• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A BPR-CNN Based Hand Motion Classifier Using Electric Field Sensors

    2022-08-23 02:20:04HunminLeeInseopNaKamoliddinBultakovandYoungchulKim
    Computers Materials&Continua 2022年6期

    Hunmin Lee,Inseop Na,Kamoliddin Bultakov and Youngchul Kim,

    1Department of Computer Science,Georgia State University,Atlanta,30302,USA

    2Nat’l Program of Excellence in Software Centre,Chosun University,Gwangju,61452,Korea

    3Department of Computer Inf.&Communication Eng.,Chonnam Nat’l Univ.,Gwangju,61186,Korea

    Abstract: In this paper, we propose a BPR-CNN (Biometric Pattern Recognition-Convolution Neural Network) classifier for hand motion classification as well as a dynamic threshold algorithm for motion signal detection and extraction by EF (Electric Field) sensors.Currently, an EF sensor or EPS (Electric Potential Sensor) system is attracting attention as a next-generation motion sensing technology due to low computation and price,high sensitivity and recognition speed compared to other sensor systems.However,it remains as a challenging problem to accurately detect and locate the authentic motion signal frame automatically in real-time when sensing body-motions such as hand motion,due to the variance of the electric-charge state by heterogeneous surroundings and operational conditions.This hinders the further utilization of the EF sensing; thus, it is critical to design the robust and credible methodology for detecting and extracting signals derived from the motion movement in order to make use and apply the EF sensor technology to electric consumer products such as mobile devices.In this study,we propose a motion detection algorithm using a dynamic offset-threshold method to overcome uncertainty in the initial electrostatic charge state of the sensor affected by a user and the surrounding environment of the subject.This method is designed to detect hand motions and extract its genuine motion signal frame successfully with high accuracy.After setting motion frames,we normalize the signals and then apply them to our proposed BPR-CNN motion classifier to recognize their motion types.Conducted experiment and analysis show that our proposed dynamic threshold method combined with a BPR-CNN classifier can detect the hand motions and extract the actual frames effectively with 97.1%accuracy,99.25%detection rate,98.4%motion frame matching rate and 97.7%detection&extraction success rate.

    Keywords: BPR-CNN; dynamic offset-threshold method; electric potential sensor; electric field sensor; multiple convolution neural network; motion classification

    1 Introduction

    The EF(Electric Field)sensor extracts information by sensing the variations of the electric charge near the surface of the sensor and converts the signal into voltage-level output.Today, EF sensors are mainly categorized by two modes, contact mode and non-contact mode.The contact mode has widely been applied in the area of healthcare and medical applications by sensing bioelectric signals such as electrocardiogram,electromyogram and electroencephalogram[1–5].Meanwhile,non-contact type measures the electric potential signal on the surface of EF sensors induced by the disturbance of the surrounding electric field which is caused by movement of dielectric substances such as human bodies or hands due to coupling effect [6].A few of non-contact EF sensor systems have been applied in commercial products, while several studies in academic institutions have been reported in application areas of proximity sensing, placement identification, etc [7–10].As EF proximity sensing systems are gaining attention,recent studies have been published regarding the area of hand or body motion detection and recognition [11–21].Our past studies [11–14] were focused on noncontact EF sensing,extracting and processing the signals through EF sensors.Moreover,by utilizing deep learning algorithms such as LSTM and CNN,multiple hand gesture classification mechanisms were proposed after a series of signal processing steps.Wimmer et al.[22]introduced the‘Thracker’device that utilized capacitive sensing,which encouraged the possibility of interaction between human and computer systems through non-contact capacitive sensing.Singh et al.[15] suggested a gesture recognition system called Inviz for paralysis patients that implemented textile-built capacitive sensors,measuring the capacitance interaction between the patient’s body and the sensor.Aezinia et al.[16]designed a three-dimensional finger tracking system through a capacitive sensor,which was functional within 10 cm range from the sensor.

    In this paper, we present a real-time hand motion detection and classification system adopting Biometric Pattern Recognition-Convolution Neural Network(BPR-CNN)classifiers combined with a dynamic threshold method for automatic motion detection and motion-frame extraction(Fig.1)in EF signals.Our proposed system is fully automated with real-time motion detections,extracting the true frame and classifying motion types occurring at the range of up to 30 cm near the EF sensors.Accuracies of detecting hand motions and extracting signal frames were quantitatively rated through our suggested metrics.Furthermore, we suggest the simulation results of our CNN architectures;Multiple CNN(MCNN)and BPR-CNN with other classification algorithms and empirically evaluate the hand gesture classification performance.

    Figure 1:A proposed hand motion extraction and classification process

    This paper is organized as follows.Section 2 describes our suggested methods of computing the dynamic threshold for motion detection and frame extraction by analyzing the intrinsic features of the EF signals.We also explain the two CNN-based motion classifiers that were designed and thus applied into our system.In Section 3,we present the results of four hand gesture classifications through multiple experiments.In conclusion,we conclude our study and suggest the future works.

    2 Discussion

    In this section, we explain our dynamic threshold method for motion detection and frame extraction in the EF sensor signals.After setting the optimal signal frame,we conduct normalization followed by transforming the dimensions of normalized data in order to be trained into our proposed CNN model.We implement the MCNN and BPR-CNN to effectively train the features of the transformed signals thus classifying the inputs into corresponding gestures.Note that we handle the signals that have been already processed through Low-Pass-Filter(LPF)and Simple Moving Average(SMA).Since natural frequency from the human hand or arm is known to have 5~10 Hz[23],which is a domain of extremely low frequency,thus we use the 10 Hz as a cut-off frequency in the LPF.The readers can refer to our previous studies[11–14]for more information regarding the implementation of LPF to filter out unnecessary noises and conduct the Moving Average to smoothen the filtered gesture signal from the sensor.

    2.1 Dynamic Offset and Threshold

    One of the challenging problems in dynamic thresholding in order to detect the signal and to locate the “genuine”signal frame is to compute an offset voltage for each Electric Potential Sensor(EPS)and adjust the threshold values periodically before detecting the target hand motion.As most hand motions and gestures are being done within a short period of time,we set the update cycle time unit to be a second.We implemented two EPS(Sensor A,B,sensor type PS25401)[14,23],and each sensor started with unidentical initial offset due to the various electric charging and discharging states near the sensors according to diverse environmental conditions in the moment of time.

    Through our empirical past simulations,the initial voltagevinit∈R(unit:V)ranges from-0.2 ≤vinit≤0.02 withμ(?vinit)= -0.08 andσ(?vinit)= 0.03 whereμdenotes average andσis standard deviation,when implementing EPS to measure the capacitance changes when the subject is proximally located.The statistics were acquired from four distinct hand gesture types(Tab.1),each conducting 600 trials;n(?vinit)=600,and the distribution visualization ofvinitis shown in Fig.2a.LetS={vn|1 ≤n≤T·1000,n∈N} be a set of time series raw sensor (voltage) datavn, where the sampling ratewhichn(S)=1000 whenT=0.001sec.

    Table 1: Motion types and their images

    Likewise,due to heterogeneous property ofS,dynamictracks the discrete variantand its upper and lower bound, which maintains the robustness regardless of time-variant offset value.As for the time-varying signal pattern which is the electric field disturbances due to hand motion,charging and discharging the electrics triggers the voltages to display waveform.Figs.2b and 2c shows the typical output signal that charges and discharges the sensor plate which soars up(otherwise falls down),reaching its peak(bottom),then descends to bottom point(vice versa)and finally returns to an initial level when there was a hand gesture near the sensor plate.

    Figure 2:(a)distribution of vinit in 800 trials.(b,c)the produced EF signals,each with sensor A,B and A–B,where is(b)after the LPF and(c)after LPF&SMA

    Due to these features,dynamicare considered to be effective in order to detect our targets which limits the possible starting point of a next hand motion,and we empirically show its detection rate in Section 3.

    2.2 Motion Detection and Extraction

    Each individual hand motion generates unidentical signal phases depending on various conditions such as hand movement speed,distance and direction.In order to detect and extract the corresponding motion frames,we considered not only the duration,but also the time frame that could be divided into the stages of motion.The detection is composed of 4 steps where the left and right term enclosed with braces each indicate the two contrasting cases(case 1,2).The detection steps are indicated as follows;

    In Fig.3,a signal of hand gesture moved from left to right(LR)is shown.As we make another hand gesture,it detects the motion and locates the following frame continuously.Fig.3 contains two motion signals;each signal obtained from two different sensors(A-red and B-blue),where the dotted lines intersected with the signals show the starting point of the frame(magenta dot)and ending point of the frame(black dot).Each red and blue dot indicates the intersection point where=vi.Through these steps we could successfully distinguish the hand motions and compute the significant frame that encompasses the authentic motion signals.

    2.3 Normalization of an Extracted Motion Frame

    When hand motions are identified by the sensor,the time period of the extracted frame is diverse even if the motions were the same types,due to the speed or distance range of the motion.Likewise,the amplitude of the motion signal also tends to change on every new motion since the subject’s potential electrostatic state varies through numerous conditions such as textile of the cloth,location,or nearby machines,etc[4,9,11,12].Thus,it is imperative to conduct normalization in order to be properly trained in deep learning models as normalizing input data is known to be a productive measure to enhance the performance.In our signal,the time(X-axis)and voltage(Y-axis)are the two axes that are to be normalized.For Y-axis,standardization was applied and letwhered=(n′′-|n′′-n′|·0.1)-(n′+|n′′-n′|·0.1),For X-axis,we normalizedn(into 1000, deletingd- 1000 data ink-periodical sequence, whereThis leads to= 1000, computingwhere 0 ≤m <(d-1000).The normalized signal is shown in Fig.4, where the dotted line indicates the extracted frame of clockwise(CW)hand gesture,meanwhile solid line is the result after the normalization.Note that even if the identical subject performs the same motion type in a homogeneous environment such as time and location,the phase of the signal is distinctive due to the constantly varying charging state.

    Figure 3:Motion frame extraction visualization

    Figure 4:Visualization of original clockwise hand motion frame signal and normalized frame signal

    2.4 Signal Dimension Transformation

    After applying the normalized motion frame, the signal frame must be transformed from 1-dimension voltage signal to 2-dimension image in order to train the CNN model.Based onwheren(=1000,we primarily reducen()into 900,deleting theandin order to compute the 30×30×1 image(900 = 30·30).Fig.5 shows the schematization of transforming the motion frame into the 30×30×1 image format.

    Figure 5: Dimensional transformation of a motion frame: (a) the transformation schematization reshaped into(30×30×1)grayscale image,(b)the transformed images for 4 hand gestures

    2.5 Motion Classification Through CNN Models

    In this section,we define the structure of our two CNN-based classifiers;MCNN and BPR-CNN that were implemented to effectively categorize the types of input hand motion signal images.

    2.5.1 Multiple CNN Classifiers with Voting Logics

    The first classifier is composed of five pre-trained CNN models, which are operated in parallel with unidentical filter size in their convolution layer.Fig.6 shows a five-layer CNN structure that was applied in our MCNN.

    This model was trained through the extracted feature patterns from convolution layers learning local features to global features.After the fully-connected layer andsoftmaxfunction,it outputs the class probabilityp(f(x)|x)(soft label).Once the CNN classifiers have been trained,each CNN predicts the input into a single category.Fig.6 represent that an example of implemented CNN structure.The kernel size of each Chin?is as follows;δ(C1,??)= (5×5),δ(C2,??)= (7×7),δ(C3,??)= (3×3),δ(C4,1)=(5×5),δ(C4,2)=(3×3),δ(C5,1)=(7×7)andδ(C5,2)=(3×3).

    Figure 6:An example of implemented CNN structure

    The outputs from the five CNNs are considered in order to make the final classification prediction through majority voting as shown in Fig.7.Each input data consists of three 30×30×1 images,which represents three channels for sensor A,B and A-B signals.These three motion signal images are extracted in real-time and inserted into pre-trained CNN classifiers in Fig.6.

    Figure 7:Parallel multiple CNN with majority voting classifier

    Our ultimate goal is to successfully classify the four types of hand motions (Tab.1) with high accuracy.Recall that the five CNN contains different kernel sizes,(refer to Fig.6 for detailed kernel sizes in each layer) and MCNN classifier conducts majority voting (Fig.7) between soft labels.LetH= {Ch|1 ≤h≤5,h∈N} and letδ(Ch,?)a kernel size on convolution layerCh??= {1,2},whereChdenotes a CNN model,andhis an index of the model.Ch(y,f(x),L(w,b,x))=Ph(x),whereydenotes the true class,f(x)is a prediction class and loss functionL(·)based on set of weightw,biasband inputx.Ch(·)calculates a label prediction probabilityPhand eventually computing hard labelH(x)=argVoting classifier aggregates theH?h(x), and final classification ?y=arg max(φ(H?h(x)))whereφ(Hh(x))= {γi|1 ≤i≤4,i∈N,(Hh(x)=g(i))→γi+1}where initialγ?i=0.

    2.5.2 BPR-CNN Classifier

    Biomimetic Pattern Recognition (BPR) [16,23–25] utilizes high-level topology features from biomimetic signals to discover certain patterns, which focuses on the concept of cognizing feature topology.Combining BPR with CNN (BPR-CNN) triggers higher performance as features are extracted from the CNN model, and BPR computes the topological manifold properties in given Euclidean parameter space based on Complex Geometry Coverage (CGC) [26] as shown in Fig.8.Manipulating the prediction probabilityP(x),it computes theηnumber of distance-based clusters?η,?η?P(xi)where 1 ≤i ≤n(x),i ∈N,η=n(classes)=n(P(x)).Since the set of trained w and b itself are not permutationally invariant,we cannot implement the distance-based geometry coverage based on the w and b.

    Figure 8:Visualization of the BPR-CNN mechanism

    However,P(x)would indicate the proximity between the classes and the output ofx, which guarantees the closest single class in the Euclidean space.Based on the proximity of class-wise topological space,it cognizes the matter using the high-level features.The processed input image set is abstruse to distinguish the classes or interpret the meanings of the indicated number of the pixels in the human eye,thus high-level robust features are preferred to accurately compute the decision boundary instead of using low-level features.To elaborate,input images that clearly show an object for CNN to classify the target such as cat or dog,their intrinsic features are distinct such as its eye,nose,or other parts of the subject,whereas our case doesn’t.

    Our case specifically requires the robust features in high-level feature space where the trend of each hand motion signal image could be found.Implementing the BPR-CNN,we could derive better input signal classification performance compared to conventional CNN,and we validate this through experiments in Section 3.In BPR classifier,pre-trained CNN model=P(x)andφ(?P(xi))=?η,whereφ(·)indicates pairwise distance-based clustering such as K-means(K=η)[27].In Euclidean space Rη,where Rη??η?P(xi),K(xnew)=argmin1≤k≤η,k∈NdL2(μ(?k),P(xnew)),which allocatesxnewto?Kwherexnew/xi.The layer structure of the CNN was set with Conv-MaxPooling-Conv-MaxPooling- Conv-MaxPooling-Dense-Dense.The kernel size of each convolution and maxpooling layers were set with 5×5 and 2×2 respectively.

    3 Experimental Results

    3.1 Experiment Setting

    Through the empirical experiments,we evaluate the performance of our designed methodology.Utilizing the EPS sensor[14,28],four hand motion types indicated in Tab.1 were extracted from each of six subjects, 100 gestures for each motion, collecting a total of 2400 motion samples.Among the dataset, we randomly split the 2160 samples for training and 240 for test data.The extracted raw signal was processed through consecutive signal processing methods starting from the LPF and SMA,followed by automatically detecting hand motions and setting signal frame by dynamic threshold,and normalizing the signal.Next,we transform the signal into an image and a pre-trained classifier determines its label.Note thatη=4,since our objective is to classify the four motion types(Tab.1).All this process(Fig.1)is operated in real-time and test dataset were generated and classified(Less than second when computing through CPU i7–7500U RAM 8GB).The performance has been measured through our metrics of Correct Detection Rate(CDR),Motion Frame Matching Rate(MFMR)and Detection & Extraction Success Rate (DESR).CDR shows the degree of correspondence between the signal and the actual motion, and the MFMR quantitatively assesses the matching rate of the computed motion frame.Finally,DESR is obtained by CDR multiplied by MFMR to indicate their combined accuracy level.The training epoch was set with 20 and learning rate of 0.01, withreluactivation function in each convolution layer.

    3.2 Experiment Result

    Following Tab.2 shows the result of our three designated metrics, which validates that the proposed method of our study works with high accuracy of around 98%on average.

    Table 2: Performance of the selected metrics

    Following Tab.3 displays the experiment results of the four classifier algorithms.Their performances were evaluated with classification accuracy based on identical test data of four specific hand motions in Tab.1.We denote the average of four motion accuracy as Classification Correction Rate(CCR), which is computed in Tab.3.From each motion in Tab.1, three distinct output signals are produced;sensor A value,sensor B value and subtracted value(A-B).Performance of the two CNN classifiers (MCNN and BPR-CNN) were also compared with other algorithms such as HMM and SVM.Our experiment results show that the suggested motion detection and frame extraction based on the two threshold works with high CDR and MFMR,and also the classification accuracy of BPRCNN classifier outperformed other competitive models.

    Table 3: Classification correction rate of the BPR-CNN model

    4 Conclusion and Future Works

    In this paper,we proposed the dynamic thresholding and framing algorithms in order to set the accurate motion EF signal frame in real-time, and evaluated its performance using the following metrics;99.4%in CDR,98.4%in MFMR,97.8%in DESR.Moreover,we implemented the MCNN and BPR-CNN motion classifiers and compared the accuracy with other algorithms.Based on the extracted features of the 3 channel (sensor A, B, A-B) input signal images, BPR-CNN had shown the highest performance of 97.1% in CCR.Utilizing EF sensing is regarded as a prospective research domain and accommodates practical usage in industry due to diverse advantages such as low computation & price, high sensitivity & recognition speed.Our future work is to adopt the introduced methods to mobile devices and apply the algorithms to control the interface through noncontact hand motions.Training and classifying the diverse and detailed gestures in order to gain algorithmic robustness and versatility is a part of our future work.Combining our studies into interface technologies such as Human Computer Interaction(HCI)or Natural User Interface(NUI),we expect the further utilizations of controlling the various applications through user-friendly interfaces based on EF sensing.

    Funding Statement:This work was supported by the NRF of Korea grant funded by the Korea government(MIST)(No.2019 R1F1A1062829).

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    男女下面进入的视频免费午夜| 最后的刺客免费高清国语| 桃色一区二区三区在线观看| 亚洲av中文字字幕乱码综合| 国产极品精品免费视频能看的| 美女大奶头视频| 九色成人免费人妻av| 十八禁人妻一区二区| 欧美日韩亚洲国产一区二区在线观看| 久久久久免费精品人妻一区二区| 最好的美女福利视频网| 国产一区二区亚洲精品在线观看| 亚洲成av人片免费观看| 成人18禁在线播放| 国产视频一区二区在线看| 中文字幕人成人乱码亚洲影| 夜夜爽天天搞| 老司机午夜福利在线观看视频| 人人妻人人看人人澡| 悠悠久久av| 色综合亚洲欧美另类图片| 成人午夜高清在线视频| 91麻豆av在线| 欧美激情久久久久久爽电影| 色噜噜av男人的天堂激情| 超碰av人人做人人爽久久 | 午夜免费观看网址| 亚洲av熟女| 亚洲一区高清亚洲精品| 在线十欧美十亚洲十日本专区| 日本五十路高清| 老汉色av国产亚洲站长工具| 亚洲最大成人手机在线| 中文字幕久久专区| 又粗又爽又猛毛片免费看| 亚洲国产欧洲综合997久久,| av女优亚洲男人天堂| 亚洲人成网站高清观看| 99久久久亚洲精品蜜臀av| 亚洲精品色激情综合| 18美女黄网站色大片免费观看| 成人亚洲精品av一区二区| 国产精品亚洲美女久久久| 国产精品久久久久久亚洲av鲁大| 免费看美女性在线毛片视频| 99热这里只有精品一区| 一个人看的www免费观看视频| 午夜福利在线观看免费完整高清在 | 国产视频内射| 久久久久久久久中文| 两个人的视频大全免费| 亚洲无线在线观看| 国产成人欧美在线观看| 老司机在亚洲福利影院| 久久精品国产清高在天天线| 久久天躁狠狠躁夜夜2o2o| 99久久综合精品五月天人人| 国产精品98久久久久久宅男小说| 免费电影在线观看免费观看| 成人av在线播放网站| 国产探花在线观看一区二区| 99国产极品粉嫩在线观看| 舔av片在线| 在线免费观看不下载黄p国产 | 最新美女视频免费是黄的| 亚洲精品一卡2卡三卡4卡5卡| 男女下面进入的视频免费午夜| 亚洲欧美日韩卡通动漫| 精品人妻一区二区三区麻豆 | 男女之事视频高清在线观看| 日本在线视频免费播放| 国产亚洲精品久久久久久毛片| 一进一出好大好爽视频| 欧美色视频一区免费| 免费人成在线观看视频色| 亚洲成人久久性| 99在线人妻在线中文字幕| 亚洲人成电影免费在线| 欧美绝顶高潮抽搐喷水| 国产真人三级小视频在线观看| 成人午夜高清在线视频| 国产成人啪精品午夜网站| 激情在线观看视频在线高清| 国产精品,欧美在线| 国产精华一区二区三区| 国产成人av激情在线播放| 国产一级毛片七仙女欲春2| 波多野结衣高清作品| 欧美成狂野欧美在线观看| 日本一本二区三区精品| 人人妻,人人澡人人爽秒播| 黄色视频,在线免费观看| 热99re8久久精品国产| 精品久久久久久久人妻蜜臀av| 日本免费一区二区三区高清不卡| 欧美日韩中文字幕国产精品一区二区三区| 91麻豆av在线| 国产极品精品免费视频能看的| 免费高清视频大片| 桃色一区二区三区在线观看| 三级男女做爰猛烈吃奶摸视频| 久久中文看片网| 久久久色成人| 韩国av一区二区三区四区| 成人三级黄色视频| 久久久久九九精品影院| 脱女人内裤的视频| 欧美+亚洲+日韩+国产| 亚洲av电影在线进入| xxxwww97欧美| 免费av不卡在线播放| 香蕉av资源在线| 俺也久久电影网| 精品久久久久久久久久免费视频| 亚洲乱码一区二区免费版| 亚洲欧美一区二区三区黑人| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产高清在线一区二区三| 少妇的逼好多水| bbb黄色大片| 亚洲一区二区三区不卡视频| 精品国产美女av久久久久小说| 青草久久国产| 亚洲午夜理论影院| 午夜影院日韩av| 丝袜美腿在线中文| 日韩大尺度精品在线看网址| 丁香欧美五月| www.www免费av| 国产探花在线观看一区二区| www日本黄色视频网| 亚洲精华国产精华精| 天堂影院成人在线观看| 嫩草影视91久久| 叶爱在线成人免费视频播放| 欧美国产日韩亚洲一区| 中文字幕av成人在线电影| 免费大片18禁| 午夜久久久久精精品| 国产极品精品免费视频能看的| 国产精品日韩av在线免费观看| 99久久精品国产亚洲精品| 免费看光身美女| 色综合亚洲欧美另类图片| tocl精华| 成人永久免费在线观看视频| 国产高清视频在线观看网站| 99久国产av精品| 欧美区成人在线视频| 亚洲精品美女久久久久99蜜臀| 女警被强在线播放| 精品福利观看| 久久精品综合一区二区三区| 在线播放国产精品三级| 日本五十路高清| 欧美激情在线99| av黄色大香蕉| 欧美日本亚洲视频在线播放| 青草久久国产| 两性午夜刺激爽爽歪歪视频在线观看| 97超视频在线观看视频| 99热6这里只有精品| 国产精品99久久久久久久久| 中文字幕人妻丝袜一区二区| 久久精品国产99精品国产亚洲性色| av天堂中文字幕网| av在线天堂中文字幕| 色综合欧美亚洲国产小说| 日本成人三级电影网站| 一二三四社区在线视频社区8| 午夜激情福利司机影院| 黄色成人免费大全| 午夜福利免费观看在线| 人妻久久中文字幕网| 亚洲精品在线美女| 黄色视频,在线免费观看| 日本三级黄在线观看| 身体一侧抽搐| 欧美激情在线99| 亚洲欧美日韩高清在线视频| 日本 av在线| 久久久色成人| 免费无遮挡裸体视频| 天堂动漫精品| 欧美中文综合在线视频| 日韩精品青青久久久久久| а√天堂www在线а√下载| 最近最新中文字幕大全电影3| 日韩免费av在线播放| 一夜夜www| 国产色爽女视频免费观看| 伊人久久大香线蕉亚洲五| 日韩av在线大香蕉| 天堂av国产一区二区熟女人妻| 丁香欧美五月| 给我免费播放毛片高清在线观看| 天天一区二区日本电影三级| 亚洲精品粉嫩美女一区| 内地一区二区视频在线| 久久久久精品国产欧美久久久| 精品国产亚洲在线| 久久6这里有精品| 亚洲av成人精品一区久久| 1000部很黄的大片| 日韩欧美三级三区| 黄片大片在线免费观看| 内地一区二区视频在线| 国语自产精品视频在线第100页| 午夜福利欧美成人| 亚洲aⅴ乱码一区二区在线播放| 少妇人妻精品综合一区二区 | 国产精品自产拍在线观看55亚洲| 久久性视频一级片| 成人亚洲精品av一区二区| 天天一区二区日本电影三级| 午夜影院日韩av| 日本a在线网址| 91麻豆av在线| 两性午夜刺激爽爽歪歪视频在线观看| 国产成人系列免费观看| 99国产精品一区二区蜜桃av| 日本三级黄在线观看| 三级男女做爰猛烈吃奶摸视频| 国产私拍福利视频在线观看| 国产日本99.免费观看| 国产精品1区2区在线观看.| 久久久久久大精品| 国产色婷婷99| 九九久久精品国产亚洲av麻豆| 国产精品美女特级片免费视频播放器| 亚洲精品一卡2卡三卡4卡5卡| 久久久国产精品麻豆| 国产精品永久免费网站| 亚洲成人中文字幕在线播放| 操出白浆在线播放| 国产午夜福利久久久久久| 男女之事视频高清在线观看| 18+在线观看网站| 九九久久精品国产亚洲av麻豆| 国产中年淑女户外野战色| 亚洲av二区三区四区| 露出奶头的视频| 最近最新中文字幕大全电影3| 色在线成人网| 久9热在线精品视频| 少妇熟女aⅴ在线视频| 97超视频在线观看视频| 一级作爱视频免费观看| 欧美高清成人免费视频www| 少妇人妻一区二区三区视频| 精品一区二区三区视频在线 | 午夜福利在线观看吧| 欧美日本视频| 亚洲av日韩精品久久久久久密| 99久久成人亚洲精品观看| 午夜影院日韩av| 亚洲欧美日韩高清专用| 亚洲欧美日韩东京热| 床上黄色一级片| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产精品sss在线观看| 日韩亚洲欧美综合| 欧美区成人在线视频| 男女之事视频高清在线观看| 搡老熟女国产l中国老女人| 国产高清视频在线观看网站| 亚洲人成网站在线播| 91字幕亚洲| 俺也久久电影网| 亚洲va日本ⅴa欧美va伊人久久| 久久精品影院6| 99久久成人亚洲精品观看| 欧美av亚洲av综合av国产av| 夜夜夜夜夜久久久久| 亚洲中文字幕一区二区三区有码在线看| 女人十人毛片免费观看3o分钟| 欧美高清成人免费视频www| 深夜精品福利| 日韩欧美国产在线观看| 99久久精品热视频| 欧美成人免费av一区二区三区| 亚洲专区中文字幕在线| 国产欧美日韩一区二区精品| 一区二区三区激情视频| 性色avwww在线观看| 久久久久国产精品人妻aⅴ院| or卡值多少钱| 色综合婷婷激情| 天堂动漫精品| 淫妇啪啪啪对白视频| avwww免费| 日本撒尿小便嘘嘘汇集6| 一个人看的www免费观看视频| 亚洲精品美女久久久久99蜜臀| 黄片大片在线免费观看| 天天添夜夜摸| 成年女人毛片免费观看观看9| 九九在线视频观看精品| 国产av不卡久久| 老司机午夜福利在线观看视频| 久久久久久人人人人人| 亚洲七黄色美女视频| 久久久久久久亚洲中文字幕 | 波野结衣二区三区在线 | x7x7x7水蜜桃| 手机成人av网站| www.999成人在线观看| 精品99又大又爽又粗少妇毛片 | 国语自产精品视频在线第100页| 波多野结衣高清无吗| 91久久精品国产一区二区成人 | 99久久久亚洲精品蜜臀av| 日韩欧美三级三区| 色综合欧美亚洲国产小说| 免费看a级黄色片| 久久久久国内视频| 在线观看66精品国产| 99国产精品一区二区蜜桃av| 激情在线观看视频在线高清| 日韩av在线大香蕉| 国产乱人伦免费视频| 日本a在线网址| 韩国av一区二区三区四区| 久久久久久国产a免费观看| 国内精品久久久久精免费| 色吧在线观看| 中文字幕人妻熟人妻熟丝袜美 | av专区在线播放| 五月玫瑰六月丁香| 黄色丝袜av网址大全| 日本 av在线| 亚洲av电影不卡..在线观看| 久久精品夜夜夜夜夜久久蜜豆| 一进一出抽搐动态| 欧美一区二区精品小视频在线| 亚洲五月婷婷丁香| 日本黄大片高清| 国产精华一区二区三区| 不卡一级毛片| 免费观看的影片在线观看| 99视频精品全部免费 在线| 亚洲国产精品成人综合色| 老司机深夜福利视频在线观看| 露出奶头的视频| 真人做人爱边吃奶动态| 亚洲内射少妇av| 日韩大尺度精品在线看网址| 国产成人福利小说| 国产激情欧美一区二区| 国产一区二区在线av高清观看| 一级毛片女人18水好多| 国产欧美日韩精品亚洲av| 久久久精品大字幕| 十八禁网站免费在线| 夜夜躁狠狠躁天天躁| 精品乱码久久久久久99久播| 国产成人av激情在线播放| 99热只有精品国产| 午夜精品一区二区三区免费看| 亚洲av免费在线观看| 国产高清videossex| 搡女人真爽免费视频火全软件 | 亚洲精品日韩av片在线观看 | 午夜福利在线在线| 欧美黄色淫秽网站| av国产免费在线观看| 国产精品久久久久久久久免 | 99精品欧美一区二区三区四区| 天堂影院成人在线观看| 男女床上黄色一级片免费看| 午夜精品一区二区三区免费看| 天堂动漫精品| 亚洲av中文字字幕乱码综合| 淫秽高清视频在线观看| 波多野结衣巨乳人妻| 国产精品三级大全| 精品久久久久久久人妻蜜臀av| 久久久久久国产a免费观看| 亚洲av中文字字幕乱码综合| 国产精品精品国产色婷婷| 香蕉久久夜色| 欧美zozozo另类| 白带黄色成豆腐渣| 高清毛片免费观看视频网站| 午夜福利在线观看免费完整高清在 | 好男人在线观看高清免费视频| 精品不卡国产一区二区三区| 男人的好看免费观看在线视频| 九九在线视频观看精品| 国产欧美日韩一区二区精品| 日韩精品青青久久久久久| 在线看三级毛片| av中文乱码字幕在线| 亚洲一区高清亚洲精品| avwww免费| 成人18禁在线播放| 五月玫瑰六月丁香| 久久久久久久亚洲中文字幕 | 久久欧美精品欧美久久欧美| 韩国av一区二区三区四区| 99热只有精品国产| www国产在线视频色| 手机成人av网站| 久久久国产精品麻豆| 人妻丰满熟妇av一区二区三区| 高清日韩中文字幕在线| av片东京热男人的天堂| 国产黄片美女视频| a级毛片a级免费在线| 亚洲第一欧美日韩一区二区三区| 亚洲国产高清在线一区二区三| 亚洲内射少妇av| 亚洲av电影不卡..在线观看| 欧美+亚洲+日韩+国产| 毛片女人毛片| 亚洲av五月六月丁香网| 久久久精品欧美日韩精品| 啦啦啦韩国在线观看视频| 国产主播在线观看一区二区| 亚洲人成伊人成综合网2020| 一本综合久久免费| 国产精品一及| 久久久久性生活片| 91久久精品电影网| 成人av在线播放网站| ponron亚洲| 国产亚洲精品久久久com| 亚洲无线观看免费| 一个人免费在线观看的高清视频| 性欧美人与动物交配| 此物有八面人人有两片| 久99久视频精品免费| 不卡一级毛片| 亚洲精品久久国产高清桃花| 久久国产精品影院| 最近最新中文字幕大全免费视频| 成人欧美大片| 久久精品夜夜夜夜夜久久蜜豆| 99国产极品粉嫩在线观看| 午夜老司机福利剧场| 免费av不卡在线播放| 亚洲欧美一区二区三区黑人| 中文字幕人妻熟人妻熟丝袜美 | 90打野战视频偷拍视频| 亚洲avbb在线观看| 一进一出抽搐gif免费好疼| 午夜福利视频1000在线观看| 欧美日韩瑟瑟在线播放| 69人妻影院| 又黄又粗又硬又大视频| 中文字幕熟女人妻在线| 国产精品电影一区二区三区| 波多野结衣高清作品| 两个人看的免费小视频| 久久这里只有精品中国| 国产精品亚洲av一区麻豆| 久久久久久人人人人人| 欧美色视频一区免费| 老司机在亚洲福利影院| 91在线精品国自产拍蜜月 | 免费观看人在逋| netflix在线观看网站| 久久久久久大精品| 一区二区三区国产精品乱码| 久久精品综合一区二区三区| 亚洲国产欧美网| 久久久久久国产a免费观看| 淫妇啪啪啪对白视频| 国产欧美日韩精品一区二区| 国产精品,欧美在线| 日韩欧美在线二视频| 午夜福利欧美成人| 成年女人毛片免费观看观看9| 久久久久亚洲av毛片大全| 国产精品美女特级片免费视频播放器| 老熟妇仑乱视频hdxx| 日韩亚洲欧美综合| 国产99白浆流出| 色精品久久人妻99蜜桃| 内射极品少妇av片p| а√天堂www在线а√下载| 国产午夜精品论理片| 99在线人妻在线中文字幕| 天堂网av新在线| 搡女人真爽免费视频火全软件 | 美女cb高潮喷水在线观看| 少妇高潮的动态图| 欧美日韩乱码在线| 国产精品乱码一区二三区的特点| 亚洲性夜色夜夜综合| 一区二区三区国产精品乱码| 亚洲av免费在线观看| 亚洲久久久久久中文字幕| 国产精品av视频在线免费观看| 精品99又大又爽又粗少妇毛片 | 国产成人系列免费观看| av女优亚洲男人天堂| 国产爱豆传媒在线观看| xxxwww97欧美| 搡老岳熟女国产| 精品99又大又爽又粗少妇毛片 | 淫妇啪啪啪对白视频| 中文字幕人妻丝袜一区二区| 国产成人a区在线观看| 国产欧美日韩精品亚洲av| 国产探花在线观看一区二区| 一个人免费在线观看的高清视频| 内射极品少妇av片p| 99国产精品一区二区蜜桃av| 国产高清三级在线| 国产精品一及| 色尼玛亚洲综合影院| 亚洲精品一区av在线观看| 99热6这里只有精品| ponron亚洲| 欧美成狂野欧美在线观看| 亚洲成人久久性| 久久九九热精品免费| 国产伦在线观看视频一区| 国产av不卡久久| 精品一区二区三区av网在线观看| 精品乱码久久久久久99久播| 国产成人啪精品午夜网站| 欧美黑人欧美精品刺激| 99精品在免费线老司机午夜| 国产欧美日韩精品亚洲av| 国产精品野战在线观看| 在线观看美女被高潮喷水网站 | 成人欧美大片| 舔av片在线| www日本在线高清视频| 色播亚洲综合网| 黄色成人免费大全| 日本a在线网址| 一个人看视频在线观看www免费 | 久久精品国产亚洲av涩爱 | 色哟哟哟哟哟哟| 欧美成狂野欧美在线观看| 婷婷精品国产亚洲av| 日本a在线网址| 欧美日韩精品网址| 最近最新免费中文字幕在线| 国产精品亚洲一级av第二区| 国产一区二区三区在线臀色熟女| 小蜜桃在线观看免费完整版高清| 国产成人福利小说| 国产精品电影一区二区三区| 亚洲狠狠婷婷综合久久图片| 少妇熟女aⅴ在线视频| 最后的刺客免费高清国语| 动漫黄色视频在线观看| 亚洲精品久久国产高清桃花| 精品不卡国产一区二区三区| 高清毛片免费观看视频网站| 国产午夜福利久久久久久| 国产精品嫩草影院av在线观看 | 免费人成视频x8x8入口观看| 亚洲精品在线美女| 99热6这里只有精品| 在线观看一区二区三区| 国产色爽女视频免费观看| 国产不卡一卡二| 观看免费一级毛片| 久久精品综合一区二区三区| 熟妇人妻久久中文字幕3abv| 欧美黑人巨大hd| 欧美日韩黄片免| 亚洲人成伊人成综合网2020| 男女午夜视频在线观看| 欧美另类亚洲清纯唯美| 久久久久久久久大av| 啦啦啦韩国在线观看视频| 极品教师在线免费播放| 两性午夜刺激爽爽歪歪视频在线观看| 色精品久久人妻99蜜桃| 国产高潮美女av| 成人鲁丝片一二三区免费| 国产伦精品一区二区三区视频9 | 成人国产一区最新在线观看| 国产v大片淫在线免费观看| 热99在线观看视频| 久久国产精品人妻蜜桃| 国产一区二区亚洲精品在线观看| 亚洲一区二区三区不卡视频| 久久亚洲真实| 国产99白浆流出| 很黄的视频免费| 国产一区二区在线观看日韩 | 精品一区二区三区视频在线观看免费| 一级作爱视频免费观看| 国产三级在线视频| 亚洲不卡免费看| 欧美黄色片欧美黄色片| 精品久久久久久久人妻蜜臀av| 免费看美女性在线毛片视频| 白带黄色成豆腐渣| 午夜精品在线福利| 97碰自拍视频| 婷婷丁香在线五月| 黄片小视频在线播放| 中文字幕av在线有码专区| 91在线精品国自产拍蜜月 | 久久久久国内视频| 国产高潮美女av| 狂野欧美激情性xxxx| 亚洲美女视频黄频| 免费在线观看日本一区| 深爱激情五月婷婷| 老司机在亚洲福利影院| 亚洲欧美日韩高清专用| 国产三级在线视频| 国产久久久一区二区三区| 哪里可以看免费的av片| 欧美乱码精品一区二区三区| 欧美黑人巨大hd|