• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A BPR-CNN Based Hand Motion Classifier Using Electric Field Sensors

    2022-08-23 02:20:04HunminLeeInseopNaKamoliddinBultakovandYoungchulKim
    Computers Materials&Continua 2022年6期

    Hunmin Lee,Inseop Na,Kamoliddin Bultakov and Youngchul Kim,

    1Department of Computer Science,Georgia State University,Atlanta,30302,USA

    2Nat’l Program of Excellence in Software Centre,Chosun University,Gwangju,61452,Korea

    3Department of Computer Inf.&Communication Eng.,Chonnam Nat’l Univ.,Gwangju,61186,Korea

    Abstract: In this paper, we propose a BPR-CNN (Biometric Pattern Recognition-Convolution Neural Network) classifier for hand motion classification as well as a dynamic threshold algorithm for motion signal detection and extraction by EF (Electric Field) sensors.Currently, an EF sensor or EPS (Electric Potential Sensor) system is attracting attention as a next-generation motion sensing technology due to low computation and price,high sensitivity and recognition speed compared to other sensor systems.However,it remains as a challenging problem to accurately detect and locate the authentic motion signal frame automatically in real-time when sensing body-motions such as hand motion,due to the variance of the electric-charge state by heterogeneous surroundings and operational conditions.This hinders the further utilization of the EF sensing; thus, it is critical to design the robust and credible methodology for detecting and extracting signals derived from the motion movement in order to make use and apply the EF sensor technology to electric consumer products such as mobile devices.In this study,we propose a motion detection algorithm using a dynamic offset-threshold method to overcome uncertainty in the initial electrostatic charge state of the sensor affected by a user and the surrounding environment of the subject.This method is designed to detect hand motions and extract its genuine motion signal frame successfully with high accuracy.After setting motion frames,we normalize the signals and then apply them to our proposed BPR-CNN motion classifier to recognize their motion types.Conducted experiment and analysis show that our proposed dynamic threshold method combined with a BPR-CNN classifier can detect the hand motions and extract the actual frames effectively with 97.1%accuracy,99.25%detection rate,98.4%motion frame matching rate and 97.7%detection&extraction success rate.

    Keywords: BPR-CNN; dynamic offset-threshold method; electric potential sensor; electric field sensor; multiple convolution neural network; motion classification

    1 Introduction

    The EF(Electric Field)sensor extracts information by sensing the variations of the electric charge near the surface of the sensor and converts the signal into voltage-level output.Today, EF sensors are mainly categorized by two modes, contact mode and non-contact mode.The contact mode has widely been applied in the area of healthcare and medical applications by sensing bioelectric signals such as electrocardiogram,electromyogram and electroencephalogram[1–5].Meanwhile,non-contact type measures the electric potential signal on the surface of EF sensors induced by the disturbance of the surrounding electric field which is caused by movement of dielectric substances such as human bodies or hands due to coupling effect [6].A few of non-contact EF sensor systems have been applied in commercial products, while several studies in academic institutions have been reported in application areas of proximity sensing, placement identification, etc [7–10].As EF proximity sensing systems are gaining attention,recent studies have been published regarding the area of hand or body motion detection and recognition [11–21].Our past studies [11–14] were focused on noncontact EF sensing,extracting and processing the signals through EF sensors.Moreover,by utilizing deep learning algorithms such as LSTM and CNN,multiple hand gesture classification mechanisms were proposed after a series of signal processing steps.Wimmer et al.[22]introduced the‘Thracker’device that utilized capacitive sensing,which encouraged the possibility of interaction between human and computer systems through non-contact capacitive sensing.Singh et al.[15] suggested a gesture recognition system called Inviz for paralysis patients that implemented textile-built capacitive sensors,measuring the capacitance interaction between the patient’s body and the sensor.Aezinia et al.[16]designed a three-dimensional finger tracking system through a capacitive sensor,which was functional within 10 cm range from the sensor.

    In this paper, we present a real-time hand motion detection and classification system adopting Biometric Pattern Recognition-Convolution Neural Network(BPR-CNN)classifiers combined with a dynamic threshold method for automatic motion detection and motion-frame extraction(Fig.1)in EF signals.Our proposed system is fully automated with real-time motion detections,extracting the true frame and classifying motion types occurring at the range of up to 30 cm near the EF sensors.Accuracies of detecting hand motions and extracting signal frames were quantitatively rated through our suggested metrics.Furthermore, we suggest the simulation results of our CNN architectures;Multiple CNN(MCNN)and BPR-CNN with other classification algorithms and empirically evaluate the hand gesture classification performance.

    Figure 1:A proposed hand motion extraction and classification process

    This paper is organized as follows.Section 2 describes our suggested methods of computing the dynamic threshold for motion detection and frame extraction by analyzing the intrinsic features of the EF signals.We also explain the two CNN-based motion classifiers that were designed and thus applied into our system.In Section 3,we present the results of four hand gesture classifications through multiple experiments.In conclusion,we conclude our study and suggest the future works.

    2 Discussion

    In this section, we explain our dynamic threshold method for motion detection and frame extraction in the EF sensor signals.After setting the optimal signal frame,we conduct normalization followed by transforming the dimensions of normalized data in order to be trained into our proposed CNN model.We implement the MCNN and BPR-CNN to effectively train the features of the transformed signals thus classifying the inputs into corresponding gestures.Note that we handle the signals that have been already processed through Low-Pass-Filter(LPF)and Simple Moving Average(SMA).Since natural frequency from the human hand or arm is known to have 5~10 Hz[23],which is a domain of extremely low frequency,thus we use the 10 Hz as a cut-off frequency in the LPF.The readers can refer to our previous studies[11–14]for more information regarding the implementation of LPF to filter out unnecessary noises and conduct the Moving Average to smoothen the filtered gesture signal from the sensor.

    2.1 Dynamic Offset and Threshold

    One of the challenging problems in dynamic thresholding in order to detect the signal and to locate the “genuine”signal frame is to compute an offset voltage for each Electric Potential Sensor(EPS)and adjust the threshold values periodically before detecting the target hand motion.As most hand motions and gestures are being done within a short period of time,we set the update cycle time unit to be a second.We implemented two EPS(Sensor A,B,sensor type PS25401)[14,23],and each sensor started with unidentical initial offset due to the various electric charging and discharging states near the sensors according to diverse environmental conditions in the moment of time.

    Through our empirical past simulations,the initial voltagevinit∈R(unit:V)ranges from-0.2 ≤vinit≤0.02 withμ(?vinit)= -0.08 andσ(?vinit)= 0.03 whereμdenotes average andσis standard deviation,when implementing EPS to measure the capacitance changes when the subject is proximally located.The statistics were acquired from four distinct hand gesture types(Tab.1),each conducting 600 trials;n(?vinit)=600,and the distribution visualization ofvinitis shown in Fig.2a.LetS={vn|1 ≤n≤T·1000,n∈N} be a set of time series raw sensor (voltage) datavn, where the sampling ratewhichn(S)=1000 whenT=0.001sec.

    Table 1: Motion types and their images

    Likewise,due to heterogeneous property ofS,dynamictracks the discrete variantand its upper and lower bound, which maintains the robustness regardless of time-variant offset value.As for the time-varying signal pattern which is the electric field disturbances due to hand motion,charging and discharging the electrics triggers the voltages to display waveform.Figs.2b and 2c shows the typical output signal that charges and discharges the sensor plate which soars up(otherwise falls down),reaching its peak(bottom),then descends to bottom point(vice versa)and finally returns to an initial level when there was a hand gesture near the sensor plate.

    Figure 2:(a)distribution of vinit in 800 trials.(b,c)the produced EF signals,each with sensor A,B and A–B,where is(b)after the LPF and(c)after LPF&SMA

    Due to these features,dynamicare considered to be effective in order to detect our targets which limits the possible starting point of a next hand motion,and we empirically show its detection rate in Section 3.

    2.2 Motion Detection and Extraction

    Each individual hand motion generates unidentical signal phases depending on various conditions such as hand movement speed,distance and direction.In order to detect and extract the corresponding motion frames,we considered not only the duration,but also the time frame that could be divided into the stages of motion.The detection is composed of 4 steps where the left and right term enclosed with braces each indicate the two contrasting cases(case 1,2).The detection steps are indicated as follows;

    In Fig.3,a signal of hand gesture moved from left to right(LR)is shown.As we make another hand gesture,it detects the motion and locates the following frame continuously.Fig.3 contains two motion signals;each signal obtained from two different sensors(A-red and B-blue),where the dotted lines intersected with the signals show the starting point of the frame(magenta dot)and ending point of the frame(black dot).Each red and blue dot indicates the intersection point where=vi.Through these steps we could successfully distinguish the hand motions and compute the significant frame that encompasses the authentic motion signals.

    2.3 Normalization of an Extracted Motion Frame

    When hand motions are identified by the sensor,the time period of the extracted frame is diverse even if the motions were the same types,due to the speed or distance range of the motion.Likewise,the amplitude of the motion signal also tends to change on every new motion since the subject’s potential electrostatic state varies through numerous conditions such as textile of the cloth,location,or nearby machines,etc[4,9,11,12].Thus,it is imperative to conduct normalization in order to be properly trained in deep learning models as normalizing input data is known to be a productive measure to enhance the performance.In our signal,the time(X-axis)and voltage(Y-axis)are the two axes that are to be normalized.For Y-axis,standardization was applied and letwhered=(n′′-|n′′-n′|·0.1)-(n′+|n′′-n′|·0.1),For X-axis,we normalizedn(into 1000, deletingd- 1000 data ink-periodical sequence, whereThis leads to= 1000, computingwhere 0 ≤m <(d-1000).The normalized signal is shown in Fig.4, where the dotted line indicates the extracted frame of clockwise(CW)hand gesture,meanwhile solid line is the result after the normalization.Note that even if the identical subject performs the same motion type in a homogeneous environment such as time and location,the phase of the signal is distinctive due to the constantly varying charging state.

    Figure 3:Motion frame extraction visualization

    Figure 4:Visualization of original clockwise hand motion frame signal and normalized frame signal

    2.4 Signal Dimension Transformation

    After applying the normalized motion frame, the signal frame must be transformed from 1-dimension voltage signal to 2-dimension image in order to train the CNN model.Based onwheren(=1000,we primarily reducen()into 900,deleting theandin order to compute the 30×30×1 image(900 = 30·30).Fig.5 shows the schematization of transforming the motion frame into the 30×30×1 image format.

    Figure 5: Dimensional transformation of a motion frame: (a) the transformation schematization reshaped into(30×30×1)grayscale image,(b)the transformed images for 4 hand gestures

    2.5 Motion Classification Through CNN Models

    In this section,we define the structure of our two CNN-based classifiers;MCNN and BPR-CNN that were implemented to effectively categorize the types of input hand motion signal images.

    2.5.1 Multiple CNN Classifiers with Voting Logics

    The first classifier is composed of five pre-trained CNN models, which are operated in parallel with unidentical filter size in their convolution layer.Fig.6 shows a five-layer CNN structure that was applied in our MCNN.

    This model was trained through the extracted feature patterns from convolution layers learning local features to global features.After the fully-connected layer andsoftmaxfunction,it outputs the class probabilityp(f(x)|x)(soft label).Once the CNN classifiers have been trained,each CNN predicts the input into a single category.Fig.6 represent that an example of implemented CNN structure.The kernel size of each Chin?is as follows;δ(C1,??)= (5×5),δ(C2,??)= (7×7),δ(C3,??)= (3×3),δ(C4,1)=(5×5),δ(C4,2)=(3×3),δ(C5,1)=(7×7)andδ(C5,2)=(3×3).

    Figure 6:An example of implemented CNN structure

    The outputs from the five CNNs are considered in order to make the final classification prediction through majority voting as shown in Fig.7.Each input data consists of three 30×30×1 images,which represents three channels for sensor A,B and A-B signals.These three motion signal images are extracted in real-time and inserted into pre-trained CNN classifiers in Fig.6.

    Figure 7:Parallel multiple CNN with majority voting classifier

    Our ultimate goal is to successfully classify the four types of hand motions (Tab.1) with high accuracy.Recall that the five CNN contains different kernel sizes,(refer to Fig.6 for detailed kernel sizes in each layer) and MCNN classifier conducts majority voting (Fig.7) between soft labels.LetH= {Ch|1 ≤h≤5,h∈N} and letδ(Ch,?)a kernel size on convolution layerCh??= {1,2},whereChdenotes a CNN model,andhis an index of the model.Ch(y,f(x),L(w,b,x))=Ph(x),whereydenotes the true class,f(x)is a prediction class and loss functionL(·)based on set of weightw,biasband inputx.Ch(·)calculates a label prediction probabilityPhand eventually computing hard labelH(x)=argVoting classifier aggregates theH?h(x), and final classification ?y=arg max(φ(H?h(x)))whereφ(Hh(x))= {γi|1 ≤i≤4,i∈N,(Hh(x)=g(i))→γi+1}where initialγ?i=0.

    2.5.2 BPR-CNN Classifier

    Biomimetic Pattern Recognition (BPR) [16,23–25] utilizes high-level topology features from biomimetic signals to discover certain patterns, which focuses on the concept of cognizing feature topology.Combining BPR with CNN (BPR-CNN) triggers higher performance as features are extracted from the CNN model, and BPR computes the topological manifold properties in given Euclidean parameter space based on Complex Geometry Coverage (CGC) [26] as shown in Fig.8.Manipulating the prediction probabilityP(x),it computes theηnumber of distance-based clusters?η,?η?P(xi)where 1 ≤i ≤n(x),i ∈N,η=n(classes)=n(P(x)).Since the set of trained w and b itself are not permutationally invariant,we cannot implement the distance-based geometry coverage based on the w and b.

    Figure 8:Visualization of the BPR-CNN mechanism

    However,P(x)would indicate the proximity between the classes and the output ofx, which guarantees the closest single class in the Euclidean space.Based on the proximity of class-wise topological space,it cognizes the matter using the high-level features.The processed input image set is abstruse to distinguish the classes or interpret the meanings of the indicated number of the pixels in the human eye,thus high-level robust features are preferred to accurately compute the decision boundary instead of using low-level features.To elaborate,input images that clearly show an object for CNN to classify the target such as cat or dog,their intrinsic features are distinct such as its eye,nose,or other parts of the subject,whereas our case doesn’t.

    Our case specifically requires the robust features in high-level feature space where the trend of each hand motion signal image could be found.Implementing the BPR-CNN,we could derive better input signal classification performance compared to conventional CNN,and we validate this through experiments in Section 3.In BPR classifier,pre-trained CNN model=P(x)andφ(?P(xi))=?η,whereφ(·)indicates pairwise distance-based clustering such as K-means(K=η)[27].In Euclidean space Rη,where Rη??η?P(xi),K(xnew)=argmin1≤k≤η,k∈NdL2(μ(?k),P(xnew)),which allocatesxnewto?Kwherexnew/xi.The layer structure of the CNN was set with Conv-MaxPooling-Conv-MaxPooling- Conv-MaxPooling-Dense-Dense.The kernel size of each convolution and maxpooling layers were set with 5×5 and 2×2 respectively.

    3 Experimental Results

    3.1 Experiment Setting

    Through the empirical experiments,we evaluate the performance of our designed methodology.Utilizing the EPS sensor[14,28],four hand motion types indicated in Tab.1 were extracted from each of six subjects, 100 gestures for each motion, collecting a total of 2400 motion samples.Among the dataset, we randomly split the 2160 samples for training and 240 for test data.The extracted raw signal was processed through consecutive signal processing methods starting from the LPF and SMA,followed by automatically detecting hand motions and setting signal frame by dynamic threshold,and normalizing the signal.Next,we transform the signal into an image and a pre-trained classifier determines its label.Note thatη=4,since our objective is to classify the four motion types(Tab.1).All this process(Fig.1)is operated in real-time and test dataset were generated and classified(Less than second when computing through CPU i7–7500U RAM 8GB).The performance has been measured through our metrics of Correct Detection Rate(CDR),Motion Frame Matching Rate(MFMR)and Detection & Extraction Success Rate (DESR).CDR shows the degree of correspondence between the signal and the actual motion, and the MFMR quantitatively assesses the matching rate of the computed motion frame.Finally,DESR is obtained by CDR multiplied by MFMR to indicate their combined accuracy level.The training epoch was set with 20 and learning rate of 0.01, withreluactivation function in each convolution layer.

    3.2 Experiment Result

    Following Tab.2 shows the result of our three designated metrics, which validates that the proposed method of our study works with high accuracy of around 98%on average.

    Table 2: Performance of the selected metrics

    Following Tab.3 displays the experiment results of the four classifier algorithms.Their performances were evaluated with classification accuracy based on identical test data of four specific hand motions in Tab.1.We denote the average of four motion accuracy as Classification Correction Rate(CCR), which is computed in Tab.3.From each motion in Tab.1, three distinct output signals are produced;sensor A value,sensor B value and subtracted value(A-B).Performance of the two CNN classifiers (MCNN and BPR-CNN) were also compared with other algorithms such as HMM and SVM.Our experiment results show that the suggested motion detection and frame extraction based on the two threshold works with high CDR and MFMR,and also the classification accuracy of BPRCNN classifier outperformed other competitive models.

    Table 3: Classification correction rate of the BPR-CNN model

    4 Conclusion and Future Works

    In this paper,we proposed the dynamic thresholding and framing algorithms in order to set the accurate motion EF signal frame in real-time, and evaluated its performance using the following metrics;99.4%in CDR,98.4%in MFMR,97.8%in DESR.Moreover,we implemented the MCNN and BPR-CNN motion classifiers and compared the accuracy with other algorithms.Based on the extracted features of the 3 channel (sensor A, B, A-B) input signal images, BPR-CNN had shown the highest performance of 97.1% in CCR.Utilizing EF sensing is regarded as a prospective research domain and accommodates practical usage in industry due to diverse advantages such as low computation & price, high sensitivity & recognition speed.Our future work is to adopt the introduced methods to mobile devices and apply the algorithms to control the interface through noncontact hand motions.Training and classifying the diverse and detailed gestures in order to gain algorithmic robustness and versatility is a part of our future work.Combining our studies into interface technologies such as Human Computer Interaction(HCI)or Natural User Interface(NUI),we expect the further utilizations of controlling the various applications through user-friendly interfaces based on EF sensing.

    Funding Statement:This work was supported by the NRF of Korea grant funded by the Korea government(MIST)(No.2019 R1F1A1062829).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    日韩高清综合在线| 精品酒店卫生间| 国产免费又黄又爽又色| 日本黄色视频三级网站网址| 午夜久久久久精精品| 少妇猛男粗大的猛烈进出视频 | 亚洲av一区综合| 国产成人freesex在线| 特大巨黑吊av在线直播| 九九热线精品视视频播放| 亚洲第一区二区三区不卡| 国内精品一区二区在线观看| 成人一区二区视频在线观看| 99在线视频只有这里精品首页| 午夜福利在线观看吧| 国产黄色小视频在线观看| 丝袜美腿在线中文| 亚洲久久久久久中文字幕| 麻豆成人av视频| 欧美不卡视频在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 免费观看人在逋| 午夜激情福利司机影院| 欧美97在线视频| 国产欧美日韩精品一区二区| 永久免费av网站大全| 美女黄网站色视频| 免费观看的影片在线观看| 又爽又黄a免费视频| www.av在线官网国产| 汤姆久久久久久久影院中文字幕 | 国产国拍精品亚洲av在线观看| 嫩草影院精品99| 国产真实乱freesex| 国产一区有黄有色的免费视频 | 永久免费av网站大全| 国产精品国产三级国产av玫瑰| 久久久精品94久久精品| 校园人妻丝袜中文字幕| 中文字幕免费在线视频6| 成人国产麻豆网| 69人妻影院| 国产精品一二三区在线看| 免费人成在线观看视频色| 久久精品91蜜桃| 亚洲伊人久久精品综合 | 亚洲欧美成人精品一区二区| 国产午夜精品久久久久久一区二区三区| 久久精品综合一区二区三区| 免费黄色在线免费观看| 尾随美女入室| 深夜a级毛片| 日本免费a在线| 日本黄色片子视频| 日韩,欧美,国产一区二区三区 | 精品久久久久久久末码| 国产av在哪里看| 久久99蜜桃精品久久| 九九久久精品国产亚洲av麻豆| 青春草亚洲视频在线观看| 精品欧美国产一区二区三| 婷婷色av中文字幕| 久久久精品大字幕| 国产精品国产高清国产av| 日本黄大片高清| 亚洲精品久久久久久婷婷小说 | 亚洲综合色惰| 色吧在线观看| 一边亲一边摸免费视频| 亚洲精品国产成人久久av| 免费看美女性在线毛片视频| 能在线免费看毛片的网站| 午夜激情欧美在线| 高清毛片免费看| 中文字幕av在线有码专区| 少妇高潮的动态图| ponron亚洲| 97人妻精品一区二区三区麻豆| 色综合亚洲欧美另类图片| 精品久久久久久久久av| 欧美激情在线99| 午夜激情欧美在线| 中文字幕人妻熟人妻熟丝袜美| 91精品一卡2卡3卡4卡| 精品不卡国产一区二区三区| 午夜日本视频在线| 菩萨蛮人人尽说江南好唐韦庄 | 一级毛片我不卡| 亚洲国产最新在线播放| 1024手机看黄色片| 亚洲一区高清亚洲精品| 级片在线观看| 久久久久免费精品人妻一区二区| 夜夜看夜夜爽夜夜摸| 亚洲精品,欧美精品| 美女国产视频在线观看| 淫秽高清视频在线观看| 卡戴珊不雅视频在线播放| 好男人在线观看高清免费视频| 99久国产av精品| 国产精品电影一区二区三区| 亚洲av二区三区四区| 只有这里有精品99| 国产亚洲最大av| 男人和女人高潮做爰伦理| 免费在线观看成人毛片| 中文字幕免费在线视频6| 男女国产视频网站| 久久久久久伊人网av| 97在线视频观看| 丝袜美腿在线中文| 久99久视频精品免费| 国产精品永久免费网站| 午夜免费男女啪啪视频观看| 天堂中文最新版在线下载 | 九色成人免费人妻av| 99久久精品一区二区三区| 国产精品国产高清国产av| 国产三级中文精品| 国产一区二区在线观看日韩| 国产亚洲最大av| 少妇熟女欧美另类| 欧美极品一区二区三区四区| 午夜精品国产一区二区电影 | 亚洲国产高清在线一区二区三| 日韩欧美精品v在线| 一级二级三级毛片免费看| 好男人在线观看高清免费视频| 午夜久久久久精精品| 中文字幕av在线有码专区| av.在线天堂| 亚洲欧美日韩无卡精品| 国产亚洲最大av| 亚洲欧美中文字幕日韩二区| 成人美女网站在线观看视频| 三级经典国产精品| 日韩精品有码人妻一区| 国产精品女同一区二区软件| 精品一区二区三区视频在线| 别揉我奶头 嗯啊视频| 欧美激情国产日韩精品一区| 午夜福利网站1000一区二区三区| 国产精品av视频在线免费观看| 一级毛片电影观看 | kizo精华| 国产男人的电影天堂91| 日韩三级伦理在线观看| 69av精品久久久久久| 日本欧美国产在线视频| 一级爰片在线观看| 亚洲第一区二区三区不卡| 国产精品一及| 亚洲va在线va天堂va国产| 如何舔出高潮| 欧美日韩国产亚洲二区| 亚洲色图av天堂| 日本五十路高清| 国产男人的电影天堂91| 午夜福利视频1000在线观看| 亚洲精品一区蜜桃| 色5月婷婷丁香| 日本-黄色视频高清免费观看| 黄片无遮挡物在线观看| 国产国拍精品亚洲av在线观看| 91在线精品国自产拍蜜月| 欧美xxxx性猛交bbbb| 99久久人妻综合| 熟妇人妻久久中文字幕3abv| 国产极品精品免费视频能看的| 欧美日韩在线观看h| 国产av不卡久久| 成人无遮挡网站| 在线免费十八禁| 夜夜爽夜夜爽视频| 日韩,欧美,国产一区二区三区 | 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美清纯卡通| 久久久久性生活片| 成人一区二区视频在线观看| 黄色配什么色好看| 三级国产精品欧美在线观看| 久久这里只有精品中国| 一级毛片久久久久久久久女| 中文字幕精品亚洲无线码一区| 最近最新中文字幕大全电影3| 亚洲av二区三区四区| 五月伊人婷婷丁香| 色哟哟·www| av视频在线观看入口| 老司机影院成人| 日韩欧美国产在线观看| 人人妻人人看人人澡| 欧美激情久久久久久爽电影| 国产亚洲5aaaaa淫片| 长腿黑丝高跟| 性插视频无遮挡在线免费观看| 蜜桃久久精品国产亚洲av| 看片在线看免费视频| 日本黄色视频三级网站网址| 国产成人免费观看mmmm| 久久99热这里只频精品6学生 | 亚洲不卡免费看| a级一级毛片免费在线观看| 插逼视频在线观看| 亚洲欧洲国产日韩| 中国国产av一级| 毛片一级片免费看久久久久| 午夜精品国产一区二区电影 | 精品一区二区免费观看| 欧美xxxx黑人xx丫x性爽| 99久国产av精品| 日韩在线高清观看一区二区三区| 寂寞人妻少妇视频99o| 精品久久久久久久久亚洲| 国产高清视频在线观看网站| 性插视频无遮挡在线免费观看| 久热久热在线精品观看| 亚洲无线观看免费| 国产午夜精品久久久久久一区二区三区| 国产成人福利小说| 久久韩国三级中文字幕| 免费黄色在线免费观看| 精品久久久噜噜| 国产av码专区亚洲av| 午夜a级毛片| 日日摸夜夜添夜夜爱| 男人和女人高潮做爰伦理| 亚洲天堂国产精品一区在线| www.av在线官网国产| 亚洲成人中文字幕在线播放| 久久久久久国产a免费观看| 免费观看的影片在线观看| 男人狂女人下面高潮的视频| 搞女人的毛片| 日本午夜av视频| 又粗又硬又长又爽又黄的视频| 色播亚洲综合网| 日本欧美国产在线视频| 热99re8久久精品国产| 秋霞伦理黄片| 亚洲精品日韩在线中文字幕| 国产精品人妻久久久影院| 2021少妇久久久久久久久久久| 欧美成人精品欧美一级黄| 国产伦一二天堂av在线观看| 成人亚洲欧美一区二区av| 3wmmmm亚洲av在线观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品一区蜜桃| 纵有疾风起免费观看全集完整版 | 国产精品1区2区在线观看.| av在线观看视频网站免费| 国产精品三级大全| 国产亚洲精品久久久com| 久久久久久久亚洲中文字幕| 国产高清不卡午夜福利| 亚洲欧美精品专区久久| 舔av片在线| 久久精品国产亚洲网站| 天堂影院成人在线观看| av在线亚洲专区| 日韩欧美精品v在线| av福利片在线观看| 人人妻人人澡欧美一区二区| 免费观看性生交大片5| 亚洲av电影不卡..在线观看| 国产精品99久久久久久久久| 亚洲乱码一区二区免费版| 免费搜索国产男女视频| 免费看av在线观看网站| 亚洲在久久综合| 日本色播在线视频| 男女视频在线观看网站免费| 国产精品永久免费网站| 在线天堂最新版资源| 精品一区二区免费观看| 男插女下体视频免费在线播放| 免费一级毛片在线播放高清视频| 日韩一本色道免费dvd| 国产精品爽爽va在线观看网站| 日韩 亚洲 欧美在线| 久久久精品大字幕| 亚洲中文字幕日韩| 国产精品一区二区三区四区久久| 少妇猛男粗大的猛烈进出视频 | 亚洲伊人久久精品综合 | 国产精品麻豆人妻色哟哟久久 | 九草在线视频观看| 少妇丰满av| 午夜福利在线观看吧| 男女那种视频在线观看| av在线蜜桃| 国产成人a∨麻豆精品| 国产伦一二天堂av在线观看| 淫秽高清视频在线观看| 美女被艹到高潮喷水动态| 村上凉子中文字幕在线| 好男人视频免费观看在线| 日韩亚洲欧美综合| 日韩av在线大香蕉| 国产一区有黄有色的免费视频 | 99久久人妻综合| 夜夜看夜夜爽夜夜摸| 国产精品三级大全| 久久精品国产亚洲网站| 国产乱人视频| 亚洲人与动物交配视频| 国产高潮美女av| 最后的刺客免费高清国语| 岛国毛片在线播放| 嫩草影院新地址| 看黄色毛片网站| 床上黄色一级片| 国产大屁股一区二区在线视频| 婷婷色综合大香蕉| 午夜精品国产一区二区电影 | 不卡视频在线观看欧美| 久久综合国产亚洲精品| 国产午夜精品论理片| 我的女老师完整版在线观看| 国产片特级美女逼逼视频| 中文字幕人妻熟人妻熟丝袜美| 如何舔出高潮| 亚洲av二区三区四区| 亚洲18禁久久av| 成人av在线播放网站| 特级一级黄色大片| 亚洲综合色惰| 人妻少妇偷人精品九色| 亚洲欧美成人精品一区二区| 色综合亚洲欧美另类图片| 国产黄色视频一区二区在线观看 | 亚洲国产精品成人综合色| 欧美+日韩+精品| 欧美性猛交╳xxx乱大交人| 联通29元200g的流量卡| 变态另类丝袜制服| 美女被艹到高潮喷水动态| 亚洲av成人av| 久久久久久久亚洲中文字幕| 亚洲av成人av| 精品国内亚洲2022精品成人| 高清av免费在线| 国产日韩欧美在线精品| 亚洲精品乱久久久久久| 久久久久久久亚洲中文字幕| 长腿黑丝高跟| 欧美潮喷喷水| av又黄又爽大尺度在线免费看 | 免费播放大片免费观看视频在线观看 | 欧美极品一区二区三区四区| 少妇被粗大猛烈的视频| 精品99又大又爽又粗少妇毛片| 黄片无遮挡物在线观看| 国产精品伦人一区二区| 欧美日本亚洲视频在线播放| 桃色一区二区三区在线观看| 国产午夜精品久久久久久一区二区三区| 国产乱来视频区| 男女啪啪激烈高潮av片| 国内精品宾馆在线| av在线蜜桃| 好男人在线观看高清免费视频| 日本免费在线观看一区| 国产片特级美女逼逼视频| 成人毛片60女人毛片免费| 日本欧美国产在线视频| 1000部很黄的大片| 久久精品夜色国产| 亚洲精品,欧美精品| 美女高潮的动态| 亚洲精品,欧美精品| 麻豆av噜噜一区二区三区| 亚洲精品,欧美精品| 国产精品国产三级国产专区5o | 久久精品国产亚洲av天美| 男人舔女人下体高潮全视频| 久久精品国产亚洲av天美| 国产午夜精品久久久久久一区二区三区| 国产乱来视频区| 欧美日本亚洲视频在线播放| 成人二区视频| 搡女人真爽免费视频火全软件| 99热这里只有精品一区| 亚洲伊人久久精品综合 | 午夜a级毛片| 久久久久久久国产电影| 免费av毛片视频| 亚洲精品一区蜜桃| 亚洲自偷自拍三级| 欧美潮喷喷水| 亚洲av.av天堂| 人妻系列 视频| 日本黄色视频三级网站网址| 日日干狠狠操夜夜爽| 国产午夜精品一二区理论片| 黑人高潮一二区| 国产精品久久电影中文字幕| 国产三级在线视频| 亚洲国产色片| 国产一级毛片七仙女欲春2| 久久6这里有精品| 麻豆一二三区av精品| 免费不卡的大黄色大毛片视频在线观看 | 91精品伊人久久大香线蕉| 一级毛片aaaaaa免费看小| 97人妻精品一区二区三区麻豆| 国产黄色视频一区二区在线观看 | 久久午夜福利片| 国产国拍精品亚洲av在线观看| 别揉我奶头 嗯啊视频| 亚洲av.av天堂| 观看免费一级毛片| 变态另类丝袜制服| 在线播放无遮挡| 我要搜黄色片| 亚洲色图av天堂| 一区二区三区乱码不卡18| 日本黄色视频三级网站网址| 亚洲欧美一区二区三区国产| 久久99蜜桃精品久久| 久久精品国产99精品国产亚洲性色| 国产不卡一卡二| 色尼玛亚洲综合影院| 亚洲av.av天堂| 真实男女啪啪啪动态图| 久久精品影院6| 日韩欧美在线乱码| 嫩草影院新地址| 黄色日韩在线| 99久国产av精品国产电影| 大话2 男鬼变身卡| 亚洲成人久久爱视频| 亚洲精品久久久久久婷婷小说 | 在线天堂最新版资源| 毛片女人毛片| 久久久亚洲精品成人影院| 99热这里只有是精品在线观看| 国产一区二区三区av在线| 中文字幕亚洲精品专区| 免费不卡的大黄色大毛片视频在线观看 | 日韩在线高清观看一区二区三区| 精品免费久久久久久久清纯| 看十八女毛片水多多多| 99久国产av精品国产电影| 又粗又爽又猛毛片免费看| 国产精品国产三级国产专区5o | 老女人水多毛片| 国产亚洲91精品色在线| 人人妻人人看人人澡| 久久99热这里只频精品6学生 | av在线天堂中文字幕| 国产精品99久久久久久久久| 欧美成人a在线观看| 欧美日韩一区二区视频在线观看视频在线 | 国产三级在线视频| 亚洲人成网站在线播| 亚洲精品乱久久久久久| 成人午夜精彩视频在线观看| 两个人的视频大全免费| 国产美女午夜福利| 中文欧美无线码| 日本三级黄在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | av国产久精品久网站免费入址| 亚洲第一区二区三区不卡| 亚洲欧美一区二区三区国产| 日韩中字成人| 中文字幕人妻熟人妻熟丝袜美| 国产成人精品婷婷| 国产伦一二天堂av在线观看| 亚洲高清免费不卡视频| ponron亚洲| 美女高潮的动态| 99久久精品热视频| 久久久精品大字幕| 国产精品精品国产色婷婷| 免费无遮挡裸体视频| 国语对白做爰xxxⅹ性视频网站| 大话2 男鬼变身卡| 韩国高清视频一区二区三区| 国产伦精品一区二区三区视频9| 日韩视频在线欧美| 免费大片18禁| 国产老妇女一区| 国产真实乱freesex| 自拍偷自拍亚洲精品老妇| 亚洲精品乱码久久久v下载方式| 少妇丰满av| 国产精品伦人一区二区| 国产精品无大码| 建设人人有责人人尽责人人享有的 | 伦精品一区二区三区| 久久韩国三级中文字幕| 国产免费福利视频在线观看| 韩国高清视频一区二区三区| 亚洲av.av天堂| 99久久精品一区二区三区| 日日干狠狠操夜夜爽| 熟女电影av网| 韩国av在线不卡| 99久久精品热视频| 免费一级毛片在线播放高清视频| 99国产精品一区二区蜜桃av| 看十八女毛片水多多多| 亚洲高清免费不卡视频| 国产成人aa在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av福利一区| 亚洲在线自拍视频| 亚洲自偷自拍三级| 国产成人a区在线观看| 美女国产视频在线观看| 亚洲久久久久久中文字幕| 五月伊人婷婷丁香| 女人被狂操c到高潮| av播播在线观看一区| 久久久久性生活片| 国产三级中文精品| 久久久久性生活片| av在线观看视频网站免费| 午夜爱爱视频在线播放| 中文欧美无线码| 亚洲天堂国产精品一区在线| 欧美性猛交╳xxx乱大交人| 国产精品一区二区在线观看99 | 亚洲精品影视一区二区三区av| 我的老师免费观看完整版| 成人鲁丝片一二三区免费| 国产精品国产三级国产av玫瑰| 欧美高清成人免费视频www| 男女视频在线观看网站免费| 久久久久久九九精品二区国产| 晚上一个人看的免费电影| 又粗又硬又长又爽又黄的视频| 国产伦在线观看视频一区| 久久午夜福利片| 久久久午夜欧美精品| av线在线观看网站| 男女边吃奶边做爰视频| 国产精品1区2区在线观看.| 国产精品美女特级片免费视频播放器| 男人舔女人下体高潮全视频| 可以在线观看毛片的网站| 最近中文字幕高清免费大全6| av在线蜜桃| 国产v大片淫在线免费观看| 国产一区亚洲一区在线观看| 中文资源天堂在线| 亚洲欧美清纯卡通| 中文欧美无线码| 欧美一级a爱片免费观看看| 一个人免费在线观看电影| 国产一级毛片七仙女欲春2| 又爽又黄无遮挡网站| 国产精品,欧美在线| 亚洲性久久影院| 男插女下体视频免费在线播放| 亚洲自拍偷在线| 亚洲人成网站高清观看| 搡老妇女老女人老熟妇| 91久久精品电影网| 成年av动漫网址| 久久久久久大精品| 亚洲成人av在线免费| 三级国产精品片| 国产精品,欧美在线| 久久精品国产亚洲av涩爱| 亚洲四区av| 精华霜和精华液先用哪个| 联通29元200g的流量卡| 色播亚洲综合网| 欧美又色又爽又黄视频| 国产av一区在线观看免费| 激情 狠狠 欧美| 欧美区成人在线视频| 国产亚洲一区二区精品| 又粗又硬又长又爽又黄的视频| 亚洲国产精品合色在线| 热99re8久久精品国产| 美女国产视频在线观看| 亚洲在久久综合| 国产淫片久久久久久久久| www日本黄色视频网| 波多野结衣巨乳人妻| 18禁在线无遮挡免费观看视频| 日本与韩国留学比较| 国产精品麻豆人妻色哟哟久久 | 国产久久久一区二区三区| 一级毛片电影观看 | 女人十人毛片免费观看3o分钟| 国产精品综合久久久久久久免费| 欧美成人午夜免费资源| 中文字幕熟女人妻在线| 波野结衣二区三区在线| 麻豆乱淫一区二区| 亚洲国产欧洲综合997久久,| 欧美不卡视频在线免费观看| 人妻系列 视频| 国产一区亚洲一区在线观看| 久久久久国产网址| 午夜激情福利司机影院| 日韩大片免费观看网站 | 免费观看a级毛片全部| 韩国高清视频一区二区三区| 亚洲人成网站高清观看| 日本猛色少妇xxxxx猛交久久| 成人午夜精彩视频在线观看| 人妻夜夜爽99麻豆av| 日韩欧美精品免费久久| 国内精品美女久久久久久| 精品欧美国产一区二区三| 久久久久久九九精品二区国产| 久久人人爽人人片av| 亚洲自拍偷在线|