information for each individual.These mel-spectrograms were subjected to certain image processing operations before the classification stage.Each image instance in the dataset contained 480000 features, which were multiplied by 800×600 pixels.To cope with training time and complexity of the model,each image was size reduced to 80×60 pixels as seen in the Figs.5a and 5b.

    Figure 5:(a)speaker-1’s voice mel-spectrogram,(b)speaker-2’voice mel-spectrogram

    Resized spectrograms converted to grayscale images.Every grayscale image contains 80 × 60 features of a single sentence recorded for an individual.At the end of this stage,the Turkish speaker dataset obtained is obtained as shown in Fig.6 with 530 instances belonging to 15 people.Each instance consists of 4800 features and a speaker class.

    Figure 6:A part of the Turkish speakers dataset

    2.4 Classification

    Orange3[25]machine learning tool used to evaluate the accuracy of the model.In this study,ML algorithms were attempted to be trained with the dataset.Since the human voice is nonlinear in nature,linear models are not suitable for ASR systems.The nonlinear ML algorithms such as deep neural network(DNNs)are more dominant pattern recognition techniques[26].In this study we prioritized three nonlinear algorithms in terms of ASR performance.These are SMO[27],Random Forest(RF)[28],and a 3-layer NN called Multilayer perceptron(MLP)[29]algorithms.

    SMO is an SVM based classification algorithm that implements John Platt’s sequential minimal optimization algorithm for training a support vector classifier.RF introduced by Breiman to construct random trees in classification.The DNN classifier used in our model consists of 3-hidden layers and 64 neurons in each layer.The extracted 4800-pixel features are inputs and 15 speakers are outputs as seen in Fig.7.Finally,the 10-fold cross validation method was used for evaluation of each algorithm.

    Figure 7:Structure of MLP classifier used in model

    3 Materials and Results

    This study held on NVidia GeForce GTX 860M laptop and Python platform.Data features were extracted from the collected Turkish speakers’voice instances using MFCCs method andLyons’Python Speech Features libraryand resulted in a new dataset.This library supports the following voice features;MFCCs,Filterbank Energies,Log Filterbank Energies and Spectral Subband Centroids.Log Filterbank Energies were used to get power spectrogram and pixel features.To detect the speaker,we applied several machine learning algorithms on Orange 3.It is basically a python-based visual data mining programming unit.

    In this study,we tried a novel approach and used more features than MFFCs.If the complexity of a dataset increases the DNNs as shown in Fig.8 are a good choice to train it.So,one of the most satisfying and promising result of this study was getting the highest evaluation score with DNN model.Before choosing the optimum model, several classifier methods used and the evaluation results in Tab.1 was obtained.

    The best model achieved for our dataset was withtanhactivation functions.When look at the confusion matrix, we can see that the misclassification is more in women voices.This situation may show that women’s voices in the dataset are more similar in terms of dB and mel-scale energy.

    Figure 8:Confusion matrix of DNN classifier(64×64 neurons)

    Table 1: Evaluation results of models

    4 Conclusions

    This was a preliminary study for the Turkish speaker recognition system.We introduced a new approach to speaker recognition using MFCCs.Mel spectrogram pixels are used instead of traditional MFCCs as our feature set.Although the feature size is larger and correlation is higher than MFCCs,our proposed model operates over DNN,which can handle complex and correlated dataset.And the near future,we are planning to develop a more robust model for use in real-time speeches.Since we are working with spectrograms, which having voice information, CNN model may be applicable in the future works.The Turkish speakers dataset produced in this study is a novel dataset.During the pandemic, we were unable to collect new data and conduct experiments on them.However, we aim to improve our dataset in the near future.The most important output of this study is the picture of human voice investigated as a new feature set.Therefore,we believe that the mel spectrograms may be used as voice fingerprints in the near future.

    Acknowledgement:We thank our families and colleagues who provided us with moral support.

    Funding Statement:This work was supported by the GRRC program of Gyeonggi province.[GRRCGachon2020(B04),Development of AI-based Healthcare Devices].

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    蜜桃亚洲精品一区二区三区| 又黄又爽又刺激的免费视频.| 久久久久久久久中文| 成人特级黄色片久久久久久久| 美女大奶头视频| 变态另类丝袜制服| 亚洲最大成人手机在线| 亚洲av电影不卡..在线观看| 欧美高清成人免费视频www| 国产一级毛片七仙女欲春2| 黄片wwwwww| 综合色av麻豆| 国产人妻一区二区三区在| 国产综合懂色| 高清午夜精品一区二区三区 | 女的被弄到高潮叫床怎么办| 欧美高清成人免费视频www| 两个人的视频大全免费| 在线免费观看的www视频| 一个人观看的视频www高清免费观看| 麻豆av噜噜一区二区三区| 丝袜喷水一区| 亚洲中文字幕一区二区三区有码在线看| 国产蜜桃级精品一区二区三区| 亚洲av第一区精品v没综合| 久久人人爽人人片av| 国产欧美日韩精品一区二区| 亚洲欧美精品自产自拍| 中文精品一卡2卡3卡4更新| 国产精品久久视频播放| av黄色大香蕉| 欧美三级亚洲精品| 亚洲熟妇中文字幕五十中出| 能在线免费看毛片的网站| 国产91av在线免费观看| 成人亚洲欧美一区二区av| 欧美日韩精品成人综合77777| 国内精品宾馆在线| 日韩大尺度精品在线看网址| 国产午夜福利久久久久久| 国产精品免费一区二区三区在线| 国模一区二区三区四区视频| 国产精品久久电影中文字幕| 亚洲欧美日韩东京热| 久久人人精品亚洲av| 深爱激情五月婷婷| 女的被弄到高潮叫床怎么办| 亚洲欧美日韩东京热| 久久人人精品亚洲av| 美女xxoo啪啪120秒动态图| 国产精品美女特级片免费视频播放器| 看黄色毛片网站| 22中文网久久字幕| 中国国产av一级| 国产色爽女视频免费观看| 精品久久久久久久人妻蜜臀av| 国产免费一级a男人的天堂| 波多野结衣高清作品| 春色校园在线视频观看| 国产日韩欧美在线精品| 国产精品一区二区性色av| 精品午夜福利在线看| 国内精品宾馆在线| 国产成人午夜福利电影在线观看| 日本免费一区二区三区高清不卡| 麻豆国产97在线/欧美| 国产成人aa在线观看| 国产精品野战在线观看| 久久人人精品亚洲av| 一级毛片久久久久久久久女| 美女高潮的动态| 69av精品久久久久久| 天天躁夜夜躁狠狠久久av| 久久6这里有精品| kizo精华| 一级av片app| 色播亚洲综合网| 日韩制服骚丝袜av| 成人特级黄色片久久久久久久| 亚洲av成人精品一区久久| 免费在线观看成人毛片| 插阴视频在线观看视频| 欧美在线一区亚洲| 六月丁香七月| 毛片女人毛片| 美女内射精品一级片tv| 亚洲最大成人av| 99在线人妻在线中文字幕| 免费电影在线观看免费观看| 亚洲国产精品sss在线观看| 91午夜精品亚洲一区二区三区| 22中文网久久字幕| 91久久精品电影网| av.在线天堂| 白带黄色成豆腐渣| 国产精品1区2区在线观看.| 亚洲国产精品合色在线| 国内精品一区二区在线观看| 欧美+日韩+精品| 亚洲在久久综合| 不卡视频在线观看欧美| 欧美+日韩+精品| 日韩国内少妇激情av| 久久久久性生活片| 日韩成人伦理影院| 大又大粗又爽又黄少妇毛片口| 国内久久婷婷六月综合欲色啪| 极品教师在线视频| 精品日产1卡2卡| 亚洲久久久久久中文字幕| 国产中年淑女户外野战色| 亚洲国产精品成人久久小说 | 91精品国产九色| a级毛色黄片| 国产中年淑女户外野战色| 青春草国产在线视频 | 成年av动漫网址| 婷婷色av中文字幕| 国产v大片淫在线免费观看| 欧美极品一区二区三区四区| 91精品国产九色| 内地一区二区视频在线| 老司机福利观看| 精品久久久久久成人av| 国产单亲对白刺激| 国产91av在线免费观看| 亚洲精品乱码久久久v下载方式| 欧美另类亚洲清纯唯美| 如何舔出高潮| 91精品国产九色| 又爽又黄无遮挡网站| 麻豆av噜噜一区二区三区| 亚洲一区高清亚洲精品| 久久草成人影院| 如何舔出高潮| 免费黄网站久久成人精品| 午夜精品国产一区二区电影 | 丰满乱子伦码专区| 青春草亚洲视频在线观看| 深爱激情五月婷婷| 免费看美女性在线毛片视频| 乱人视频在线观看| 亚洲av第一区精品v没综合| 青青草视频在线视频观看| 一区二区三区四区激情视频 | 久久久欧美国产精品| 欧美日本视频| 看免费成人av毛片| 成年版毛片免费区| 一级黄色大片毛片| 久久精品91蜜桃| 国产成人精品久久久久久| 欧美区成人在线视频| 国产午夜福利久久久久久| 亚洲一区二区三区色噜噜| 日产精品乱码卡一卡2卡三| 91久久精品电影网| 亚洲av中文av极速乱| 最好的美女福利视频网| 国产亚洲5aaaaa淫片| 亚洲精品久久久久久婷婷小说 | 十八禁国产超污无遮挡网站| 亚洲美女搞黄在线观看| 国产成人精品一,二区 | 我的女老师完整版在线观看| 欧美性猛交╳xxx乱大交人| 在现免费观看毛片| 女的被弄到高潮叫床怎么办| 亚洲图色成人| 尾随美女入室| 人人妻人人澡人人爽人人夜夜 | 国产黄片美女视频| 大香蕉久久网| av福利片在线观看| 永久网站在线| 神马国产精品三级电影在线观看| eeuss影院久久| 亚洲国产欧美在线一区| 搡老妇女老女人老熟妇| 18禁在线无遮挡免费观看视频| 可以在线观看的亚洲视频| 蜜桃亚洲精品一区二区三区| 级片在线观看| 免费一级毛片在线播放高清视频| 内射极品少妇av片p| 国内精品美女久久久久久| 欧美日本亚洲视频在线播放| 国产精品国产三级国产av玫瑰| 亚洲内射少妇av| av在线天堂中文字幕| 毛片一级片免费看久久久久| 日本欧美国产在线视频| 久久精品国产99精品国产亚洲性色| 亚洲美女搞黄在线观看| 99久久精品一区二区三区| 内射极品少妇av片p| 欧美最新免费一区二区三区| 三级国产精品欧美在线观看| 黄片无遮挡物在线观看| 男女下面进入的视频免费午夜| 又粗又硬又长又爽又黄的视频 | 九九热线精品视视频播放| 久久韩国三级中文字幕| av女优亚洲男人天堂| 夜夜夜夜夜久久久久| 久久久a久久爽久久v久久| 午夜视频国产福利| h日本视频在线播放| 色哟哟哟哟哟哟| 26uuu在线亚洲综合色| 国产高清视频在线观看网站| 一区二区三区四区激情视频 | 18+在线观看网站| 波野结衣二区三区在线| 99久久久亚洲精品蜜臀av| av天堂在线播放| 我的女老师完整版在线观看| 日本免费a在线| 午夜福利视频1000在线观看| 99热全是精品| 又爽又黄a免费视频| 免费一级毛片在线播放高清视频| 日韩国内少妇激情av| 欧美日韩一区二区视频在线观看视频在线 | 99久国产av精品| 国产av一区在线观看免费| 国产亚洲精品av在线| 我的老师免费观看完整版| www日本黄色视频网| 亚洲国产欧美在线一区| av在线播放精品| 欧美xxxx性猛交bbbb| 成熟少妇高潮喷水视频| 国产在视频线在精品| 麻豆成人av视频| 亚洲成人久久性| 一区福利在线观看| 久久久久久国产a免费观看| 欧美成人a在线观看| 麻豆av噜噜一区二区三区| 国产伦精品一区二区三区四那| 日本黄大片高清| av又黄又爽大尺度在线免费看 | 久久久久久伊人网av| 亚洲aⅴ乱码一区二区在线播放| 男人狂女人下面高潮的视频| 少妇的逼水好多| 91午夜精品亚洲一区二区三区| 国产成年人精品一区二区| 18禁裸乳无遮挡免费网站照片| 成年av动漫网址| 九草在线视频观看| 97人妻精品一区二区三区麻豆| 淫秽高清视频在线观看| 亚洲成人久久爱视频| 中文字幕久久专区| 国产亚洲精品久久久久久毛片| 男人舔女人下体高潮全视频| 国产真实伦视频高清在线观看| 免费av毛片视频| 搡老妇女老女人老熟妇| 麻豆乱淫一区二区| 精品久久久久久久久久免费视频| 人体艺术视频欧美日本| 少妇丰满av| 校园人妻丝袜中文字幕| 少妇熟女欧美另类| 午夜视频国产福利| 一进一出抽搐gif免费好疼| 久久久久久国产a免费观看| 日本欧美国产在线视频| 久久久a久久爽久久v久久| 久久精品国产亚洲av涩爱 | av.在线天堂| 性欧美人与动物交配| 久久精品国产清高在天天线| 成年版毛片免费区| 午夜福利成人在线免费观看| av在线老鸭窝| 亚洲国产精品合色在线| 最新中文字幕久久久久| 免费人成视频x8x8入口观看| 国产亚洲欧美98| 久久亚洲国产成人精品v| av在线观看视频网站免费| 亚洲最大成人av| 女人被狂操c到高潮| 亚洲在久久综合| 久久99蜜桃精品久久| 我要搜黄色片| 久久精品国产99精品国产亚洲性色| 黄色一级大片看看| 男女做爰动态图高潮gif福利片| 欧美在线一区亚洲| 中文字幕制服av| 一个人看视频在线观看www免费| 久久国产乱子免费精品| 天美传媒精品一区二区| 女人被狂操c到高潮| 日本熟妇午夜| 在线观看一区二区三区| 欧美激情在线99| 亚洲精品456在线播放app| 一个人看视频在线观看www免费| 男人舔女人下体高潮全视频| 91久久精品国产一区二区成人| 别揉我奶头 嗯啊视频| 国语自产精品视频在线第100页| 丰满的人妻完整版| 午夜老司机福利剧场| 久久久久久久久久久丰满| 在线播放无遮挡| 村上凉子中文字幕在线| 搡老妇女老女人老熟妇| 99久久成人亚洲精品观看| 国产极品精品免费视频能看的| 国产精品日韩av在线免费观看| 免费看av在线观看网站| 亚洲欧美日韩东京热| 久久精品国产自在天天线| 国产精品久久视频播放| 国产 一区 欧美 日韩| 国产女主播在线喷水免费视频网站 | 少妇裸体淫交视频免费看高清| 亚洲精品456在线播放app| 成年版毛片免费区| 日韩欧美一区二区三区在线观看| 一本久久精品| 国产探花在线观看一区二区| 日韩欧美 国产精品| 中文字幕熟女人妻在线| 成年免费大片在线观看| 特级一级黄色大片| 日韩精品有码人妻一区| 中国美女看黄片| 青春草视频在线免费观看| 男女啪啪激烈高潮av片| 黄色视频,在线免费观看| 欧美3d第一页| 国产精品一区二区三区四区免费观看| www日本黄色视频网| 春色校园在线视频观看| 国产精品电影一区二区三区| 只有这里有精品99| 欧美性感艳星| 欧美成人精品欧美一级黄| 夫妻性生交免费视频一级片| 亚洲熟妇中文字幕五十中出| 在线免费观看不下载黄p国产| 日本熟妇午夜| 国产精品免费一区二区三区在线| 久久午夜亚洲精品久久| 在线国产一区二区在线| 国产一区二区在线观看日韩| 最近手机中文字幕大全| 国产精品野战在线观看| 亚洲欧美日韩无卡精品| 亚洲五月天丁香| 免费观看精品视频网站| 亚洲欧美精品专区久久| 欧美xxxx黑人xx丫x性爽| 国产 一区 欧美 日韩| 男女啪啪激烈高潮av片| 嫩草影院新地址| 最近最新中文字幕大全电影3| 日韩av不卡免费在线播放| 搡老妇女老女人老熟妇| 久久人妻av系列| 成人毛片60女人毛片免费| 我要搜黄色片| 在线播放国产精品三级| 日韩欧美 国产精品| 日日干狠狠操夜夜爽| 国产成人精品一,二区 | 最近2019中文字幕mv第一页| 久久精品国产亚洲av涩爱 | 嘟嘟电影网在线观看| 波野结衣二区三区在线| 国产成人精品婷婷| 免费在线观看成人毛片| 老熟妇乱子伦视频在线观看| 五月玫瑰六月丁香| 国产亚洲欧美98| 夫妻性生交免费视频一级片| 麻豆国产97在线/欧美| 在线免费观看不下载黄p国产| 国产伦一二天堂av在线观看| 99久久久亚洲精品蜜臀av| 综合色av麻豆| 非洲黑人性xxxx精品又粗又长| 精品久久久久久久久久免费视频| 免费看a级黄色片| 一本久久中文字幕| 91狼人影院| 久久久久久久久久黄片| 如何舔出高潮| 亚洲激情五月婷婷啪啪| 日韩高清综合在线| 国产成人影院久久av| 亚洲精品久久国产高清桃花| 国产精品国产高清国产av| 亚洲最大成人av| 国产av一区在线观看免费| 国产精品福利在线免费观看| 国产精品久久久久久精品电影小说 | 国产亚洲av片在线观看秒播厂 | 在线观看美女被高潮喷水网站| 黄色欧美视频在线观看| 男女下面进入的视频免费午夜| 蜜桃亚洲精品一区二区三区| 日本五十路高清| 99久国产av精品国产电影| 日本熟妇午夜| 一个人看的www免费观看视频| 欧美精品一区二区大全| 久久久久久大精品| 欧美成人免费av一区二区三区| 成年版毛片免费区| 国产一区二区亚洲精品在线观看| 一卡2卡三卡四卡精品乱码亚洲| 一进一出抽搐gif免费好疼| 91在线精品国自产拍蜜月| 国产色爽女视频免费观看| 人人妻人人澡欧美一区二区| 亚洲欧美清纯卡通| 国产伦在线观看视频一区| 国产精品av视频在线免费观看| 可以在线观看的亚洲视频| 成人亚洲欧美一区二区av| 最近视频中文字幕2019在线8| 亚洲国产精品国产精品| 2022亚洲国产成人精品| 性色avwww在线观看| 内射极品少妇av片p| 国产成人精品婷婷| 欧美另类亚洲清纯唯美| 久久久久久九九精品二区国产| 卡戴珊不雅视频在线播放| 中文字幕av在线有码专区| 久久精品国产清高在天天线| 成人二区视频| 国产成人精品久久久久久| 亚洲七黄色美女视频| 在线国产一区二区在线| 久久婷婷人人爽人人干人人爱| 人妻制服诱惑在线中文字幕| 99视频精品全部免费 在线| 舔av片在线| 成人美女网站在线观看视频| 国产一区二区在线观看日韩| 国产黄色视频一区二区在线观看 | 欧美潮喷喷水| 久久婷婷人人爽人人干人人爱| 免费在线观看成人毛片| 亚洲成人av在线免费| 日本免费a在线| 99精品在免费线老司机午夜| 久久99热这里只有精品18| 久久精品国产99精品国产亚洲性色| 91久久精品电影网| 国产成人影院久久av| 大香蕉久久网| 免费看美女性在线毛片视频| 国产激情偷乱视频一区二区| 99热只有精品国产| 亚洲av电影不卡..在线观看| 欧美又色又爽又黄视频| 国产精华一区二区三区| 国产精品.久久久| 99九九线精品视频在线观看视频| 成人一区二区视频在线观看| 国产精品免费一区二区三区在线| 99热这里只有精品一区| 亚洲欧美日韩无卡精品| 国产精品美女特级片免费视频播放器| 女同久久另类99精品国产91| 日韩成人av中文字幕在线观看| 国内精品久久久久精免费| 亚洲综合色惰| 免费黄网站久久成人精品| 国产一区二区三区av在线 | 国产成人精品久久久久久| 99久久无色码亚洲精品果冻| 中国美白少妇内射xxxbb| 亚洲内射少妇av| 国产精品麻豆人妻色哟哟久久 | 国产成人a区在线观看| 男女做爰动态图高潮gif福利片| 国产精品伦人一区二区| 精品人妻偷拍中文字幕| 欧美色视频一区免费| 亚洲第一区二区三区不卡| 中国美女看黄片| 国产精品国产高清国产av| 午夜亚洲福利在线播放| 亚洲,欧美,日韩| 最近中文字幕高清免费大全6| 亚洲国产日韩欧美精品在线观看| 噜噜噜噜噜久久久久久91| 欧美高清成人免费视频www| 国产国拍精品亚洲av在线观看| 久久久a久久爽久久v久久| 菩萨蛮人人尽说江南好唐韦庄 | 国产高清有码在线观看视频| 亚洲人成网站在线观看播放| 又粗又硬又长又爽又黄的视频 | 亚洲电影在线观看av| 天天躁日日操中文字幕| 国产伦一二天堂av在线观看| 久久精品综合一区二区三区| 国产精品电影一区二区三区| 99久久中文字幕三级久久日本| 亚洲欧美精品综合久久99| 久久99精品国语久久久| 少妇人妻精品综合一区二区 | 色综合亚洲欧美另类图片| 午夜福利成人在线免费观看| 国产午夜精品久久久久久一区二区三区| 久久久国产成人免费| 永久网站在线| 毛片女人毛片| av.在线天堂| 春色校园在线视频观看| 日本成人三级电影网站| 毛片一级片免费看久久久久| 久久鲁丝午夜福利片| 中国国产av一级| 免费av观看视频| 淫秽高清视频在线观看| 天堂av国产一区二区熟女人妻| 欧美性猛交黑人性爽| 成人综合一区亚洲| av又黄又爽大尺度在线免费看 | 一本久久精品| 三级经典国产精品| 欧美激情在线99| 少妇高潮的动态图| 亚洲av第一区精品v没综合| 亚洲无线观看免费| 哪里可以看免费的av片| av在线老鸭窝| 99久久中文字幕三级久久日本| 国产 一区 欧美 日韩| 久久精品国产亚洲av香蕉五月| 中文字幕制服av| 久久精品久久久久久噜噜老黄 | 国产91av在线免费观看| 国产真实伦视频高清在线观看| 国产精品一二三区在线看| 日韩精品青青久久久久久| 国产黄色视频一区二区在线观看 | 我的老师免费观看完整版| 久久九九热精品免费| 天堂中文最新版在线下载 | 青春草亚洲视频在线观看| 少妇的逼水好多| 一级毛片电影观看 | 蜜桃亚洲精品一区二区三区| 国产av在哪里看| 成人鲁丝片一二三区免费| 日本与韩国留学比较| 一级av片app| 日韩欧美精品v在线| 欧美成人免费av一区二区三区| 91aial.com中文字幕在线观看| 国产单亲对白刺激| 亚洲精品日韩av片在线观看| 成人鲁丝片一二三区免费| 亚洲成人中文字幕在线播放| 免费看av在线观看网站| 亚洲精品日韩av片在线观看| 久久草成人影院| 色噜噜av男人的天堂激情| 国产久久久一区二区三区| 久久亚洲精品不卡| 国产精品永久免费网站| 国产精品一及| 最近最新中文字幕大全电影3| 美女黄网站色视频| 日本一本二区三区精品| 中文精品一卡2卡3卡4更新| 免费观看精品视频网站| 国产精品日韩av在线免费观看| 国产欧美日韩精品一区二区| 国产精品日韩av在线免费观看| 99久久精品一区二区三区| 老师上课跳d突然被开到最大视频| 日韩欧美精品v在线| 晚上一个人看的免费电影| 热99在线观看视频| 久久精品国产亚洲av天美| 久久精品久久久久久噜噜老黄 | 韩国av在线不卡| 少妇人妻一区二区三区视频| 亚洲欧美精品综合久久99| 午夜a级毛片| 99久久人妻综合| 日韩欧美三级三区| 国产成人精品一,二区 | 国产色爽女视频免费观看| 国产国拍精品亚洲av在线观看| 一级毛片aaaaaa免费看小| 久久久久久大精品| 内射极品少妇av片p| 午夜亚洲福利在线播放| 色综合色国产| 在线观看午夜福利视频| 成年女人看的毛片在线观看| 在线免费十八禁| 一区二区三区高清视频在线| 亚洲成人久久爱视频| 国产精品福利在线免费观看| 国产一级毛片在线| 国产蜜桃级精品一区二区三区| 久久久久久久亚洲中文字幕|