• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A BPR-CNN Based Hand Motion Classifier Using Electric Field Sensors

    2022-08-23 02:20:04HunminLeeInseopNaKamoliddinBultakovandYoungchulKim
    Computers Materials&Continua 2022年6期

    Hunmin Lee,Inseop Na,Kamoliddin Bultakov and Youngchul Kim,

    1Department of Computer Science,Georgia State University,Atlanta,30302,USA

    2Nat’l Program of Excellence in Software Centre,Chosun University,Gwangju,61452,Korea

    3Department of Computer Inf.&Communication Eng.,Chonnam Nat’l Univ.,Gwangju,61186,Korea

    Abstract: In this paper, we propose a BPR-CNN (Biometric Pattern Recognition-Convolution Neural Network) classifier for hand motion classification as well as a dynamic threshold algorithm for motion signal detection and extraction by EF (Electric Field) sensors.Currently, an EF sensor or EPS (Electric Potential Sensor) system is attracting attention as a next-generation motion sensing technology due to low computation and price,high sensitivity and recognition speed compared to other sensor systems.However,it remains as a challenging problem to accurately detect and locate the authentic motion signal frame automatically in real-time when sensing body-motions such as hand motion,due to the variance of the electric-charge state by heterogeneous surroundings and operational conditions.This hinders the further utilization of the EF sensing; thus, it is critical to design the robust and credible methodology for detecting and extracting signals derived from the motion movement in order to make use and apply the EF sensor technology to electric consumer products such as mobile devices.In this study,we propose a motion detection algorithm using a dynamic offset-threshold method to overcome uncertainty in the initial electrostatic charge state of the sensor affected by a user and the surrounding environment of the subject.This method is designed to detect hand motions and extract its genuine motion signal frame successfully with high accuracy.After setting motion frames,we normalize the signals and then apply them to our proposed BPR-CNN motion classifier to recognize their motion types.Conducted experiment and analysis show that our proposed dynamic threshold method combined with a BPR-CNN classifier can detect the hand motions and extract the actual frames effectively with 97.1%accuracy,99.25%detection rate,98.4%motion frame matching rate and 97.7%detection&extraction success rate.

    Keywords: BPR-CNN; dynamic offset-threshold method; electric potential sensor; electric field sensor; multiple convolution neural network; motion classification

    1 Introduction

    The EF(Electric Field)sensor extracts information by sensing the variations of the electric charge near the surface of the sensor and converts the signal into voltage-level output.Today, EF sensors are mainly categorized by two modes, contact mode and non-contact mode.The contact mode has widely been applied in the area of healthcare and medical applications by sensing bioelectric signals such as electrocardiogram,electromyogram and electroencephalogram[1–5].Meanwhile,non-contact type measures the electric potential signal on the surface of EF sensors induced by the disturbance of the surrounding electric field which is caused by movement of dielectric substances such as human bodies or hands due to coupling effect [6].A few of non-contact EF sensor systems have been applied in commercial products, while several studies in academic institutions have been reported in application areas of proximity sensing, placement identification, etc [7–10].As EF proximity sensing systems are gaining attention,recent studies have been published regarding the area of hand or body motion detection and recognition [11–21].Our past studies [11–14] were focused on noncontact EF sensing,extracting and processing the signals through EF sensors.Moreover,by utilizing deep learning algorithms such as LSTM and CNN,multiple hand gesture classification mechanisms were proposed after a series of signal processing steps.Wimmer et al.[22]introduced the‘Thracker’device that utilized capacitive sensing,which encouraged the possibility of interaction between human and computer systems through non-contact capacitive sensing.Singh et al.[15] suggested a gesture recognition system called Inviz for paralysis patients that implemented textile-built capacitive sensors,measuring the capacitance interaction between the patient’s body and the sensor.Aezinia et al.[16]designed a three-dimensional finger tracking system through a capacitive sensor,which was functional within 10 cm range from the sensor.

    In this paper, we present a real-time hand motion detection and classification system adopting Biometric Pattern Recognition-Convolution Neural Network(BPR-CNN)classifiers combined with a dynamic threshold method for automatic motion detection and motion-frame extraction(Fig.1)in EF signals.Our proposed system is fully automated with real-time motion detections,extracting the true frame and classifying motion types occurring at the range of up to 30 cm near the EF sensors.Accuracies of detecting hand motions and extracting signal frames were quantitatively rated through our suggested metrics.Furthermore, we suggest the simulation results of our CNN architectures;Multiple CNN(MCNN)and BPR-CNN with other classification algorithms and empirically evaluate the hand gesture classification performance.

    Figure 1:A proposed hand motion extraction and classification process

    This paper is organized as follows.Section 2 describes our suggested methods of computing the dynamic threshold for motion detection and frame extraction by analyzing the intrinsic features of the EF signals.We also explain the two CNN-based motion classifiers that were designed and thus applied into our system.In Section 3,we present the results of four hand gesture classifications through multiple experiments.In conclusion,we conclude our study and suggest the future works.

    2 Discussion

    In this section, we explain our dynamic threshold method for motion detection and frame extraction in the EF sensor signals.After setting the optimal signal frame,we conduct normalization followed by transforming the dimensions of normalized data in order to be trained into our proposed CNN model.We implement the MCNN and BPR-CNN to effectively train the features of the transformed signals thus classifying the inputs into corresponding gestures.Note that we handle the signals that have been already processed through Low-Pass-Filter(LPF)and Simple Moving Average(SMA).Since natural frequency from the human hand or arm is known to have 5~10 Hz[23],which is a domain of extremely low frequency,thus we use the 10 Hz as a cut-off frequency in the LPF.The readers can refer to our previous studies[11–14]for more information regarding the implementation of LPF to filter out unnecessary noises and conduct the Moving Average to smoothen the filtered gesture signal from the sensor.

    2.1 Dynamic Offset and Threshold

    One of the challenging problems in dynamic thresholding in order to detect the signal and to locate the “genuine”signal frame is to compute an offset voltage for each Electric Potential Sensor(EPS)and adjust the threshold values periodically before detecting the target hand motion.As most hand motions and gestures are being done within a short period of time,we set the update cycle time unit to be a second.We implemented two EPS(Sensor A,B,sensor type PS25401)[14,23],and each sensor started with unidentical initial offset due to the various electric charging and discharging states near the sensors according to diverse environmental conditions in the moment of time.

    Through our empirical past simulations,the initial voltagevinit∈R(unit:V)ranges from-0.2 ≤vinit≤0.02 withμ(?vinit)= -0.08 andσ(?vinit)= 0.03 whereμdenotes average andσis standard deviation,when implementing EPS to measure the capacitance changes when the subject is proximally located.The statistics were acquired from four distinct hand gesture types(Tab.1),each conducting 600 trials;n(?vinit)=600,and the distribution visualization ofvinitis shown in Fig.2a.LetS={vn|1 ≤n≤T·1000,n∈N} be a set of time series raw sensor (voltage) datavn, where the sampling ratewhichn(S)=1000 whenT=0.001sec.

    Table 1: Motion types and their images

    Likewise,due to heterogeneous property ofS,dynamictracks the discrete variantand its upper and lower bound, which maintains the robustness regardless of time-variant offset value.As for the time-varying signal pattern which is the electric field disturbances due to hand motion,charging and discharging the electrics triggers the voltages to display waveform.Figs.2b and 2c shows the typical output signal that charges and discharges the sensor plate which soars up(otherwise falls down),reaching its peak(bottom),then descends to bottom point(vice versa)and finally returns to an initial level when there was a hand gesture near the sensor plate.

    Figure 2:(a)distribution of vinit in 800 trials.(b,c)the produced EF signals,each with sensor A,B and A–B,where is(b)after the LPF and(c)after LPF&SMA

    Due to these features,dynamicare considered to be effective in order to detect our targets which limits the possible starting point of a next hand motion,and we empirically show its detection rate in Section 3.

    2.2 Motion Detection and Extraction

    Each individual hand motion generates unidentical signal phases depending on various conditions such as hand movement speed,distance and direction.In order to detect and extract the corresponding motion frames,we considered not only the duration,but also the time frame that could be divided into the stages of motion.The detection is composed of 4 steps where the left and right term enclosed with braces each indicate the two contrasting cases(case 1,2).The detection steps are indicated as follows;

    In Fig.3,a signal of hand gesture moved from left to right(LR)is shown.As we make another hand gesture,it detects the motion and locates the following frame continuously.Fig.3 contains two motion signals;each signal obtained from two different sensors(A-red and B-blue),where the dotted lines intersected with the signals show the starting point of the frame(magenta dot)and ending point of the frame(black dot).Each red and blue dot indicates the intersection point where=vi.Through these steps we could successfully distinguish the hand motions and compute the significant frame that encompasses the authentic motion signals.

    2.3 Normalization of an Extracted Motion Frame

    When hand motions are identified by the sensor,the time period of the extracted frame is diverse even if the motions were the same types,due to the speed or distance range of the motion.Likewise,the amplitude of the motion signal also tends to change on every new motion since the subject’s potential electrostatic state varies through numerous conditions such as textile of the cloth,location,or nearby machines,etc[4,9,11,12].Thus,it is imperative to conduct normalization in order to be properly trained in deep learning models as normalizing input data is known to be a productive measure to enhance the performance.In our signal,the time(X-axis)and voltage(Y-axis)are the two axes that are to be normalized.For Y-axis,standardization was applied and letwhered=(n′′-|n′′-n′|·0.1)-(n′+|n′′-n′|·0.1),For X-axis,we normalizedn(into 1000, deletingd- 1000 data ink-periodical sequence, whereThis leads to= 1000, computingwhere 0 ≤m <(d-1000).The normalized signal is shown in Fig.4, where the dotted line indicates the extracted frame of clockwise(CW)hand gesture,meanwhile solid line is the result after the normalization.Note that even if the identical subject performs the same motion type in a homogeneous environment such as time and location,the phase of the signal is distinctive due to the constantly varying charging state.

    Figure 3:Motion frame extraction visualization

    Figure 4:Visualization of original clockwise hand motion frame signal and normalized frame signal

    2.4 Signal Dimension Transformation

    After applying the normalized motion frame, the signal frame must be transformed from 1-dimension voltage signal to 2-dimension image in order to train the CNN model.Based onwheren(=1000,we primarily reducen()into 900,deleting theandin order to compute the 30×30×1 image(900 = 30·30).Fig.5 shows the schematization of transforming the motion frame into the 30×30×1 image format.

    Figure 5: Dimensional transformation of a motion frame: (a) the transformation schematization reshaped into(30×30×1)grayscale image,(b)the transformed images for 4 hand gestures

    2.5 Motion Classification Through CNN Models

    In this section,we define the structure of our two CNN-based classifiers;MCNN and BPR-CNN that were implemented to effectively categorize the types of input hand motion signal images.

    2.5.1 Multiple CNN Classifiers with Voting Logics

    The first classifier is composed of five pre-trained CNN models, which are operated in parallel with unidentical filter size in their convolution layer.Fig.6 shows a five-layer CNN structure that was applied in our MCNN.

    This model was trained through the extracted feature patterns from convolution layers learning local features to global features.After the fully-connected layer andsoftmaxfunction,it outputs the class probabilityp(f(x)|x)(soft label).Once the CNN classifiers have been trained,each CNN predicts the input into a single category.Fig.6 represent that an example of implemented CNN structure.The kernel size of each Chin?is as follows;δ(C1,??)= (5×5),δ(C2,??)= (7×7),δ(C3,??)= (3×3),δ(C4,1)=(5×5),δ(C4,2)=(3×3),δ(C5,1)=(7×7)andδ(C5,2)=(3×3).

    Figure 6:An example of implemented CNN structure

    The outputs from the five CNNs are considered in order to make the final classification prediction through majority voting as shown in Fig.7.Each input data consists of three 30×30×1 images,which represents three channels for sensor A,B and A-B signals.These three motion signal images are extracted in real-time and inserted into pre-trained CNN classifiers in Fig.6.

    Figure 7:Parallel multiple CNN with majority voting classifier

    Our ultimate goal is to successfully classify the four types of hand motions (Tab.1) with high accuracy.Recall that the five CNN contains different kernel sizes,(refer to Fig.6 for detailed kernel sizes in each layer) and MCNN classifier conducts majority voting (Fig.7) between soft labels.LetH= {Ch|1 ≤h≤5,h∈N} and letδ(Ch,?)a kernel size on convolution layerCh??= {1,2},whereChdenotes a CNN model,andhis an index of the model.Ch(y,f(x),L(w,b,x))=Ph(x),whereydenotes the true class,f(x)is a prediction class and loss functionL(·)based on set of weightw,biasband inputx.Ch(·)calculates a label prediction probabilityPhand eventually computing hard labelH(x)=argVoting classifier aggregates theH?h(x), and final classification ?y=arg max(φ(H?h(x)))whereφ(Hh(x))= {γi|1 ≤i≤4,i∈N,(Hh(x)=g(i))→γi+1}where initialγ?i=0.

    2.5.2 BPR-CNN Classifier

    Biomimetic Pattern Recognition (BPR) [16,23–25] utilizes high-level topology features from biomimetic signals to discover certain patterns, which focuses on the concept of cognizing feature topology.Combining BPR with CNN (BPR-CNN) triggers higher performance as features are extracted from the CNN model, and BPR computes the topological manifold properties in given Euclidean parameter space based on Complex Geometry Coverage (CGC) [26] as shown in Fig.8.Manipulating the prediction probabilityP(x),it computes theηnumber of distance-based clusters?η,?η?P(xi)where 1 ≤i ≤n(x),i ∈N,η=n(classes)=n(P(x)).Since the set of trained w and b itself are not permutationally invariant,we cannot implement the distance-based geometry coverage based on the w and b.

    Figure 8:Visualization of the BPR-CNN mechanism

    However,P(x)would indicate the proximity between the classes and the output ofx, which guarantees the closest single class in the Euclidean space.Based on the proximity of class-wise topological space,it cognizes the matter using the high-level features.The processed input image set is abstruse to distinguish the classes or interpret the meanings of the indicated number of the pixels in the human eye,thus high-level robust features are preferred to accurately compute the decision boundary instead of using low-level features.To elaborate,input images that clearly show an object for CNN to classify the target such as cat or dog,their intrinsic features are distinct such as its eye,nose,or other parts of the subject,whereas our case doesn’t.

    Our case specifically requires the robust features in high-level feature space where the trend of each hand motion signal image could be found.Implementing the BPR-CNN,we could derive better input signal classification performance compared to conventional CNN,and we validate this through experiments in Section 3.In BPR classifier,pre-trained CNN model=P(x)andφ(?P(xi))=?η,whereφ(·)indicates pairwise distance-based clustering such as K-means(K=η)[27].In Euclidean space Rη,where Rη??η?P(xi),K(xnew)=argmin1≤k≤η,k∈NdL2(μ(?k),P(xnew)),which allocatesxnewto?Kwherexnew/xi.The layer structure of the CNN was set with Conv-MaxPooling-Conv-MaxPooling- Conv-MaxPooling-Dense-Dense.The kernel size of each convolution and maxpooling layers were set with 5×5 and 2×2 respectively.

    3 Experimental Results

    3.1 Experiment Setting

    Through the empirical experiments,we evaluate the performance of our designed methodology.Utilizing the EPS sensor[14,28],four hand motion types indicated in Tab.1 were extracted from each of six subjects, 100 gestures for each motion, collecting a total of 2400 motion samples.Among the dataset, we randomly split the 2160 samples for training and 240 for test data.The extracted raw signal was processed through consecutive signal processing methods starting from the LPF and SMA,followed by automatically detecting hand motions and setting signal frame by dynamic threshold,and normalizing the signal.Next,we transform the signal into an image and a pre-trained classifier determines its label.Note thatη=4,since our objective is to classify the four motion types(Tab.1).All this process(Fig.1)is operated in real-time and test dataset were generated and classified(Less than second when computing through CPU i7–7500U RAM 8GB).The performance has been measured through our metrics of Correct Detection Rate(CDR),Motion Frame Matching Rate(MFMR)and Detection & Extraction Success Rate (DESR).CDR shows the degree of correspondence between the signal and the actual motion, and the MFMR quantitatively assesses the matching rate of the computed motion frame.Finally,DESR is obtained by CDR multiplied by MFMR to indicate their combined accuracy level.The training epoch was set with 20 and learning rate of 0.01, withreluactivation function in each convolution layer.

    3.2 Experiment Result

    Following Tab.2 shows the result of our three designated metrics, which validates that the proposed method of our study works with high accuracy of around 98%on average.

    Table 2: Performance of the selected metrics

    Following Tab.3 displays the experiment results of the four classifier algorithms.Their performances were evaluated with classification accuracy based on identical test data of four specific hand motions in Tab.1.We denote the average of four motion accuracy as Classification Correction Rate(CCR), which is computed in Tab.3.From each motion in Tab.1, three distinct output signals are produced;sensor A value,sensor B value and subtracted value(A-B).Performance of the two CNN classifiers (MCNN and BPR-CNN) were also compared with other algorithms such as HMM and SVM.Our experiment results show that the suggested motion detection and frame extraction based on the two threshold works with high CDR and MFMR,and also the classification accuracy of BPRCNN classifier outperformed other competitive models.

    Table 3: Classification correction rate of the BPR-CNN model

    4 Conclusion and Future Works

    In this paper,we proposed the dynamic thresholding and framing algorithms in order to set the accurate motion EF signal frame in real-time, and evaluated its performance using the following metrics;99.4%in CDR,98.4%in MFMR,97.8%in DESR.Moreover,we implemented the MCNN and BPR-CNN motion classifiers and compared the accuracy with other algorithms.Based on the extracted features of the 3 channel (sensor A, B, A-B) input signal images, BPR-CNN had shown the highest performance of 97.1% in CCR.Utilizing EF sensing is regarded as a prospective research domain and accommodates practical usage in industry due to diverse advantages such as low computation & price, high sensitivity & recognition speed.Our future work is to adopt the introduced methods to mobile devices and apply the algorithms to control the interface through noncontact hand motions.Training and classifying the diverse and detailed gestures in order to gain algorithmic robustness and versatility is a part of our future work.Combining our studies into interface technologies such as Human Computer Interaction(HCI)or Natural User Interface(NUI),we expect the further utilizations of controlling the various applications through user-friendly interfaces based on EF sensing.

    Funding Statement:This work was supported by the NRF of Korea grant funded by the Korea government(MIST)(No.2019 R1F1A1062829).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    熟女电影av网| 国产伦精品一区二区三区视频9| 内射极品少妇av片p| 亚洲国产欧美日韩在线播放 | 日韩在线高清观看一区二区三区| 99热全是精品| 日韩成人av中文字幕在线观看| 最新中文字幕久久久久| 欧美日韩综合久久久久久| 美女中出高潮动态图| 性色avwww在线观看| 亚洲内射少妇av| 天天躁夜夜躁狠狠久久av| 亚洲在久久综合| 亚洲图色成人| 插阴视频在线观看视频| 成人特级av手机在线观看| 久久久久精品久久久久真实原创| 免费观看av网站的网址| 午夜免费观看性视频| 如何舔出高潮| 热99国产精品久久久久久7| 成人影院久久| 十分钟在线观看高清视频www | 久久午夜福利片| 男女边摸边吃奶| 九九爱精品视频在线观看| 国产无遮挡羞羞视频在线观看| 2021少妇久久久久久久久久久| 国产综合精华液| 国产精品三级大全| 久久久久久久久大av| 国产真实伦视频高清在线观看| 亚洲精品aⅴ在线观看| 亚洲国产日韩一区二区| 亚洲丝袜综合中文字幕| 国产成人精品一,二区| 男人和女人高潮做爰伦理| 亚洲色图综合在线观看| 2018国产大陆天天弄谢| 国产欧美日韩综合在线一区二区 | 3wmmmm亚洲av在线观看| 国产极品天堂在线| 看免费成人av毛片| 两个人免费观看高清视频 | 国产精品偷伦视频观看了| 久久久久久久久久久免费av| 国产精品国产av在线观看| 国产日韩欧美亚洲二区| 欧美成人精品欧美一级黄| 乱系列少妇在线播放| videossex国产| 视频中文字幕在线观看| 黑人猛操日本美女一级片| 爱豆传媒免费全集在线观看| 免费观看a级毛片全部| 日韩av不卡免费在线播放| 亚洲经典国产精华液单| 久久久精品免费免费高清| 久久精品国产鲁丝片午夜精品| 又黄又爽又刺激的免费视频.| 亚洲图色成人| 香蕉精品网在线| 日韩 亚洲 欧美在线| 日本欧美国产在线视频| 午夜福利视频精品| 我要看日韩黄色一级片| 一本—道久久a久久精品蜜桃钙片| 在线观看免费日韩欧美大片 | 国产成人freesex在线| 少妇精品久久久久久久| 99热这里只有精品一区| 一级av片app| 欧美精品亚洲一区二区| 亚洲精品国产av成人精品| 久久 成人 亚洲| 国产亚洲最大av| 又粗又硬又长又爽又黄的视频| 黑人高潮一二区| 国产成人免费观看mmmm| 草草在线视频免费看| 国产精品福利在线免费观看| 亚洲精品日韩在线中文字幕| 精品人妻熟女毛片av久久网站| av视频免费观看在线观看| 新久久久久国产一级毛片| 黑人巨大精品欧美一区二区蜜桃 | 国产女主播在线喷水免费视频网站| 精品国产一区二区三区久久久樱花| 国产在线视频一区二区| 97超碰精品成人国产| 日韩精品免费视频一区二区三区 | 国产精品一区二区在线观看99| 久久久久国产网址| 91精品一卡2卡3卡4卡| 少妇的逼水好多| 午夜视频国产福利| 亚洲人成网站在线观看播放| 国产伦精品一区二区三区四那| 亚洲三级黄色毛片| 黄色欧美视频在线观看| 黄色日韩在线| 国产一区二区三区综合在线观看 | 大片电影免费在线观看免费| 一级毛片 在线播放| 美女国产视频在线观看| 免费播放大片免费观看视频在线观看| 哪个播放器可以免费观看大片| 欧美亚洲 丝袜 人妻 在线| 精品人妻偷拍中文字幕| 边亲边吃奶的免费视频| 在线看a的网站| 国产精品久久久久久久电影| 久久国产乱子免费精品| 国产成人精品无人区| 午夜福利在线观看免费完整高清在| 黄色日韩在线| 熟女电影av网| 欧美三级亚洲精品| 全区人妻精品视频| 人人妻人人爽人人添夜夜欢视频 | 亚洲国产精品一区二区三区在线| 夜夜看夜夜爽夜夜摸| 美女脱内裤让男人舔精品视频| 大陆偷拍与自拍| 波野结衣二区三区在线| 人人妻人人澡人人爽人人夜夜| 五月开心婷婷网| 亚洲中文av在线| 交换朋友夫妻互换小说| 只有这里有精品99| 亚洲av国产av综合av卡| 亚洲精品视频女| 亚洲真实伦在线观看| a级毛片在线看网站| 男女边摸边吃奶| 视频区图区小说| 最黄视频免费看| 欧美日韩视频精品一区| 国产午夜精品久久久久久一区二区三区| 亚洲精品视频女| 国产 一区精品| 中文欧美无线码| 精华霜和精华液先用哪个| 日本午夜av视频| 人人妻人人澡人人看| 亚洲国产av新网站| 成人18禁高潮啪啪吃奶动态图 | 我的老师免费观看完整版| 99久久精品热视频| 美女福利国产在线| 青春草亚洲视频在线观看| 大码成人一级视频| 欧美另类一区| 久久人人爽av亚洲精品天堂| av国产精品久久久久影院| 大片免费播放器 马上看| 欧美 亚洲 国产 日韩一| 在线观看www视频免费| 久久久久久久久久久丰满| 在线观看人妻少妇| 一级毛片aaaaaa免费看小| 蜜桃在线观看..| 国产精品人妻久久久久久| 欧美高清成人免费视频www| 久久久欧美国产精品| 少妇的逼水好多| 18+在线观看网站| 国产成人午夜福利电影在线观看| 久热这里只有精品99| a级一级毛片免费在线观看| 秋霞伦理黄片| 久久这里有精品视频免费| 人体艺术视频欧美日本| 人人妻人人澡人人爽人人夜夜| 五月开心婷婷网| .国产精品久久| 国产av码专区亚洲av| 国产av精品麻豆| 国产黄片美女视频| av天堂中文字幕网| 国产又色又爽无遮挡免| 一级毛片aaaaaa免费看小| 少妇猛男粗大的猛烈进出视频| 亚洲色图综合在线观看| 免费观看无遮挡的男女| 午夜91福利影院| 一本大道久久a久久精品| 亚洲精品日本国产第一区| 国产精品国产三级国产专区5o| 免费看日本二区| 国产在线一区二区三区精| 色网站视频免费| 国产真实伦视频高清在线观看| 亚洲欧美成人综合另类久久久| 国产男人的电影天堂91| 人人澡人人妻人| 亚洲精品国产av成人精品| 国产精品久久久久久精品古装| 精品久久久噜噜| av有码第一页| 91精品一卡2卡3卡4卡| 十八禁网站网址无遮挡 | 亚洲美女黄色视频免费看| 亚洲国产精品专区欧美| 久久影院123| 一级毛片我不卡| 亚洲精品成人av观看孕妇| 自线自在国产av| a级一级毛片免费在线观看| 成人免费观看视频高清| 久久久久久久久久久久大奶| 国产伦精品一区二区三区视频9| 日韩av免费高清视频| 色视频在线一区二区三区| 亚洲av免费高清在线观看| 丝袜在线中文字幕| 免费黄频网站在线观看国产| 久久av网站| 国产免费一级a男人的天堂| 婷婷色综合大香蕉| 日本猛色少妇xxxxx猛交久久| 久久精品久久精品一区二区三区| 夜夜骑夜夜射夜夜干| 欧美 日韩 精品 国产| 欧美97在线视频| 亚洲久久久国产精品| 久久99一区二区三区| 看非洲黑人一级黄片| 欧美少妇被猛烈插入视频| 高清不卡的av网站| 久久精品国产亚洲网站| 黑人巨大精品欧美一区二区蜜桃 | 最黄视频免费看| a级毛片免费高清观看在线播放| 啦啦啦视频在线资源免费观看| 在现免费观看毛片| 超碰97精品在线观看| 少妇精品久久久久久久| 亚洲在久久综合| 交换朋友夫妻互换小说| 亚洲成人av在线免费| 亚洲av二区三区四区| 日韩av不卡免费在线播放| 九九久久精品国产亚洲av麻豆| 国产亚洲最大av| 亚洲国产最新在线播放| 欧美 日韩 精品 国产| 久久狼人影院| 久久久国产精品麻豆| 久久久午夜欧美精品| 久久久久久久久大av| 在线观看国产h片| 国产中年淑女户外野战色| 国产毛片在线视频| 91aial.com中文字幕在线观看| 亚洲av成人精品一区久久| 久久久久久久久久人人人人人人| 最黄视频免费看| 美女内射精品一级片tv| 成年av动漫网址| 黄色配什么色好看| 日韩一本色道免费dvd| 欧美国产精品一级二级三级 | 成人午夜精彩视频在线观看| 国产高清不卡午夜福利| 久久精品久久久久久噜噜老黄| 高清不卡的av网站| 国产精品久久久久久久久免| 99国产精品免费福利视频| av网站免费在线观看视频| 精品午夜福利在线看| 精品国产国语对白av| 亚洲国产欧美日韩在线播放 | 在线观看三级黄色| 久久韩国三级中文字幕| 免费看日本二区| 日日摸夜夜添夜夜添av毛片| 美女福利国产在线| 国产精品久久久久久精品电影小说| 成年女人在线观看亚洲视频| 亚洲精品aⅴ在线观看| 欧美精品国产亚洲| 国产老妇伦熟女老妇高清| 国产色婷婷99| 国产免费福利视频在线观看| 在线天堂最新版资源| 日韩一本色道免费dvd| 亚洲内射少妇av| 免费黄色在线免费观看| 在线观看免费视频网站a站| 制服丝袜香蕉在线| 我的女老师完整版在线观看| 性色avwww在线观看| 国产乱人偷精品视频| 色94色欧美一区二区| 视频区图区小说| 欧美日韩国产mv在线观看视频| 久久精品国产a三级三级三级| 极品少妇高潮喷水抽搐| 日韩欧美一区视频在线观看 | 久久影院123| 免费看日本二区| 亚洲,欧美,日韩| 少妇人妻一区二区三区视频| 亚洲av电影在线观看一区二区三区| 青春草国产在线视频| 国产伦理片在线播放av一区| 自拍偷自拍亚洲精品老妇| 亚洲三级黄色毛片| 欧美日本中文国产一区发布| 少妇被粗大猛烈的视频| 一二三四中文在线观看免费高清| 亚洲国产欧美日韩在线播放 | 久久久精品94久久精品| 人妻系列 视频| 日本黄色日本黄色录像| 观看av在线不卡| 午夜福利影视在线免费观看| 丰满饥渴人妻一区二区三| 久久久欧美国产精品| 男人舔奶头视频| 久久综合国产亚洲精品| 91精品国产九色| 女人久久www免费人成看片| 草草在线视频免费看| 欧美 亚洲 国产 日韩一| 精品久久久噜噜| 亚洲精品视频女| 青青草视频在线视频观看| 纯流量卡能插随身wifi吗| 久久鲁丝午夜福利片| 日韩制服骚丝袜av| 一区二区三区乱码不卡18| 一个人免费看片子| 亚洲av欧美aⅴ国产| 天堂8中文在线网| 女的被弄到高潮叫床怎么办| 欧美区成人在线视频| 久久久久视频综合| 色婷婷久久久亚洲欧美| 久久国产精品男人的天堂亚洲 | 日本色播在线视频| 欧美精品高潮呻吟av久久| 亚洲欧美日韩东京热| 亚洲综合色惰| 国产精品国产三级专区第一集| 在线观看国产h片| 国产精品久久久久久精品古装| 99re6热这里在线精品视频| 亚洲真实伦在线观看| 一级毛片电影观看| 日本黄色片子视频| 久久精品国产亚洲av涩爱| 视频中文字幕在线观看| 纯流量卡能插随身wifi吗| 亚洲第一区二区三区不卡| 亚洲内射少妇av| 亚洲精品第二区| 国产有黄有色有爽视频| 日本猛色少妇xxxxx猛交久久| 欧美xxxx性猛交bbbb| 自拍偷自拍亚洲精品老妇| 校园人妻丝袜中文字幕| 三上悠亚av全集在线观看 | 国产精品免费大片| 亚洲精品成人av观看孕妇| 亚洲欧美日韩东京热| 日日啪夜夜爽| 天堂中文最新版在线下载| 一边亲一边摸免费视频| 啦啦啦啦在线视频资源| 国产av精品麻豆| 一级毛片电影观看| 另类精品久久| 欧美国产精品一级二级三级 | 午夜视频国产福利| 只有这里有精品99| 啦啦啦中文免费视频观看日本| 亚洲精品成人av观看孕妇| 一个人看视频在线观看www免费| 亚洲国产精品专区欧美| 女性被躁到高潮视频| 王馨瑶露胸无遮挡在线观看| 欧美成人午夜免费资源| 99视频精品全部免费 在线| 高清av免费在线| 麻豆乱淫一区二区| 免费大片黄手机在线观看| 一级毛片 在线播放| 日韩 亚洲 欧美在线| 伊人久久精品亚洲午夜| 亚洲av.av天堂| 午夜激情福利司机影院| 不卡视频在线观看欧美| www.色视频.com| 在线 av 中文字幕| 国产成人午夜福利电影在线观看| 美女主播在线视频| 精品一区二区三区视频在线| 人人妻人人看人人澡| 日韩中字成人| 国内精品宾馆在线| 亚洲欧美成人精品一区二区| 亚洲精品日韩在线中文字幕| 日本爱情动作片www.在线观看| 久久狼人影院| 国产一区二区三区av在线| 久久国产亚洲av麻豆专区| 丁香六月天网| 一区二区三区精品91| 男男h啪啪无遮挡| 久久国产精品男人的天堂亚洲 | 女性被躁到高潮视频| 亚洲av二区三区四区| 久久影院123| 新久久久久国产一级毛片| 日本与韩国留学比较| 久久影院123| 久久久久久人妻| 99精国产麻豆久久婷婷| 欧美另类一区| 丝瓜视频免费看黄片| 永久免费av网站大全| 人人妻人人添人人爽欧美一区卜| 乱人伦中国视频| 午夜日本视频在线| 久久韩国三级中文字幕| 日韩电影二区| 国产欧美日韩综合在线一区二区 | 如何舔出高潮| 美女脱内裤让男人舔精品视频| 男女国产视频网站| 十八禁高潮呻吟视频 | 日韩亚洲欧美综合| 国产精品99久久久久久久久| 日日撸夜夜添| 亚洲精品成人av观看孕妇| 女性生殖器流出的白浆| 一本—道久久a久久精品蜜桃钙片| 国产中年淑女户外野战色| 三级经典国产精品| 国产精品三级大全| 晚上一个人看的免费电影| 久久99一区二区三区| 久久久久久久精品精品| 国产一区有黄有色的免费视频| 一区二区三区精品91| 插阴视频在线观看视频| 久久久久久久久久成人| 欧美精品国产亚洲| 香蕉精品网在线| 亚洲av日韩在线播放| 久久久久久久精品精品| 久久久a久久爽久久v久久| 欧美精品一区二区免费开放| av女优亚洲男人天堂| 久久久久久久久久人人人人人人| 日韩成人av中文字幕在线观看| 久久久精品免费免费高清| 一区二区av电影网| 在线免费观看不下载黄p国产| h日本视频在线播放| 欧美少妇被猛烈插入视频| 99久久人妻综合| 日韩人妻高清精品专区| 性色avwww在线观看| 伦精品一区二区三区| 亚洲av福利一区| 欧美成人精品欧美一级黄| 亚洲精品一二三| 爱豆传媒免费全集在线观看| 欧美成人精品欧美一级黄| 日韩av不卡免费在线播放| 大话2 男鬼变身卡| 日韩av在线免费看完整版不卡| 免费av中文字幕在线| 欧美3d第一页| av网站免费在线观看视频| 午夜老司机福利剧场| 高清视频免费观看一区二区| 日本猛色少妇xxxxx猛交久久| 欧美成人午夜免费资源| 2022亚洲国产成人精品| 夜夜骑夜夜射夜夜干| av有码第一页| 激情五月婷婷亚洲| 午夜影院在线不卡| 亚洲av成人精品一二三区| 日韩一区二区三区影片| 欧美精品一区二区大全| 国产av国产精品国产| 午夜视频国产福利| 少妇丰满av| 国产乱来视频区| 成人毛片a级毛片在线播放| 一区二区三区免费毛片| 国产成人精品福利久久| 在线观看美女被高潮喷水网站| 国产欧美日韩精品一区二区| 亚洲美女视频黄频| 婷婷色av中文字幕| 成人毛片a级毛片在线播放| 夜夜骑夜夜射夜夜干| 精品酒店卫生间| 欧美性感艳星| 免费少妇av软件| 国产一区二区在线观看av| 91精品国产九色| 亚洲精品日韩在线中文字幕| 美女cb高潮喷水在线观看| 女人久久www免费人成看片| 国产男女超爽视频在线观看| 久久综合国产亚洲精品| 80岁老熟妇乱子伦牲交| 在线观看三级黄色| 国产在线一区二区三区精| 如日韩欧美国产精品一区二区三区 | 天美传媒精品一区二区| 两个人免费观看高清视频 | 欧美成人午夜免费资源| 国产熟女午夜一区二区三区 | 妹子高潮喷水视频| 男女啪啪激烈高潮av片| 18禁裸乳无遮挡动漫免费视频| 黑人巨大精品欧美一区二区蜜桃 | 国产精品久久久久久精品古装| 国产精品福利在线免费观看| 狂野欧美白嫩少妇大欣赏| 永久免费av网站大全| 精品久久久精品久久久| 女人久久www免费人成看片| 久久99热这里只频精品6学生| 欧美老熟妇乱子伦牲交| 日本猛色少妇xxxxx猛交久久| 亚洲国产毛片av蜜桃av| 国产一区二区在线观看av| 欧美日韩亚洲高清精品| 观看av在线不卡| 亚洲精品中文字幕在线视频 | 日本猛色少妇xxxxx猛交久久| 免费黄频网站在线观看国产| 人人妻人人澡人人看| 国产91av在线免费观看| 亚洲熟女精品中文字幕| 男人狂女人下面高潮的视频| 国产午夜精品久久久久久一区二区三区| 日韩一区二区三区影片| 日日啪夜夜撸| 99热全是精品| 在线观看免费日韩欧美大片 | 建设人人有责人人尽责人人享有的| 久久久亚洲精品成人影院| 国产 精品1| 日韩av不卡免费在线播放| 国产黄色视频一区二区在线观看| 三级国产精品欧美在线观看| 99久久精品国产国产毛片| 成年美女黄网站色视频大全免费 | 十八禁高潮呻吟视频 | 国产91av在线免费观看| 黄片无遮挡物在线观看| 色视频www国产| 日本av免费视频播放| 国产69精品久久久久777片| 久久99蜜桃精品久久| 亚洲成人一二三区av| 91aial.com中文字幕在线观看| 免费看日本二区| 最黄视频免费看| 国产91av在线免费观看| 国产精品秋霞免费鲁丝片| 久久久久久久久久久丰满| 色婷婷av一区二区三区视频| 91成人精品电影| 国产成人免费观看mmmm| 中文字幕人妻熟人妻熟丝袜美| av免费在线看不卡| 亚洲av成人精品一区久久| 大片电影免费在线观看免费| 一级毛片aaaaaa免费看小| 免费av中文字幕在线| 亚洲欧美成人精品一区二区| 99热网站在线观看| 爱豆传媒免费全集在线观看| 在线观看一区二区三区激情| 国产欧美另类精品又又久久亚洲欧美| 日韩视频在线欧美| 国产亚洲午夜精品一区二区久久| 中国美白少妇内射xxxbb| 国产精品久久久久久av不卡| 亚洲第一av免费看| 精品国产国语对白av| 欧美日韩综合久久久久久| av女优亚洲男人天堂| 久久99蜜桃精品久久| 亚洲精品国产av蜜桃| www.色视频.com| 免费人成在线观看视频色| 亚洲精品国产色婷婷电影| 十八禁网站网址无遮挡 | 亚洲欧美日韩东京热| av在线播放精品| 亚洲电影在线观看av| 国内精品宾馆在线| 国产免费一级a男人的天堂| 97精品久久久久久久久久精品| 日本与韩国留学比较| 自线自在国产av| 十分钟在线观看高清视频www | 两个人的视频大全免费| 亚洲欧美一区二区三区国产| 久久99蜜桃精品久久| 国产欧美日韩一区二区三区在线 | 97超视频在线观看视频|