• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A BPR-CNN Based Hand Motion Classifier Using Electric Field Sensors

    2022-08-23 02:20:04HunminLeeInseopNaKamoliddinBultakovandYoungchulKim
    Computers Materials&Continua 2022年6期

    Hunmin Lee,Inseop Na,Kamoliddin Bultakov and Youngchul Kim,

    1Department of Computer Science,Georgia State University,Atlanta,30302,USA

    2Nat’l Program of Excellence in Software Centre,Chosun University,Gwangju,61452,Korea

    3Department of Computer Inf.&Communication Eng.,Chonnam Nat’l Univ.,Gwangju,61186,Korea

    Abstract: In this paper, we propose a BPR-CNN (Biometric Pattern Recognition-Convolution Neural Network) classifier for hand motion classification as well as a dynamic threshold algorithm for motion signal detection and extraction by EF (Electric Field) sensors.Currently, an EF sensor or EPS (Electric Potential Sensor) system is attracting attention as a next-generation motion sensing technology due to low computation and price,high sensitivity and recognition speed compared to other sensor systems.However,it remains as a challenging problem to accurately detect and locate the authentic motion signal frame automatically in real-time when sensing body-motions such as hand motion,due to the variance of the electric-charge state by heterogeneous surroundings and operational conditions.This hinders the further utilization of the EF sensing; thus, it is critical to design the robust and credible methodology for detecting and extracting signals derived from the motion movement in order to make use and apply the EF sensor technology to electric consumer products such as mobile devices.In this study,we propose a motion detection algorithm using a dynamic offset-threshold method to overcome uncertainty in the initial electrostatic charge state of the sensor affected by a user and the surrounding environment of the subject.This method is designed to detect hand motions and extract its genuine motion signal frame successfully with high accuracy.After setting motion frames,we normalize the signals and then apply them to our proposed BPR-CNN motion classifier to recognize their motion types.Conducted experiment and analysis show that our proposed dynamic threshold method combined with a BPR-CNN classifier can detect the hand motions and extract the actual frames effectively with 97.1%accuracy,99.25%detection rate,98.4%motion frame matching rate and 97.7%detection&extraction success rate.

    Keywords: BPR-CNN; dynamic offset-threshold method; electric potential sensor; electric field sensor; multiple convolution neural network; motion classification

    1 Introduction

    The EF(Electric Field)sensor extracts information by sensing the variations of the electric charge near the surface of the sensor and converts the signal into voltage-level output.Today, EF sensors are mainly categorized by two modes, contact mode and non-contact mode.The contact mode has widely been applied in the area of healthcare and medical applications by sensing bioelectric signals such as electrocardiogram,electromyogram and electroencephalogram[1–5].Meanwhile,non-contact type measures the electric potential signal on the surface of EF sensors induced by the disturbance of the surrounding electric field which is caused by movement of dielectric substances such as human bodies or hands due to coupling effect [6].A few of non-contact EF sensor systems have been applied in commercial products, while several studies in academic institutions have been reported in application areas of proximity sensing, placement identification, etc [7–10].As EF proximity sensing systems are gaining attention,recent studies have been published regarding the area of hand or body motion detection and recognition [11–21].Our past studies [11–14] were focused on noncontact EF sensing,extracting and processing the signals through EF sensors.Moreover,by utilizing deep learning algorithms such as LSTM and CNN,multiple hand gesture classification mechanisms were proposed after a series of signal processing steps.Wimmer et al.[22]introduced the‘Thracker’device that utilized capacitive sensing,which encouraged the possibility of interaction between human and computer systems through non-contact capacitive sensing.Singh et al.[15] suggested a gesture recognition system called Inviz for paralysis patients that implemented textile-built capacitive sensors,measuring the capacitance interaction between the patient’s body and the sensor.Aezinia et al.[16]designed a three-dimensional finger tracking system through a capacitive sensor,which was functional within 10 cm range from the sensor.

    In this paper, we present a real-time hand motion detection and classification system adopting Biometric Pattern Recognition-Convolution Neural Network(BPR-CNN)classifiers combined with a dynamic threshold method for automatic motion detection and motion-frame extraction(Fig.1)in EF signals.Our proposed system is fully automated with real-time motion detections,extracting the true frame and classifying motion types occurring at the range of up to 30 cm near the EF sensors.Accuracies of detecting hand motions and extracting signal frames were quantitatively rated through our suggested metrics.Furthermore, we suggest the simulation results of our CNN architectures;Multiple CNN(MCNN)and BPR-CNN with other classification algorithms and empirically evaluate the hand gesture classification performance.

    Figure 1:A proposed hand motion extraction and classification process

    This paper is organized as follows.Section 2 describes our suggested methods of computing the dynamic threshold for motion detection and frame extraction by analyzing the intrinsic features of the EF signals.We also explain the two CNN-based motion classifiers that were designed and thus applied into our system.In Section 3,we present the results of four hand gesture classifications through multiple experiments.In conclusion,we conclude our study and suggest the future works.

    2 Discussion

    In this section, we explain our dynamic threshold method for motion detection and frame extraction in the EF sensor signals.After setting the optimal signal frame,we conduct normalization followed by transforming the dimensions of normalized data in order to be trained into our proposed CNN model.We implement the MCNN and BPR-CNN to effectively train the features of the transformed signals thus classifying the inputs into corresponding gestures.Note that we handle the signals that have been already processed through Low-Pass-Filter(LPF)and Simple Moving Average(SMA).Since natural frequency from the human hand or arm is known to have 5~10 Hz[23],which is a domain of extremely low frequency,thus we use the 10 Hz as a cut-off frequency in the LPF.The readers can refer to our previous studies[11–14]for more information regarding the implementation of LPF to filter out unnecessary noises and conduct the Moving Average to smoothen the filtered gesture signal from the sensor.

    2.1 Dynamic Offset and Threshold

    One of the challenging problems in dynamic thresholding in order to detect the signal and to locate the “genuine”signal frame is to compute an offset voltage for each Electric Potential Sensor(EPS)and adjust the threshold values periodically before detecting the target hand motion.As most hand motions and gestures are being done within a short period of time,we set the update cycle time unit to be a second.We implemented two EPS(Sensor A,B,sensor type PS25401)[14,23],and each sensor started with unidentical initial offset due to the various electric charging and discharging states near the sensors according to diverse environmental conditions in the moment of time.

    Through our empirical past simulations,the initial voltagevinit∈R(unit:V)ranges from-0.2 ≤vinit≤0.02 withμ(?vinit)= -0.08 andσ(?vinit)= 0.03 whereμdenotes average andσis standard deviation,when implementing EPS to measure the capacitance changes when the subject is proximally located.The statistics were acquired from four distinct hand gesture types(Tab.1),each conducting 600 trials;n(?vinit)=600,and the distribution visualization ofvinitis shown in Fig.2a.LetS={vn|1 ≤n≤T·1000,n∈N} be a set of time series raw sensor (voltage) datavn, where the sampling ratewhichn(S)=1000 whenT=0.001sec.

    Table 1: Motion types and their images

    Likewise,due to heterogeneous property ofS,dynamictracks the discrete variantand its upper and lower bound, which maintains the robustness regardless of time-variant offset value.As for the time-varying signal pattern which is the electric field disturbances due to hand motion,charging and discharging the electrics triggers the voltages to display waveform.Figs.2b and 2c shows the typical output signal that charges and discharges the sensor plate which soars up(otherwise falls down),reaching its peak(bottom),then descends to bottom point(vice versa)and finally returns to an initial level when there was a hand gesture near the sensor plate.

    Figure 2:(a)distribution of vinit in 800 trials.(b,c)the produced EF signals,each with sensor A,B and A–B,where is(b)after the LPF and(c)after LPF&SMA

    Due to these features,dynamicare considered to be effective in order to detect our targets which limits the possible starting point of a next hand motion,and we empirically show its detection rate in Section 3.

    2.2 Motion Detection and Extraction

    Each individual hand motion generates unidentical signal phases depending on various conditions such as hand movement speed,distance and direction.In order to detect and extract the corresponding motion frames,we considered not only the duration,but also the time frame that could be divided into the stages of motion.The detection is composed of 4 steps where the left and right term enclosed with braces each indicate the two contrasting cases(case 1,2).The detection steps are indicated as follows;

    In Fig.3,a signal of hand gesture moved from left to right(LR)is shown.As we make another hand gesture,it detects the motion and locates the following frame continuously.Fig.3 contains two motion signals;each signal obtained from two different sensors(A-red and B-blue),where the dotted lines intersected with the signals show the starting point of the frame(magenta dot)and ending point of the frame(black dot).Each red and blue dot indicates the intersection point where=vi.Through these steps we could successfully distinguish the hand motions and compute the significant frame that encompasses the authentic motion signals.

    2.3 Normalization of an Extracted Motion Frame

    When hand motions are identified by the sensor,the time period of the extracted frame is diverse even if the motions were the same types,due to the speed or distance range of the motion.Likewise,the amplitude of the motion signal also tends to change on every new motion since the subject’s potential electrostatic state varies through numerous conditions such as textile of the cloth,location,or nearby machines,etc[4,9,11,12].Thus,it is imperative to conduct normalization in order to be properly trained in deep learning models as normalizing input data is known to be a productive measure to enhance the performance.In our signal,the time(X-axis)and voltage(Y-axis)are the two axes that are to be normalized.For Y-axis,standardization was applied and letwhered=(n′′-|n′′-n′|·0.1)-(n′+|n′′-n′|·0.1),For X-axis,we normalizedn(into 1000, deletingd- 1000 data ink-periodical sequence, whereThis leads to= 1000, computingwhere 0 ≤m <(d-1000).The normalized signal is shown in Fig.4, where the dotted line indicates the extracted frame of clockwise(CW)hand gesture,meanwhile solid line is the result after the normalization.Note that even if the identical subject performs the same motion type in a homogeneous environment such as time and location,the phase of the signal is distinctive due to the constantly varying charging state.

    Figure 3:Motion frame extraction visualization

    Figure 4:Visualization of original clockwise hand motion frame signal and normalized frame signal

    2.4 Signal Dimension Transformation

    After applying the normalized motion frame, the signal frame must be transformed from 1-dimension voltage signal to 2-dimension image in order to train the CNN model.Based onwheren(=1000,we primarily reducen()into 900,deleting theandin order to compute the 30×30×1 image(900 = 30·30).Fig.5 shows the schematization of transforming the motion frame into the 30×30×1 image format.

    Figure 5: Dimensional transformation of a motion frame: (a) the transformation schematization reshaped into(30×30×1)grayscale image,(b)the transformed images for 4 hand gestures

    2.5 Motion Classification Through CNN Models

    In this section,we define the structure of our two CNN-based classifiers;MCNN and BPR-CNN that were implemented to effectively categorize the types of input hand motion signal images.

    2.5.1 Multiple CNN Classifiers with Voting Logics

    The first classifier is composed of five pre-trained CNN models, which are operated in parallel with unidentical filter size in their convolution layer.Fig.6 shows a five-layer CNN structure that was applied in our MCNN.

    This model was trained through the extracted feature patterns from convolution layers learning local features to global features.After the fully-connected layer andsoftmaxfunction,it outputs the class probabilityp(f(x)|x)(soft label).Once the CNN classifiers have been trained,each CNN predicts the input into a single category.Fig.6 represent that an example of implemented CNN structure.The kernel size of each Chin?is as follows;δ(C1,??)= (5×5),δ(C2,??)= (7×7),δ(C3,??)= (3×3),δ(C4,1)=(5×5),δ(C4,2)=(3×3),δ(C5,1)=(7×7)andδ(C5,2)=(3×3).

    Figure 6:An example of implemented CNN structure

    The outputs from the five CNNs are considered in order to make the final classification prediction through majority voting as shown in Fig.7.Each input data consists of three 30×30×1 images,which represents three channels for sensor A,B and A-B signals.These three motion signal images are extracted in real-time and inserted into pre-trained CNN classifiers in Fig.6.

    Figure 7:Parallel multiple CNN with majority voting classifier

    Our ultimate goal is to successfully classify the four types of hand motions (Tab.1) with high accuracy.Recall that the five CNN contains different kernel sizes,(refer to Fig.6 for detailed kernel sizes in each layer) and MCNN classifier conducts majority voting (Fig.7) between soft labels.LetH= {Ch|1 ≤h≤5,h∈N} and letδ(Ch,?)a kernel size on convolution layerCh??= {1,2},whereChdenotes a CNN model,andhis an index of the model.Ch(y,f(x),L(w,b,x))=Ph(x),whereydenotes the true class,f(x)is a prediction class and loss functionL(·)based on set of weightw,biasband inputx.Ch(·)calculates a label prediction probabilityPhand eventually computing hard labelH(x)=argVoting classifier aggregates theH?h(x), and final classification ?y=arg max(φ(H?h(x)))whereφ(Hh(x))= {γi|1 ≤i≤4,i∈N,(Hh(x)=g(i))→γi+1}where initialγ?i=0.

    2.5.2 BPR-CNN Classifier

    Biomimetic Pattern Recognition (BPR) [16,23–25] utilizes high-level topology features from biomimetic signals to discover certain patterns, which focuses on the concept of cognizing feature topology.Combining BPR with CNN (BPR-CNN) triggers higher performance as features are extracted from the CNN model, and BPR computes the topological manifold properties in given Euclidean parameter space based on Complex Geometry Coverage (CGC) [26] as shown in Fig.8.Manipulating the prediction probabilityP(x),it computes theηnumber of distance-based clusters?η,?η?P(xi)where 1 ≤i ≤n(x),i ∈N,η=n(classes)=n(P(x)).Since the set of trained w and b itself are not permutationally invariant,we cannot implement the distance-based geometry coverage based on the w and b.

    Figure 8:Visualization of the BPR-CNN mechanism

    However,P(x)would indicate the proximity between the classes and the output ofx, which guarantees the closest single class in the Euclidean space.Based on the proximity of class-wise topological space,it cognizes the matter using the high-level features.The processed input image set is abstruse to distinguish the classes or interpret the meanings of the indicated number of the pixels in the human eye,thus high-level robust features are preferred to accurately compute the decision boundary instead of using low-level features.To elaborate,input images that clearly show an object for CNN to classify the target such as cat or dog,their intrinsic features are distinct such as its eye,nose,or other parts of the subject,whereas our case doesn’t.

    Our case specifically requires the robust features in high-level feature space where the trend of each hand motion signal image could be found.Implementing the BPR-CNN,we could derive better input signal classification performance compared to conventional CNN,and we validate this through experiments in Section 3.In BPR classifier,pre-trained CNN model=P(x)andφ(?P(xi))=?η,whereφ(·)indicates pairwise distance-based clustering such as K-means(K=η)[27].In Euclidean space Rη,where Rη??η?P(xi),K(xnew)=argmin1≤k≤η,k∈NdL2(μ(?k),P(xnew)),which allocatesxnewto?Kwherexnew/xi.The layer structure of the CNN was set with Conv-MaxPooling-Conv-MaxPooling- Conv-MaxPooling-Dense-Dense.The kernel size of each convolution and maxpooling layers were set with 5×5 and 2×2 respectively.

    3 Experimental Results

    3.1 Experiment Setting

    Through the empirical experiments,we evaluate the performance of our designed methodology.Utilizing the EPS sensor[14,28],four hand motion types indicated in Tab.1 were extracted from each of six subjects, 100 gestures for each motion, collecting a total of 2400 motion samples.Among the dataset, we randomly split the 2160 samples for training and 240 for test data.The extracted raw signal was processed through consecutive signal processing methods starting from the LPF and SMA,followed by automatically detecting hand motions and setting signal frame by dynamic threshold,and normalizing the signal.Next,we transform the signal into an image and a pre-trained classifier determines its label.Note thatη=4,since our objective is to classify the four motion types(Tab.1).All this process(Fig.1)is operated in real-time and test dataset were generated and classified(Less than second when computing through CPU i7–7500U RAM 8GB).The performance has been measured through our metrics of Correct Detection Rate(CDR),Motion Frame Matching Rate(MFMR)and Detection & Extraction Success Rate (DESR).CDR shows the degree of correspondence between the signal and the actual motion, and the MFMR quantitatively assesses the matching rate of the computed motion frame.Finally,DESR is obtained by CDR multiplied by MFMR to indicate their combined accuracy level.The training epoch was set with 20 and learning rate of 0.01, withreluactivation function in each convolution layer.

    3.2 Experiment Result

    Following Tab.2 shows the result of our three designated metrics, which validates that the proposed method of our study works with high accuracy of around 98%on average.

    Table 2: Performance of the selected metrics

    Following Tab.3 displays the experiment results of the four classifier algorithms.Their performances were evaluated with classification accuracy based on identical test data of four specific hand motions in Tab.1.We denote the average of four motion accuracy as Classification Correction Rate(CCR), which is computed in Tab.3.From each motion in Tab.1, three distinct output signals are produced;sensor A value,sensor B value and subtracted value(A-B).Performance of the two CNN classifiers (MCNN and BPR-CNN) were also compared with other algorithms such as HMM and SVM.Our experiment results show that the suggested motion detection and frame extraction based on the two threshold works with high CDR and MFMR,and also the classification accuracy of BPRCNN classifier outperformed other competitive models.

    Table 3: Classification correction rate of the BPR-CNN model

    4 Conclusion and Future Works

    In this paper,we proposed the dynamic thresholding and framing algorithms in order to set the accurate motion EF signal frame in real-time, and evaluated its performance using the following metrics;99.4%in CDR,98.4%in MFMR,97.8%in DESR.Moreover,we implemented the MCNN and BPR-CNN motion classifiers and compared the accuracy with other algorithms.Based on the extracted features of the 3 channel (sensor A, B, A-B) input signal images, BPR-CNN had shown the highest performance of 97.1% in CCR.Utilizing EF sensing is regarded as a prospective research domain and accommodates practical usage in industry due to diverse advantages such as low computation & price, high sensitivity & recognition speed.Our future work is to adopt the introduced methods to mobile devices and apply the algorithms to control the interface through noncontact hand motions.Training and classifying the diverse and detailed gestures in order to gain algorithmic robustness and versatility is a part of our future work.Combining our studies into interface technologies such as Human Computer Interaction(HCI)or Natural User Interface(NUI),we expect the further utilizations of controlling the various applications through user-friendly interfaces based on EF sensing.

    Funding Statement:This work was supported by the NRF of Korea grant funded by the Korea government(MIST)(No.2019 R1F1A1062829).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲成人手机| 久久精品国产综合久久久 | h视频一区二区三区| 两个人免费观看高清视频| 国产在线免费精品| 香蕉国产在线看| xxx大片免费视频| xxxhd国产人妻xxx| 美女内射精品一级片tv| 久久韩国三级中文字幕| 97精品久久久久久久久久精品| 国产欧美日韩一区二区三区在线| 国产精品久久久av美女十八| 不卡视频在线观看欧美| 国产免费福利视频在线观看| av播播在线观看一区| 亚洲精品色激情综合| 亚洲情色 制服丝袜| 18禁在线无遮挡免费观看视频| 欧美国产精品va在线观看不卡| 色婷婷久久久亚洲欧美| 2021少妇久久久久久久久久久| 久久 成人 亚洲| 久久精品国产综合久久久 | 黑丝袜美女国产一区| 免费观看av网站的网址| 日韩av在线免费看完整版不卡| 91国产中文字幕| 哪个播放器可以免费观看大片| 日韩精品有码人妻一区| 十分钟在线观看高清视频www| 自拍欧美九色日韩亚洲蝌蚪91| 一级毛片电影观看| 成人18禁高潮啪啪吃奶动态图| 成年人午夜在线观看视频| 91成人精品电影| 久久精品人人爽人人爽视色| 国产麻豆69| 亚洲色图综合在线观看| 在线亚洲精品国产二区图片欧美| 国产成人精品在线电影| 国产成人免费观看mmmm| 热99国产精品久久久久久7| 国产深夜福利视频在线观看| 99精国产麻豆久久婷婷| 亚洲精品色激情综合| 最近手机中文字幕大全| 国产xxxxx性猛交| 国产免费福利视频在线观看| 日韩av免费高清视频| 一本—道久久a久久精品蜜桃钙片| 又大又黄又爽视频免费| av卡一久久| 18禁观看日本| 波野结衣二区三区在线| 成人国语在线视频| 曰老女人黄片| 久久av网站| 18在线观看网站| 黑人猛操日本美女一级片| 欧美日韩av久久| 免费人成在线观看视频色| 大话2 男鬼变身卡| 久久久精品94久久精品| 婷婷成人精品国产| 看十八女毛片水多多多| 成人国语在线视频| 日韩 亚洲 欧美在线| 成年动漫av网址| 国产成人精品无人区| 国产欧美另类精品又又久久亚洲欧美| 人妻少妇偷人精品九色| 青春草视频在线免费观看| 国产免费福利视频在线观看| 成人影院久久| 晚上一个人看的免费电影| 18+在线观看网站| 天天操日日干夜夜撸| 啦啦啦在线观看免费高清www| 久久人人爽人人爽人人片va| a级毛片黄视频| 亚洲三级黄色毛片| 只有这里有精品99| 黄片播放在线免费| 久久精品国产亚洲av天美| 女人久久www免费人成看片| 99热国产这里只有精品6| 亚洲色图综合在线观看| 久久久久久人妻| 久久久国产精品麻豆| 精品国产一区二区久久| 高清欧美精品videossex| 午夜福利视频在线观看免费| 国产永久视频网站| 人人澡人人妻人| 蜜桃国产av成人99| 黑丝袜美女国产一区| 亚洲一级一片aⅴ在线观看| 国产精品久久久久成人av| tube8黄色片| 国产成人精品久久久久久| 啦啦啦在线观看免费高清www| 欧美日韩av久久| 午夜免费男女啪啪视频观看| 两性夫妻黄色片 | 日日啪夜夜爽| 男女下面插进去视频免费观看 | 91精品三级在线观看| 免费观看a级毛片全部| 日日爽夜夜爽网站| 国产成人精品一,二区| 中文天堂在线官网| 精品第一国产精品| 亚洲av在线观看美女高潮| 熟女电影av网| 国产精品一区二区在线不卡| 国产精品久久久久久久久免| 国产成人精品在线电影| 亚洲欧洲日产国产| 欧美成人精品欧美一级黄| 欧美激情极品国产一区二区三区 | 亚洲三级黄色毛片| 91国产中文字幕| 一区二区三区四区激情视频| 久久久久久久亚洲中文字幕| 汤姆久久久久久久影院中文字幕| 国产av国产精品国产| 久久久久久人妻| 插逼视频在线观看| 国国产精品蜜臀av免费| 欧美成人精品欧美一级黄| 国产精品一区二区在线观看99| 女人精品久久久久毛片| 秋霞在线观看毛片| 国产精品一区二区在线观看99| 日韩中文字幕视频在线看片| 久久精品久久久久久久性| 九草在线视频观看| 在线观看三级黄色| 欧美 日韩 精品 国产| 亚洲经典国产精华液单| 午夜久久久在线观看| 国产精品国产三级国产专区5o| 99国产精品免费福利视频| 国产国语露脸激情在线看| 日韩欧美精品免费久久| 丝袜喷水一区| 制服丝袜香蕉在线| 我的女老师完整版在线观看| 黄色怎么调成土黄色| 美女国产高潮福利片在线看| 狠狠精品人妻久久久久久综合| 一二三四在线观看免费中文在 | 国产有黄有色有爽视频| 18在线观看网站| 香蕉国产在线看| 美女主播在线视频| av又黄又爽大尺度在线免费看| 在线观看美女被高潮喷水网站| 日本欧美国产在线视频| 亚洲精品日本国产第一区| 午夜精品国产一区二区电影| 欧美变态另类bdsm刘玥| 色5月婷婷丁香| h视频一区二区三区| 久久精品熟女亚洲av麻豆精品| 国产精品久久久久久精品古装| 蜜桃国产av成人99| 新久久久久国产一级毛片| 国产在视频线精品| 2021少妇久久久久久久久久久| 国产黄色视频一区二区在线观看| 国产精品99久久99久久久不卡 | 在线观看国产h片| 黄色视频在线播放观看不卡| 伊人久久国产一区二区| 成人午夜精彩视频在线观看| 亚洲性久久影院| 国产色婷婷99| 久久婷婷青草| 亚洲欧美一区二区三区黑人 | 免费人妻精品一区二区三区视频| av天堂久久9| 亚洲精品日本国产第一区| 国产淫语在线视频| 精品福利永久在线观看| 26uuu在线亚洲综合色| 免费不卡的大黄色大毛片视频在线观看| 久久人人爽av亚洲精品天堂| 亚洲精品国产av成人精品| 性色av一级| 精品人妻在线不人妻| 久久人妻熟女aⅴ| 日日撸夜夜添| 国产1区2区3区精品| 韩国高清视频一区二区三区| 人妻 亚洲 视频| 最近中文字幕2019免费版| 26uuu在线亚洲综合色| 视频中文字幕在线观看| 日韩 亚洲 欧美在线| av在线app专区| 国产伦理片在线播放av一区| 久久久久视频综合| 激情视频va一区二区三区| 免费av不卡在线播放| 国产男女内射视频| 亚洲av在线观看美女高潮| 日韩一本色道免费dvd| 国产成人免费无遮挡视频| 成年女人在线观看亚洲视频| 亚洲av.av天堂| 免费黄色在线免费观看| 国产成人精品久久久久久| 人人妻人人添人人爽欧美一区卜| 久久精品熟女亚洲av麻豆精品| 五月伊人婷婷丁香| 国产成人aa在线观看| 欧美激情极品国产一区二区三区 | 久久亚洲国产成人精品v| 草草在线视频免费看| 少妇 在线观看| 久久精品人人爽人人爽视色| 黄片播放在线免费| 两个人免费观看高清视频| 草草在线视频免费看| 亚洲欧美日韩另类电影网站| 人人妻人人澡人人爽人人夜夜| 2018国产大陆天天弄谢| 十八禁高潮呻吟视频| 视频在线观看一区二区三区| 亚洲精品日本国产第一区| 日韩,欧美,国产一区二区三区| 在线观看三级黄色| 精品99又大又爽又粗少妇毛片| 一级片免费观看大全| 午夜福利视频精品| 亚洲欧美成人精品一区二区| 亚洲综合色惰| 如何舔出高潮| 2022亚洲国产成人精品| 午夜91福利影院| 蜜桃在线观看..| 国产成人免费观看mmmm| 久久久久久人妻| 1024视频免费在线观看| 精品一区二区三区视频在线| 一级毛片黄色毛片免费观看视频| 久久97久久精品| 一区二区日韩欧美中文字幕 | 国产乱来视频区| 国产精品久久久久久久电影| 久久国产亚洲av麻豆专区| 亚洲欧美色中文字幕在线| 美女主播在线视频| 欧美3d第一页| 亚洲av中文av极速乱| 最近手机中文字幕大全| 国产精品一区二区在线观看99| 在线观看国产h片| 国产成人精品一,二区| 免费在线观看黄色视频的| 九色亚洲精品在线播放| 永久网站在线| 丰满少妇做爰视频| 女人久久www免费人成看片| 久久ye,这里只有精品| 国产色爽女视频免费观看| av免费观看日本| 国产黄色视频一区二区在线观看| 亚洲一码二码三码区别大吗| 美国免费a级毛片| 亚洲,欧美,日韩| 自拍欧美九色日韩亚洲蝌蚪91| 熟妇人妻不卡中文字幕| 亚洲熟女精品中文字幕| 日韩一区二区三区影片| 永久免费av网站大全| 国产免费视频播放在线视频| 久久久久久久久久成人| 精品久久国产蜜桃| 国产免费又黄又爽又色| 成人国产av品久久久| 天美传媒精品一区二区| 一区二区日韩欧美中文字幕 | 18禁动态无遮挡网站| 婷婷色麻豆天堂久久| 2021少妇久久久久久久久久久| 女人久久www免费人成看片| 成人漫画全彩无遮挡| 亚洲国产看品久久| 少妇的丰满在线观看| 自线自在国产av| 制服诱惑二区| 啦啦啦啦在线视频资源| 亚洲精品久久久久久婷婷小说| 国产精品久久久久成人av| 国产精品.久久久| 久久热在线av| 亚洲欧美成人精品一区二区| 欧美精品av麻豆av| 成年动漫av网址| 亚洲一级一片aⅴ在线观看| 天天躁夜夜躁狠狠躁躁| 观看av在线不卡| 99热6这里只有精品| 高清黄色对白视频在线免费看| 嫩草影院入口| 亚洲精品美女久久av网站| 青春草亚洲视频在线观看| 精品国产一区二区三区四区第35| 亚洲精品色激情综合| 99久久人妻综合| 日韩中字成人| 国产欧美日韩一区二区三区在线| 免费观看a级毛片全部| 国产精品国产三级国产专区5o| 边亲边吃奶的免费视频| 9热在线视频观看99| 你懂的网址亚洲精品在线观看| 日日摸夜夜添夜夜爱| 国产伦理片在线播放av一区| 欧美性感艳星| 久久久欧美国产精品| 亚洲综合色网址| 少妇精品久久久久久久| 国产欧美另类精品又又久久亚洲欧美| 少妇精品久久久久久久| 日韩三级伦理在线观看| 国产色爽女视频免费观看| 亚洲国产精品专区欧美| 十八禁高潮呻吟视频| 亚洲欧洲国产日韩| 免费黄网站久久成人精品| 69精品国产乱码久久久| 三上悠亚av全集在线观看| 91aial.com中文字幕在线观看| 51国产日韩欧美| 大话2 男鬼变身卡| 国产老妇伦熟女老妇高清| 99视频精品全部免费 在线| 毛片一级片免费看久久久久| 成人亚洲精品一区在线观看| 男男h啪啪无遮挡| 看免费成人av毛片| 卡戴珊不雅视频在线播放| 久久久久国产网址| 亚洲欧美日韩卡通动漫| 欧美人与善性xxx| 精品第一国产精品| 亚洲在久久综合| 精品一区在线观看国产| 久久毛片免费看一区二区三区| 午夜久久久在线观看| 亚洲国产看品久久| 欧美国产精品一级二级三级| kizo精华| 青青草视频在线视频观看| 国产伦理片在线播放av一区| 色视频在线一区二区三区| 午夜福利,免费看| 欧美精品av麻豆av| 人人妻人人爽人人添夜夜欢视频| 日本av手机在线免费观看| 99re6热这里在线精品视频| 人人澡人人妻人| 欧美老熟妇乱子伦牲交| 色视频在线一区二区三区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | √禁漫天堂资源中文www| 国产xxxxx性猛交| 国国产精品蜜臀av免费| 80岁老熟妇乱子伦牲交| 中文字幕最新亚洲高清| 久久av网站| 黑人欧美特级aaaaaa片| 久久久久精品人妻al黑| 黄色毛片三级朝国网站| 久久精品人人爽人人爽视色| 一区二区三区乱码不卡18| 最近中文字幕2019免费版| 精品久久久精品久久久| 亚洲av日韩在线播放| 中文乱码字字幕精品一区二区三区| 寂寞人妻少妇视频99o| 亚洲欧美清纯卡通| 边亲边吃奶的免费视频| 亚洲精品成人av观看孕妇| 18在线观看网站| 一级黄片播放器| 汤姆久久久久久久影院中文字幕| 婷婷成人精品国产| 亚洲美女视频黄频| av在线老鸭窝| 国产男女内射视频| 日韩成人伦理影院| 亚洲,一卡二卡三卡| 日韩,欧美,国产一区二区三区| 最近中文字幕高清免费大全6| 日韩,欧美,国产一区二区三区| 亚洲欧美日韩卡通动漫| 大陆偷拍与自拍| 又黄又粗又硬又大视频| 在线看a的网站| 男人爽女人下面视频在线观看| 成人毛片a级毛片在线播放| 成年人午夜在线观看视频| 美女大奶头黄色视频| 九色亚洲精品在线播放| 欧美精品一区二区免费开放| 国产欧美日韩一区二区三区在线| 久久久久久伊人网av| 女的被弄到高潮叫床怎么办| 成人毛片60女人毛片免费| 18禁在线无遮挡免费观看视频| 免费人成在线观看视频色| 亚洲精品一二三| 一本色道久久久久久精品综合| 热re99久久精品国产66热6| 超色免费av| 丝袜脚勾引网站| 午夜福利网站1000一区二区三区| 一区二区三区乱码不卡18| 久久国产精品大桥未久av| 毛片一级片免费看久久久久| 另类亚洲欧美激情| 国产精品免费大片| 国产乱人偷精品视频| 国产 一区精品| 最近的中文字幕免费完整| 亚洲成色77777| 丰满迷人的少妇在线观看| 成人综合一区亚洲| 男女啪啪激烈高潮av片| 人成视频在线观看免费观看| 校园人妻丝袜中文字幕| 少妇精品久久久久久久| 免费在线观看黄色视频的| 国产精品久久久久久精品电影小说| www.av在线官网国产| 国产亚洲午夜精品一区二区久久| 最近中文字幕高清免费大全6| 男女高潮啪啪啪动态图| 一个人免费看片子| 精品国产乱码久久久久久小说| 国产乱来视频区| 交换朋友夫妻互换小说| 夜夜骑夜夜射夜夜干| 伦理电影大哥的女人| 国产成人av激情在线播放| 国产av一区二区精品久久| 欧美精品国产亚洲| 国产亚洲av片在线观看秒播厂| 日本午夜av视频| 久久99热6这里只有精品| 91午夜精品亚洲一区二区三区| 老司机亚洲免费影院| 全区人妻精品视频| 美女福利国产在线| 在线天堂中文资源库| 日本av手机在线免费观看| 久久久久久久久久成人| 成人漫画全彩无遮挡| 另类亚洲欧美激情| 黄色怎么调成土黄色| 久久国产精品大桥未久av| 久久久久网色| 制服诱惑二区| 日本91视频免费播放| 夫妻午夜视频| 精品人妻熟女毛片av久久网站| 18禁在线无遮挡免费观看视频| 亚洲av日韩在线播放| 黄网站色视频无遮挡免费观看| 欧美bdsm另类| 亚洲国产毛片av蜜桃av| 国产精品一区二区在线不卡| 久久精品人人爽人人爽视色| 亚洲国产精品成人久久小说| 久久99蜜桃精品久久| 国产成人欧美| av免费在线看不卡| 国产不卡av网站在线观看| 久久97久久精品| 90打野战视频偷拍视频| 久久韩国三级中文字幕| 久久精品人人爽人人爽视色| 女性被躁到高潮视频| 2022亚洲国产成人精品| av线在线观看网站| 精品久久国产蜜桃| 国产一区二区激情短视频 | 国产片特级美女逼逼视频| 免费人妻精品一区二区三区视频| 久久精品国产鲁丝片午夜精品| 有码 亚洲区| 国产一区二区三区综合在线观看 | 亚洲精品自拍成人| 大型黄色视频在线免费观看| 免费久久久久久久精品成人欧美视频| 欧美黑人欧美精品刺激| 国产免费男女视频| 欧美精品一区二区免费开放| 无遮挡黄片免费观看| 久久午夜综合久久蜜桃| 大陆偷拍与自拍| 在线观看66精品国产| 人人妻人人澡人人看| 啦啦啦免费观看视频1| 亚洲在线自拍视频| 99国产综合亚洲精品| 亚洲五月色婷婷综合| 一进一出抽搐动态| 久热这里只有精品99| 日日爽夜夜爽网站| 交换朋友夫妻互换小说| 三上悠亚av全集在线观看| av网站在线播放免费| 91精品三级在线观看| 亚洲自偷自拍图片 自拍| 国产精华一区二区三区| 女人高潮潮喷娇喘18禁视频| 国产片内射在线| 午夜福利免费观看在线| 变态另类成人亚洲欧美熟女 | 欧美亚洲 丝袜 人妻 在线| 丝瓜视频免费看黄片| 国产精品免费大片| 美女高潮到喷水免费观看| 9热在线视频观看99| 在线观看免费午夜福利视频| 国产主播在线观看一区二区| 亚洲精品av麻豆狂野| 在线看a的网站| 悠悠久久av| 亚洲第一欧美日韩一区二区三区| 亚洲熟妇中文字幕五十中出 | 国产淫语在线视频| 日日摸夜夜添夜夜添小说| 夜夜爽天天搞| 欧美+亚洲+日韩+国产| 欧美中文综合在线视频| 久久精品人人爽人人爽视色| 亚洲欧美日韩另类电影网站| e午夜精品久久久久久久| 亚洲,欧美精品.| 在线观看舔阴道视频| 日韩大码丰满熟妇| 午夜福利视频在线观看免费| 夜夜躁狠狠躁天天躁| 久久精品成人免费网站| 韩国精品一区二区三区| 国内久久婷婷六月综合欲色啪| 人人妻人人澡人人爽人人夜夜| 麻豆成人av在线观看| 99久久国产精品久久久| 午夜免费观看网址| 成人永久免费在线观看视频| 成人黄色视频免费在线看| 精品一区二区三卡| 久久 成人 亚洲| 亚洲精品自拍成人| 91成人精品电影| 50天的宝宝边吃奶边哭怎么回事| 男女免费视频国产| 欧美日韩亚洲高清精品| 久久久久国产一级毛片高清牌| 亚洲熟妇熟女久久| 国产精品99久久99久久久不卡| 久久这里只有精品19| 久久中文看片网| 不卡av一区二区三区| 午夜精品久久久久久毛片777| 午夜福利乱码中文字幕| 黑人操中国人逼视频| 91国产中文字幕| 亚洲欧美色中文字幕在线| 日日夜夜操网爽| 中亚洲国语对白在线视频| 日韩欧美国产一区二区入口| 最新美女视频免费是黄的| 天堂中文最新版在线下载| 纯流量卡能插随身wifi吗| 久久久久精品国产欧美久久久| 亚洲性夜色夜夜综合| 亚洲精品国产区一区二| 美女扒开内裤让男人捅视频| 老司机影院毛片| 超碰97精品在线观看| 免费久久久久久久精品成人欧美视频| 一个人免费在线观看的高清视频| 激情视频va一区二区三区| 一级片'在线观看视频| 欧美日韩中文字幕国产精品一区二区三区 | 无遮挡黄片免费观看| 99精品在免费线老司机午夜| 中国美女看黄片| 国产精品久久久av美女十八| 在线观看免费高清a一片| 男人的好看免费观看在线视频 | 欧美精品人与动牲交sv欧美| 亚洲少妇的诱惑av| 久久久久久久久免费视频了| 亚洲av熟女| 人人妻,人人澡人人爽秒播| 夜夜躁狠狠躁天天躁| 日韩人妻精品一区2区三区| 极品少妇高潮喷水抽搐| 国产99久久九九免费精品| 在线观看午夜福利视频| 久久国产精品男人的天堂亚洲| 亚洲成人手机| 两性夫妻黄色片| 两个人免费观看高清视频| 高清欧美精品videossex|