• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fusion Based Tongue Color Image Analysis Model for Biomedical Applications

    2022-08-23 02:20:18EsamAlQarallehHalahNassifandBassamAlqaralleh
    Computers Materials&Continua 2022年6期

    Esam A.AlQaralleh,Halah Nassif and Bassam A.Y.Alqaralleh,

    1School of Engineering,Princess Sumaya University for Technology,Amman,11941,Jordan

    2Management Information Systems Department,College of Business Administration,University of Business and Technology,Jeddah,21448,Saudi Arabia

    Abstract: Tongue diagnosis is a novel and non-invasive approach commonly employed to carry out the supplementary diagnosis over the globe.Recently,several deep learning (DL) based tongue color image analysis models have existed in the literature for the effective detection of diseases.This paper presents a fusion of handcrafted with deep features based tongue color image analysis (FHDF-TCIA) technique to biomedical applications.The proposed FDHF-TCIA technique aims to investigate the tongue images using fusion model,and thereby determines the existence of disease.Primarily,the FHDF-TCIA technique comprises Gaussian filtering based preprocessing to eradicate the noise.The proposed FHDF-TCIA model encompasses a fusion of handcrafted local binary patterns(LBP)with MobileNet based deep features for the generation of optimal feature vectors.In addition,the political optimizer based quantum neural network (PO-QNN) based classification technique has been utilized for determining the proper class labels for it.A detailed simulation outcomes analysis of the FHDF-TCIA technique reported the higher accuracy of 0.992.

    Keywords: Tongue color image; tongue diagnosis; biomedical; healthcare;deep learning;metaheuristics

    1 Introduction

    Tongue colour is regarded as a key indicator of somatic healthcare in the field of East Asian medication that was initially invented in early China [1].Generally, physicians estimate tongue features and utilize resulting conclusions to notify their intelligence and decision regarding medical conduct.Tongue colour is categorized by various subclasses that offer valuable diagnostic data of a personal conflict.E.g., a reddish colour recommends psychological issues/extreme inner body heat,whereas a bluish colour recommends blood coldness/blood congestion,amongst others[2].Moreover,researchers used certain pattern detection methods like artificial intelligence, to assess relationships among disease state tongue colour and [3].But, indications for the use of tongue body colour estimations in consolidative medication still remain uncertain,since assessment models utilized before haven’t often been adequately reproducible/quantitative (medical experience/tacit knowledge have always been prioritized in evaluations)[4].When relationships among tongue body colour,as evaluated through a noninvasive tongue inspection, and certain medical results are determined, subsequently tongue colour evaluation may permit for the earlier recognition of human body disease/irregularities.

    Traditionally,medical doctors would examine this colour feature based on thorough understanding[5].However,ambiguity and subjectivity are frequently followed by their diagnosis’s result.In order to remove these qualitative features[6],tongue colour analysis is studied objectively using its colour characteristics which offer a novel methodology to diagnose diseases,one that decreases the physical injuries caused to the patient (associated with another medical study) [7].The current publication has been determined and applied DL models to extract higher level representations to wide vision analyses procedures such as handwritten digit recognition, face identification, and object detection.However,there arises small or no research on CAD tongue image analysis through DL methods[8],in which CAD expert system using unambiguity and objectivity tongue analyses results are employed to facilitate the Western and TCM diagnoses results.

    Kawanabe et al.[9] evaluate either tongue colour assessments, as accomplished in Kampo(classical Japanese)medication,through an automatic image acquisition scheme that has been related to specific indexes of personal healthcare.Information on age,diastolic blood pressure,sex,systolic blood pressure, body temperature, pulse rate (PR), past medical history (PMH), body mass index(BMI), and blood inspection results (creatinine, haemoglobin) have been gathered.Jiang et al.[10]proposed methods according to the computer tongue image analyses technique for observing the tongue features of 1778 contributors.Integrating quantitative tongue image characteristics,serological indexes,and fundamental data,involving the FLI and HSI,they used ML algorithms,involving LR,SVM, RF, GBDT, AdaBoost, NB, and NN for NAFLD diagnoses.The optimal fusion method to diagnose NAFLD using LR comprised the tongue image parameter.

    Li et al.[11] established the prediction method which is employed for evaluating patients with blood glucose in higher and crisis situations.They establish the diabetes risk predictive method generated by integrated TCM tongue diagnoses with ML models.The 1512 subjects have been employed from the medical centre.Afterward,data preprocessing,they receive the 1 and 2 datasets.Dataset 1 has been utilized for training traditional ML method,whereas dataset 2 has been utilized for training DL method.Li et al.[12]established the noninvasive diabetics risk predictive method on the basis of tongue feature fusions and forecast the risk of diabetics and prediabetics.They gather tongue images,extracting texture features with TDAS and tongue features with colour,and extracting the innovative tongue feature using ResNet50,attains the combination of 2 features using GA_XGBT,lastly established the non-invasive diabetics risk predictive method and estimate the efficiency of testing efficiency.

    Fan et al.[13]examine distinct characteristics in patients with diabetic Mellitus,gastric indications with images gathered from digital tongue images.Multitype feature extraction and election from 466 tongue images have been carried out.In the classifier phase,2 dissimilar classifier models have been used,RF and SVM,for classifying gastric disease symptoms of TCM and DM.

    Kawanabe et al.[14]use advancement in digital imaging processing to verify and quantify medical data tongue colour diagnoses by characterizing variances in tongue features.Estimation of body,coating,and tongue colour has been carried out using 10 skilled Kampo medical doctors.The attained images are categorized into 6 tongue coating colour classes and 5 tongue body colour classes according to the evaluation from ten medical doctors with widespread Kampo medical knowledge.K-means clustering model has been employed as an ML method (the research of pattern detection using computation learning) approach to the attained images for quantifying coating colour and tongue body data.Gholami et al.[15]focus on increasing the precision of gastric cancer diagnoses through integration of DNN,SVM,and DCNN depending on the colour and surface features of the tongue.The presented model has been estimated in 7 CNN frameworks.

    This paper presents a fusion of handcrafted with deep features based tongue color image analysis(FHDF-TCIA)model for biomedical applications.Primarily,the FHDF-TCIA technique comprises Gaussian filtering based preprocessing to eradicate the noise.The proposed FHDF-TCIA model encompasses a fusion of handcrafted local binary patterns(LBP)with MobileNet based deep features for the generation of optimal feature vectors.In addition, the political optimizer based quantum neural network(PO-QNN)based classification approach has been utilized for determining the proper class labels for it.A detailed simulation outcomes analysis of the FHDF-TCIA technique occurs on benchmark images and the outcomes are inspected in varying aspects.

    2 The Proposed Model

    In this study, a new FHDF-TCIA technique has been developed for automated tongue color image analysis.The proposed FHDF-TCIA technique comprises preprocessing,fusion based feature extraction,QNN based classification.Fig.1 demonstrates the overall block diagram of FHDF-TCIA model.

    Figure 1:Overall block diagram of FHDF-TCIA model

    2.1 Pre-processing

    The GF has been utilized to smoothen and eradicate noise.It needs high computation resources.The convolutional operators are the Gaussian operators and the method of Gaussian smoothing has been attained using convolution.It can be represented in Eq.(1):

    The optimal smoothening filter for an image can be limited in spatial as well as frequency domain,thus satisfies the uncertainty relationships:

    The Gaussian operator in 2Dcan be defined using Eq.(3):

    whereσ(Sigma)designates the SD of the Gaussian function.In addition,(x,y)specifies the Cartesian coordinate points of the image demonstrating the window dimension[16].

    where,M×Nrepresent the Image size,Oimagerefers the original image andRimagethe restored image.

    The peak signal-to-noise ratio(PSNR)defines the ratio of highest probable power of a pixel value and the power of distorted noise,which can be mathematically defined using Eq.(5):

    whereas 255×255 is the highest values of pixel existing in the image,and MSE can be determined for the input and reconstructed images with the size ofM×N.

    2.2 Fusion of Feature Extraction Models

    The proposed FHDF-TCIA model encompasses a fusion of handcrafted LBP with MobileNet based deep features for the generation of optimal feature vectors.The LBP model integrates the histogram into separate vectors and each one is considered as a pattern vector.It can be represented as an operator for texture definition that mainly relies on the signs of differences amongst nearby and central pixels.The binary codes are called binary patterns.Therefore,the nearby pixels are 1 in case of having increased pixel values over the threshold values[17].The patterns denote the feasibility of binary patterns present in the images.The histogram bin count relies on pixel count involved in the computation of LBP.The basic mechanism of LBP employs the measure of intermediate pixel as a threshold to the 3×3 neighboring pixel values.The thresholding function can be represented by binary patterns exhibiting the texture features.It is defined using Eq.(6),

    LBP(uc,vc)implies the values of LBP at middle pixel(uc,vc).InandI(uc,vc)indicates the nearby and middle pixels respectively.The LBP values are computed via scalar multiplication amongst the binary and weight matrices.Next,the multiplication result is consolidated and denoted the value of LBP.

    The MobileNet is utilized to enhance the performance of the DL models in the limited hardware setting.It reduces the parameter count with no compensation in accuracy.Conv-Dw-Pwis a deeper and distinguishable convolution model,comprised of point wise(Pw)and depth wise(Dw)layers.The Dw is a deep convolutional layer with 3×3 kernel,where the Pw denotes the default convolutional layer with 1×1 kernel.Every convolution outcome gets computed using the BN and ReLU methods.Here,the activation function ReLU is replaced byReLU6,and regularization process takes place using BN approach supporting the automatic modification of data distribution.In addition,the formulation of theReLU6 is defined as follows.

    whereaszrepresents the pixels values in the feature map.The general convolution architecture can be defined using Eq.(8):

    whereasKM,Nrepresents the filter,andM&Nsignifies the input and output channel count.Generally,the input image comprises the feature image [18],FMindicates input image with feature map which makes use of the fill style of zero padding.

    When the size and channel of input image can be defined asDF*DFandM,it is needed to holdNfilter withMchannel and the size ofDK*DKbefore the output ofNfeature image of the sizesDK*DK.The computation cost can be defined byDK*DK*M*N*DF*DF.At the same time,the Dw can be formulated using Eq.(9):

    Figure 2:CNN structure

    The deep separable conv framework of MobileNet has been obtained the same output as classical conv dependent upon the same input.The Dw needMfilters utilizing one channel and the sizes ofDK*DK.The Pw needsNfilters utilizingMchannels and the sizes of 1×1.During this condition,the calculation cost of deep separable conv structure isDK*DK*M*DF*DF+M*N*DF*DF,concerningof that of classical convolutional.Besides,the data distribution is changed with every convolution layer at the time of network trained.

    2.3 Fusion Process

    The feature fusion process takes place for fusing the features of LBP and deep features.The fusion process is important and is done by the use of entropy process.The two feature vectors can be defined as follows.

    Moreover,the features derived are integrated into a single vector,as provided below.

    where f signifies fused vector(1 ×1186).

    2.4 OQNN Based Classification

    The fused features are applied to the QNN model to carry out the classification process.The QNN is mainly based on the quantum logic gate, comprising the phase rotation, input, reverse rotation,output,and aggregation.The steps involved in the QNN model are listed as follows.

    Step 1:Assume|xi〉=(costi, sinti)T,and define the qubit phase rotation gate using Eq.(13):

    Next,the aggregation process can be resulted into

    Step 2:The output of Eq.(14)generates the reverse rotation process using controlled NOT gate:

    wherefimplies sigmoid function which can be achieved using Eq.(16):

    Hence,the relations amongst the output and input of the quantum neurons can be represented as follows.

    According to the quantum neuron module a QNN, the NN includes input, hidden, and output layers.It assumes the input variable as|xi〉,outcome of hidden layerh,the outcome of QNNyk,R(θij)signifies the quantum rotation gate amongst the hidden and input layers for updating the qubits,andwjkmeans the network weights for the final and hidden layers[19].Assume the qubit controlled NOT gateU(γj)as transfer function of the hidden layer and the outcome of the QNN is represented using Eq.(18):

    Whereasi=1,2,...,n;j=1,2,...,m;and k=1,2,...,p.

    To optimally modify the variables involved in the QNN model,the PO algorithm is applied.The PO was simulated by the western political procedure of optimized that contains 2 features.An initial statement is that every citizen tries for optimizing its goodwill to win the selective.The second statement has that each party effort for obtaining further seats from parliament.The PO has consisted of 5 phases that contain party development and constituency distribution, selective campaign, party switching,interparty selective,and parliamentary affair.

    The whole population has been separated as to n political parties that are demonstrated as in Eq.(19).

    All the parties have of n party members,as represented in Eq.(20).

    All the parties member contains d dimensional,as depicted in Eq.(21)

    All the solutions are also selective candidates.Supposing there arenelectoral districts as signified in Eq.(22).

    It can be considered as n members from all constituencies,as expressed in Eq.(23).

    The party leader has been determined as member with optimum fitness from the party, as illustrated in Eq.(24).

    Each party leader has been written as in Eq.(25).

    The winners of distinct constituencies are known as members of parliament,as demonstrated in Eq.(26).

    In the selective campaign stage, Eqs.(27) and (28) have been utilized for updating the place of potential solutions[20].

    For balancing exploration as well as exploitation, party switching has been implemented.An adaptive parameterλwas utilized that is linearly reduced in[1–0]under the whole iterative manner.All the candidates are chosen based on probabilitiesλand replaced with least member of an arbitrarily chosen party,as represented in Eq.(29)

    During the selective stage,the winner in constituency has been reached,as revealed in Eq.(30)

    3 Performance Validation

    The FHDF-TCIA technique is simulated utilizing Python 3.6.5 tool on a standard dataset,including 936 images with 78 images in 12 distinct class labels.Fig.3 illustrates a few sample images.

    Tab.1 and Figs.4 and 5 demonstrates the overall results analysis of the FHDF-TCIA technique under ten test runs.The results depicted that the FHDF-TCIA technique has accomplished enhanced outcomes under every run.For instance,with run-1,the FHDF-TCIA technique has gained precision,recall, accuracy, F1-score, and kappa of 98.00%, 97.58%, 99.68%, 98.80%, and 98.80% respectively.Moreover, with run-2, the FHDF-TCIA approach has reached precision, recall, accuracy, F1-score,and kappa of 98.06%,98.57%,99.12%,98.85%,and 98.55%correspondingly.Furthermore,with run-4,the FHDF-TCIA manner has attained precision,recall,accuracy,F1-score,and kappa of 99.10%,98.80%, 99.33%, 98.67%, and 97.44% respectively.In line, with run-6, the FHDF-TCIA system has attained precision, recall, accuracy, F1-score, and kappa of 99.76%, 99.33%, 98.88%, 98.55%, and 99.54% correspondingly.Along with that, with run-8 the FHDF-TCIA methodology has achieved precision, recall, accuracy, F1-score, and kappa of 99.22%, 98.83%, 98.99%, 99.78%, and 97.57%respectively.Finally,with run-10,the FHDF-TCIA algorithm has gained precision,recall,accuracy,F1-score,and kappa of 98.74%,98.56%,99.33%,99.54%,and 99.57%correspondingly.

    Figure 3:Sample tongue images

    Table 1: Result analysis of proposed FHDF-TCIA model in terms of different measures

    Table 1:Continued

    Figure 4: Result analysis of FHDF-TCIA approach with varying measures

    Fig.6 demonstrates the average outcomes analysis of the FHDF-TCIA technique on the test images applied.The figure depicted that the FHDF-TCIA technique has resulted in to increase in average precision, recall, accuracy, F1-score, and kappa of 98.63%, 98.91%, 99.25%, 99.10%, and 98.86% respectively.

    Acomparative outcomes analysis of the FHDF-TCIA system with recent ones take place in Tab.2 and Fig.7.The outcomes depicted that the S-DTA manner has reached lower result with an accuracy of 82.40%.Besides, the S-SVM, H-DTA, H-SVM, and DL-GNB methods have attained a moderately closer 84.10%, 88.90%, 91.10%, and 92.50%.Afterward, the DL-RF and ASDL-TCI methodologies have resulted in a competitive accuracy of 93.70% and 98.30%.At last, the presented FHDF-TCIA manner has accomplished maximal efficiency with the superior accuracy of 99.25%.

    Tab.3 and Fig.8 highlights the comparative study of the FHDF-TCIA technique with other techniques.The results demonstrated that the VGG-SVM technique has gained worse outcomes with an accuracy of 0.594.At the same time, the KNN, Bayesian, Geometry features, SVM, and GF-SRC techniques have obtained a moderately closer 0.734, 0.75, 0.762, 0.765, 0.77, and 0.792.Followed by,the GA-SVM and ASDL-TCI models have resulted in a competitive accuracy of 0.831 and 0.983.However, the proposed FHDF-TCIA system has accomplished maximum performance with a higher accuracy of 0.992.Therefore, the FHDF-TCIA technique is found to be an effective tool for tongue color image analysis.

    Figure 5: F1-score and kappa analysis of FHDF-TCIA model under varying runs

    Figure 6:Average analysis of FHDF-TCIA technique

    Table 2: Result analysis of FHDF-TCIA method with existing approaches with respect to varying measures

    Figure 7:Comparative analysis of FHDF-TCIA approach with varying measures

    Table 3: Comparative accuracy analysis of FHDF-TCIA technique with existing models

    Figure 8:Accuracy analysis of FHDF-TCIA technique with recent manner

    4 Conclusion

    In this study, a new FHDF-TCIA technique has been developed for automated tongue color image analysis.The proposed FHDF-TCIA technique comprises preprocessing,fusion based feature extraction,QNN based classification,and PO based parameter optimization.The proposed FHDFTCIA model encompasses a fusion of handcrafted local binary patterns (LBP) with MobileNet based deep features for the generation of optimal feature vectors.In addition,the political optimizer based quantum neural network (PO-QNN) based classification technique has been utilized for determining the proper class labels for it.A detailed simulation outcomes analysis of the FHDFTCIA technique occurs on benchmark images and the outcomes are inspected in varying aspects.The detailed comparative results analysis showcased the improved efficiency of the FHDF-TCIA approach compared to other techniques.In future, the FHDF-TCIA technique can be deployed in real time environment.

    Funding Statement:This Research was funded by the Deanship of Scientific Research at University of Business and Technology,Saudi Arabia.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    最后的刺客免费高清国语| 国产精品一区二区三区四区免费观看| 一级黄色大片毛片| 男女做爰动态图高潮gif福利片| 超碰av人人做人人爽久久| 国产精品久久久久久精品电影小说 | 狠狠狠狠99中文字幕| 欧美xxxx性猛交bbbb| 如何舔出高潮| 亚洲精华国产精华液的使用体验 | 最近2019中文字幕mv第一页| 久久久久久久久中文| av天堂中文字幕网| 国产精品av视频在线免费观看| 国产黄色小视频在线观看| 非洲黑人性xxxx精品又粗又长| 啦啦啦韩国在线观看视频| 久久精品91蜜桃| 黄片wwwwww| 免费不卡的大黄色大毛片视频在线观看 | 国产色爽女视频免费观看| 国产v大片淫在线免费观看| 一进一出抽搐gif免费好疼| 国产伦理片在线播放av一区 | 精品日产1卡2卡| 如何舔出高潮| 91精品国产九色| 免费黄网站久久成人精品| 国产成人a区在线观看| 99精品在免费线老司机午夜| 国产精品电影一区二区三区| 九九爱精品视频在线观看| 99热这里只有精品一区| 99热全是精品| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久久久久久丰满| 色尼玛亚洲综合影院| 国产毛片a区久久久久| 美女大奶头视频| 国产黄色小视频在线观看| 欧美丝袜亚洲另类| 天天一区二区日本电影三级| 深夜a级毛片| 国产av在哪里看| 国产真实乱freesex| 一本久久精品| 夜夜爽天天搞| 免费人成视频x8x8入口观看| 亚洲精品国产成人久久av| 丰满乱子伦码专区| 一边亲一边摸免费视频| av在线天堂中文字幕| 一个人观看的视频www高清免费观看| 国产老妇伦熟女老妇高清| 久久精品国产亚洲网站| 亚洲美女搞黄在线观看| 大又大粗又爽又黄少妇毛片口| 91狼人影院| 99视频精品全部免费 在线| ponron亚洲| 一区福利在线观看| 国产国拍精品亚洲av在线观看| 日本一二三区视频观看| 国产欧美日韩精品一区二区| 国产极品天堂在线| 丝袜美腿在线中文| 久久人妻av系列| 小说图片视频综合网站| 有码 亚洲区| 国产麻豆成人av免费视频| 国产伦精品一区二区三区四那| 日韩av不卡免费在线播放| 国产一区二区激情短视频| 精品人妻熟女av久视频| 伦精品一区二区三区| 亚洲乱码一区二区免费版| 国产精品女同一区二区软件| 99久久精品国产国产毛片| 国产亚洲av嫩草精品影院| 99热这里只有精品一区| 亚洲图色成人| 久久久久久久午夜电影| 丝袜美腿在线中文| 成人av在线播放网站| 一级av片app| 99精品在免费线老司机午夜| 日日摸夜夜添夜夜添av毛片| 亚洲天堂国产精品一区在线| 高清毛片免费看| 小蜜桃在线观看免费完整版高清| 免费无遮挡裸体视频| 中文字幕av成人在线电影| 丰满人妻一区二区三区视频av| 18禁在线播放成人免费| 国内精品宾馆在线| 婷婷色av中文字幕| 亚洲av成人精品一区久久| 伊人久久精品亚洲午夜| 麻豆久久精品国产亚洲av| 男人舔女人下体高潮全视频| 白带黄色成豆腐渣| 深夜a级毛片| 久久韩国三级中文字幕| 午夜久久久久精精品| 成人特级黄色片久久久久久久| 国产一区亚洲一区在线观看| 欧美色欧美亚洲另类二区| 麻豆成人av视频| 18禁黄网站禁片免费观看直播| 国产精品久久久久久av不卡| 青春草视频在线免费观看| 欧美+亚洲+日韩+国产| 有码 亚洲区| 人妻系列 视频| 欧美+日韩+精品| 日韩中字成人| 18禁裸乳无遮挡免费网站照片| 久久久久久久亚洲中文字幕| 久久99精品国语久久久| videossex国产| 国产色爽女视频免费观看| 欧美一区二区精品小视频在线| 九九热线精品视视频播放| 成人鲁丝片一二三区免费| 亚洲色图av天堂| 99久久中文字幕三级久久日本| 亚洲av免费高清在线观看| 波多野结衣巨乳人妻| 国产一区二区三区av在线 | 亚洲精华国产精华液的使用体验 | 乱码一卡2卡4卡精品| 永久网站在线| 欧美一区二区亚洲| 在线播放国产精品三级| 国产精品久久久久久亚洲av鲁大| 性插视频无遮挡在线免费观看| 国产综合懂色| 神马国产精品三级电影在线观看| 嫩草影院入口| 天堂av国产一区二区熟女人妻| 99国产极品粉嫩在线观看| 欧美激情在线99| 中文字幕人妻熟人妻熟丝袜美| 不卡一级毛片| 97在线视频观看| 国产单亲对白刺激| 亚洲电影在线观看av| 色哟哟·www| 久久久国产成人精品二区| 看十八女毛片水多多多| 波多野结衣高清作品| 午夜激情欧美在线| 亚洲丝袜综合中文字幕| 2022亚洲国产成人精品| 国产高清有码在线观看视频| 女人被狂操c到高潮| 伊人久久精品亚洲午夜| 少妇的逼好多水| 麻豆精品久久久久久蜜桃| 国产白丝娇喘喷水9色精品| 国产精品国产三级国产av玫瑰| 亚洲人与动物交配视频| 波野结衣二区三区在线| 97在线视频观看| 晚上一个人看的免费电影| 日本黄色视频三级网站网址| 91在线精品国自产拍蜜月| 午夜久久久久精精品| 欧美+亚洲+日韩+国产| 女人十人毛片免费观看3o分钟| 亚洲天堂国产精品一区在线| 国产真实伦视频高清在线观看| 天天躁日日操中文字幕| a级一级毛片免费在线观看| 亚洲国产精品sss在线观看| 久久午夜福利片| 精品久久久久久久人妻蜜臀av| 又粗又爽又猛毛片免费看| 麻豆国产97在线/欧美| 国产高清有码在线观看视频| 18禁黄网站禁片免费观看直播| АⅤ资源中文在线天堂| 最近手机中文字幕大全| 色尼玛亚洲综合影院| 亚洲色图av天堂| 91av网一区二区| 成年女人永久免费观看视频| 国产亚洲av嫩草精品影院| 老师上课跳d突然被开到最大视频| 免费无遮挡裸体视频| 色噜噜av男人的天堂激情| 一级毛片久久久久久久久女| 国产视频内射| 亚洲精华国产精华液的使用体验 | 亚洲国产精品成人综合色| 亚洲av不卡在线观看| 成人永久免费在线观看视频| 此物有八面人人有两片| 亚洲精品粉嫩美女一区| 日本欧美国产在线视频| 亚洲在久久综合| 五月玫瑰六月丁香| 成人亚洲精品av一区二区| 国产女主播在线喷水免费视频网站 | 一进一出抽搐gif免费好疼| 91在线精品国自产拍蜜月| 大又大粗又爽又黄少妇毛片口| 五月伊人婷婷丁香| 久久久国产成人免费| 亚洲最大成人中文| 久久久久久久午夜电影| 亚洲在线自拍视频| 亚洲美女视频黄频| 国产69精品久久久久777片| 99视频精品全部免费 在线| 最近视频中文字幕2019在线8| 99久久人妻综合| 久久欧美精品欧美久久欧美| 日本一二三区视频观看| 一个人看的www免费观看视频| 色哟哟·www| 欧洲精品卡2卡3卡4卡5卡区| 精品人妻偷拍中文字幕| 久久精品综合一区二区三区| 听说在线观看完整版免费高清| 亚洲av.av天堂| 最近中文字幕高清免费大全6| 成熟少妇高潮喷水视频| 成人高潮视频无遮挡免费网站| 深夜a级毛片| 99国产精品一区二区蜜桃av| 老司机福利观看| 一级黄色大片毛片| 成人国产麻豆网| 国产精品一区二区三区四区久久| 亚州av有码| 国模一区二区三区四区视频| 中文字幕免费在线视频6| 免费无遮挡裸体视频| 美女cb高潮喷水在线观看| 成熟少妇高潮喷水视频| 少妇高潮的动态图| 午夜a级毛片| 免费搜索国产男女视频| 国内久久婷婷六月综合欲色啪| 一级黄色大片毛片| 久久中文看片网| 欧美色视频一区免费| 国产欧美日韩精品一区二区| 又粗又爽又猛毛片免费看| 中文字幕熟女人妻在线| 中出人妻视频一区二区| 免费看a级黄色片| 日本一二三区视频观看| 三级男女做爰猛烈吃奶摸视频| or卡值多少钱| 亚洲av中文字字幕乱码综合| av又黄又爽大尺度在线免费看 | 亚洲一区高清亚洲精品| 亚洲av中文av极速乱| 在线观看午夜福利视频| 看十八女毛片水多多多| 成人午夜高清在线视频| 不卡视频在线观看欧美| 舔av片在线| 国产精品麻豆人妻色哟哟久久 | 欧美又色又爽又黄视频| 亚洲欧美中文字幕日韩二区| 高清午夜精品一区二区三区 | 国产一级毛片七仙女欲春2| 日韩av在线大香蕉| 熟妇人妻久久中文字幕3abv| 国产精品爽爽va在线观看网站| 国产日韩欧美在线精品| 丰满人妻一区二区三区视频av| 中文字幕制服av| 欧美+亚洲+日韩+国产| 午夜福利视频1000在线观看| 三级经典国产精品| 18禁在线播放成人免费| 国产伦精品一区二区三区四那| 免费电影在线观看免费观看| 亚洲精品乱码久久久v下载方式| 日产精品乱码卡一卡2卡三| 欧美色视频一区免费| 成人亚洲欧美一区二区av| 观看美女的网站| 看片在线看免费视频| 久久久久久久久久黄片| 国产乱人偷精品视频| 欧美日韩精品成人综合77777| 精品无人区乱码1区二区| 精品熟女少妇av免费看| 在线观看午夜福利视频| 在线a可以看的网站| 成人午夜高清在线视频| 日日摸夜夜添夜夜添av毛片| 乱人视频在线观看| 亚洲人成网站在线观看播放| 国产成人福利小说| 欧美一级a爱片免费观看看| 国产精品久久久久久精品电影| 久久草成人影院| 日产精品乱码卡一卡2卡三| 国产老妇伦熟女老妇高清| 国产老妇女一区| 欧美在线一区亚洲| 在线播放无遮挡| 菩萨蛮人人尽说江南好唐韦庄 | 日韩 亚洲 欧美在线| 亚洲国产精品久久男人天堂| 日韩av不卡免费在线播放| 九色成人免费人妻av| 亚洲人成网站在线播| 在线天堂最新版资源| 亚洲精品国产成人久久av| 99久国产av精品| 不卡视频在线观看欧美| 热99在线观看视频| 久久午夜亚洲精品久久| 日韩成人伦理影院| 婷婷六月久久综合丁香| 国产淫片久久久久久久久| 91狼人影院| 国产私拍福利视频在线观看| 在线免费观看不下载黄p国产| 色综合色国产| 床上黄色一级片| 国产精品伦人一区二区| 高清午夜精品一区二区三区 | 欧美高清成人免费视频www| 26uuu在线亚洲综合色| 在线免费十八禁| 国产精品久久久久久久电影| 亚洲四区av| 亚洲国产高清在线一区二区三| 免费搜索国产男女视频| av福利片在线观看| 一区二区三区免费毛片| 久久久久国产网址| 九色成人免费人妻av| 亚洲欧美中文字幕日韩二区| 亚洲av熟女| 真实男女啪啪啪动态图| 日韩人妻高清精品专区| 69人妻影院| 亚洲丝袜综合中文字幕| 国产伦精品一区二区三区视频9| 午夜精品在线福利| 黄色一级大片看看| 青春草亚洲视频在线观看| 亚洲国产精品国产精品| 男的添女的下面高潮视频| 免费观看人在逋| 国产 一区 欧美 日韩| 国产av在哪里看| 在线观看午夜福利视频| 亚洲成av人片在线播放无| 久久久久久伊人网av| 国产精品一二三区在线看| 插逼视频在线观看| 日本免费a在线| 国产 一区 欧美 日韩| 亚洲乱码一区二区免费版| 亚洲欧美清纯卡通| 欧美日本视频| 国产成人91sexporn| 一级黄片播放器| 全区人妻精品视频| 搡老妇女老女人老熟妇| 国产毛片a区久久久久| 亚洲欧美日韩卡通动漫| 网址你懂的国产日韩在线| 欧美在线一区亚洲| 小说图片视频综合网站| 久久久色成人| 久久精品人妻少妇| 99热这里只有是精品在线观看| 欧美又色又爽又黄视频| 免费看日本二区| 精华霜和精华液先用哪个| 亚洲av不卡在线观看| 男女下面进入的视频免费午夜| 99热这里只有精品一区| 99久久中文字幕三级久久日本| 亚洲国产精品国产精品| 最好的美女福利视频网| 久久久色成人| 变态另类成人亚洲欧美熟女| 中国国产av一级| 精品日产1卡2卡| 日本-黄色视频高清免费观看| 我要搜黄色片| 日韩欧美国产在线观看| 亚洲自拍偷在线| av女优亚洲男人天堂| 久久久精品94久久精品| 免费看av在线观看网站| 国产精品野战在线观看| 精品一区二区三区人妻视频| 青春草亚洲视频在线观看| 亚洲图色成人| 人人妻人人澡欧美一区二区| 老司机影院成人| 欧美不卡视频在线免费观看| 色综合站精品国产| 久久久a久久爽久久v久久| 国产真实伦视频高清在线观看| 精品一区二区三区视频在线| 波野结衣二区三区在线| 在线观看美女被高潮喷水网站| 免费观看精品视频网站| 男女下面进入的视频免费午夜| 久久久久性生活片| av在线蜜桃| 男女视频在线观看网站免费| 亚洲国产日韩欧美精品在线观看| 爱豆传媒免费全集在线观看| 亚洲第一电影网av| 久久精品影院6| 欧美变态另类bdsm刘玥| 一夜夜www| 国产精品99久久久久久久久| 波多野结衣高清作品| 色尼玛亚洲综合影院| 啦啦啦韩国在线观看视频| 国产伦精品一区二区三区四那| 日韩欧美精品v在线| 青春草国产在线视频 | 美女大奶头视频| 国产真实乱freesex| 日本-黄色视频高清免费观看| 99久久无色码亚洲精品果冻| www.av在线官网国产| 99九九线精品视频在线观看视频| 日韩欧美在线乱码| 色哟哟·www| 成人综合一区亚洲| 婷婷六月久久综合丁香| 免费看日本二区| 日韩av不卡免费在线播放| 国产老妇伦熟女老妇高清| 亚洲精品自拍成人| 国产一级毛片在线| 国产精品,欧美在线| 99精品在免费线老司机午夜| 少妇裸体淫交视频免费看高清| 国产精品国产高清国产av| 99riav亚洲国产免费| 身体一侧抽搐| 日本黄色片子视频| 久久精品夜夜夜夜夜久久蜜豆| 国产在视频线在精品| 国产亚洲91精品色在线| 91狼人影院| 99久久无色码亚洲精品果冻| 三级国产精品欧美在线观看| 久久精品久久久久久久性| 亚洲欧美成人综合另类久久久 | 国产黄片美女视频| 久久久久网色| 村上凉子中文字幕在线| 精品久久久久久久久久久久久| 欧美精品国产亚洲| 国产午夜精品论理片| 亚洲精品影视一区二区三区av| 不卡一级毛片| 精品无人区乱码1区二区| 国产午夜精品论理片| 丰满乱子伦码专区| 日韩视频在线欧美| 少妇丰满av| av女优亚洲男人天堂| 亚洲成人av在线免费| 观看美女的网站| 日韩成人伦理影院| 亚洲国产欧美在线一区| 中文字幕人妻熟人妻熟丝袜美| 在线观看一区二区三区| 国产亚洲欧美98| 一进一出抽搐gif免费好疼| 午夜福利在线观看吧| 99久久九九国产精品国产免费| 我要搜黄色片| 欧美人与善性xxx| 好男人视频免费观看在线| 麻豆久久精品国产亚洲av| 成年免费大片在线观看| 久久精品国产清高在天天线| 国产在线男女| 欧美激情在线99| 国产一级毛片七仙女欲春2| 人妻系列 视频| 亚洲欧美成人综合另类久久久 | 寂寞人妻少妇视频99o| 日本撒尿小便嘘嘘汇集6| 国产精品av视频在线免费观看| 99热精品在线国产| 岛国在线免费视频观看| 日本黄大片高清| a级毛色黄片| 男人舔女人下体高潮全视频| 99热精品在线国产| 岛国在线免费视频观看| 悠悠久久av| 国产一级毛片在线| av又黄又爽大尺度在线免费看 | 变态另类成人亚洲欧美熟女| 国产麻豆成人av免费视频| 久久精品久久久久久噜噜老黄 | 一区二区三区高清视频在线| 晚上一个人看的免费电影| av又黄又爽大尺度在线免费看 | 日本成人三级电影网站| 一级黄片播放器| 国产精品av视频在线免费观看| 欧美潮喷喷水| 成人午夜高清在线视频| 欧美精品一区二区大全| 少妇人妻精品综合一区二区 | 国产精品久久久久久精品电影小说 | 国产极品天堂在线| 国产乱人偷精品视频| 国产精品爽爽va在线观看网站| 一个人看的www免费观看视频| 亚洲成人久久爱视频| 久久精品久久久久久噜噜老黄 | 精品人妻偷拍中文字幕| 亚洲美女搞黄在线观看| 欧美一区二区国产精品久久精品| h日本视频在线播放| 一进一出抽搐动态| 99久久精品热视频| 赤兔流量卡办理| 美女内射精品一级片tv| 久久久午夜欧美精品| 又爽又黄a免费视频| 久久久精品欧美日韩精品| 国产精品一区二区在线观看99 | a级毛片a级免费在线| 网址你懂的国产日韩在线| 欧美xxxx性猛交bbbb| 久久精品国产亚洲av香蕉五月| 免费一级毛片在线播放高清视频| 69av精品久久久久久| 午夜福利高清视频| 色尼玛亚洲综合影院| 狂野欧美激情性xxxx在线观看| 成人亚洲欧美一区二区av| 国产日本99.免费观看| 99久久中文字幕三级久久日本| 久久久久免费精品人妻一区二区| 国产精华一区二区三区| 哪个播放器可以免费观看大片| 成人综合一区亚洲| 国产精品爽爽va在线观看网站| 亚洲性久久影院| 国产黄片视频在线免费观看| 久久久久国产网址| 一个人观看的视频www高清免费观看| 看免费成人av毛片| 嫩草影院入口| 一级黄色大片毛片| 春色校园在线视频观看| 国内精品美女久久久久久| 狂野欧美白嫩少妇大欣赏| 蜜臀久久99精品久久宅男| 欧美成人精品欧美一级黄| 最新中文字幕久久久久| 国产乱人偷精品视频| 亚洲自偷自拍三级| 成人一区二区视频在线观看| 亚洲精品国产成人久久av| 熟妇人妻久久中文字幕3abv| 日日摸夜夜添夜夜爱| 精品不卡国产一区二区三区| 亚洲精品国产av成人精品| 日本黄大片高清| 三级毛片av免费| 免费观看a级毛片全部| 亚洲成人精品中文字幕电影| 晚上一个人看的免费电影| 日日撸夜夜添| 美女被艹到高潮喷水动态| 青青草视频在线视频观看| 人妻夜夜爽99麻豆av| 亚洲精品乱码久久久v下载方式| 国产成年人精品一区二区| 在线国产一区二区在线| 国产高清有码在线观看视频| 亚洲激情五月婷婷啪啪| 真实男女啪啪啪动态图| 女人十人毛片免费观看3o分钟| 亚洲精品自拍成人| 男女那种视频在线观看| 日日摸夜夜添夜夜爱| 欧美又色又爽又黄视频| 亚洲在线自拍视频| 国产成人a∨麻豆精品| 自拍偷自拍亚洲精品老妇| 亚洲三级黄色毛片| 国产精品久久视频播放| 亚洲自拍偷在线| 国产欧美日韩精品一区二区| 午夜老司机福利剧场| 亚洲成人中文字幕在线播放| 成人午夜精彩视频在线观看| 午夜老司机福利剧场| 亚洲精品成人久久久久久| 天堂av国产一区二区熟女人妻| 一本久久精品| 26uuu在线亚洲综合色| 日韩成人伦理影院| 成人av在线播放网站| av免费在线看不卡|