• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Efficient Machine Learning Based Precoding Algorithm for Millimeter-Wave Massive MIMO

    2022-08-23 02:20:00WaleedShahjehanAbidUllahSyedWaqarShahAymanAlyBassemFelembanandWonjongNoh
    Computers Materials&Continua 2022年6期

    Waleed Shahjehan,Abid Ullah,Syed Waqar Shah,Ayman A.Aly,Bassem F.Felemban and Wonjong Noh

    1Department of Electrical Engineering,University of Engineering and Technology Peshawar,Pakistan

    2Department of Mechanical Engineering,College of Engineering,Taif University,Taif,21944,Saudi Arabia

    3School of Software,Hallym University,Chuncheon,24252,Korea

    Abstract: Millimeter wave communication works in the 30–300 GHz frequency range,and can obtain a very high bandwidth,which greatly improves the transmission rate of the communication system and becomes one of the key technologies of fifth-generation (5G).The smaller wavelength of the millimeter wave makes it possible to assemble a large number of antennas in a small aperture.The resulting array gain can compensate for the path loss of the millimeter wave.Utilizing this feature,the millimeter wave massive multiple-input multiple-output (MIMO) system uses a large antenna array at the base station.It enables the transmission of multiple data streams,making the system have a higher data transmission rate.In the millimeter wave massive MIMO system,the precoding technology uses the state information of the channel to adjust the transmission strategy at the transmitting end,and the receiving end performs equalization, so that users can better obtain the antenna multiplexing gain and improve the system capacity.This paper proposes an efficient algorithm based on machine learning(ML)for effective system performance in mmwave massive MIMO systems.The main idea is to optimize the adaptive connection structure to maximize the received signal power of each user and correlate the RF chain and base station antenna.Simulation results show that, the proposed algorithm effectively improved the system performance in terms of spectral efficiency and complexity as compared with existing algorithms.

    Keywords: MIMO; phased array; precoding scheme; machine learning optimization

    1 Introduction

    In the past ten years,the rapid development of various business systems such as the Internet of Things (IoT) and the Internet of Vehicles (IoV), as well as the advancement of wireless equipment manufacturing processes, have promoted the development and deployment of 5G mobile communication systems with high-speed, large connections and low latency.In general, the improvement of spectrum efficiency is achieved through network densification of micro-cell millimeter wave and massive MIMO technology [1].The current low-frequency spectrum resources can no longer meet the people,s needs for high-rate data transmission in people,s lives.The development of wireless communication technology has forced researchers to include the millimeter wave frequency band into the scope of research.The millimeter wave frequency is distributed in the range of 30 to 300 GHz,and its ample bandwidth has become a hot spot in the academic and industrial circles.However,millimeter waves are severely absorbed by the atmosphere and rain in the process of space transmission,and the limited number of propagation paths,resulting in their short effective propagation distance,which is very suitable for micro-cell communication with small coverage and high data transmission rate.It provides sufficient array gain to form a needle beam to reduce interference,which is regarded as one of the key technologies of 5G [2].When a large number of antennas are deployed at the millimeter wave transmitting end, all-digital precoding needs to be equipped with a dedicated radio frequency chain for each transmitting antenna, and a radio frequency chain with the number of antennas(composed of digital-to-analog converters,mixers,etc.)which has high cost and unacceptable energy consumption.Therefore,the research and design of low-dimensional baseband digital precoders and high-dimensional radio frequency analog precoders instead of all-digital precoders has aroused great interest.In a single-user communication system, there are ways to improve the spectrum efficiency by minimizing the Euclidean distance between hyrbid analog and digital precoding and fully-digital precoding [3-6], and also through a joint transmitter analog precoder and receiver analog research on the maximized spectral efficiency of the combiner [7–9].In multi-user communication systems,the hybrid precoding with a fully connected structure has also been studied [10–14].For example,reference [15] directly uses the phase of the channel conjugate transpose as an analog precoder,and then uses the zero forcing (ZF) technique to design the baseband digital precoder.Reference [16]proposed a two-stage hybrid precoding and designed analog precoding in which the phases of all digital precoding obtained by maximum ratio transmission(MRT)and ZF precoding were extracted respectively,and then combined with channel moments.The equivalent matrix obtained by the matrix eliminates inter-user interference through ZF to obtain the baseband digital precoding.However,these hybrid precoding based on the fully connected structure require the use of more RF chains and highprecision phase devices,resulting in expensive hardware costs and power consumption proportional to accuracy, hindering the hybrid precoding structure in the base station and mobile end millimeter wave cellular network systems with strict size and power restrictions in the deployment.

    In order to reduce the number and precision of the hardware used, further research on hybrid precoding of partial connection structures has been carried out[17,18].Reference[19]first proposed the hybrid precoding of switch and inverter based on machine learning adaptive cross entropy.The authors in [20–22] applied machine learning adaptive cross entropy to the hybrid precoding of lens array switch structure, and further analyzed the impact of important parameters based on the sum rate and energy efficiency of the hybrid precoding of the switch and inverter structure.Reference[23] proposes a precoding with an adaptive connection structure, which can better achieve beam gain, but still requires a higher-precision phase shifter (at least 6-bit accuracy) to achieve close to the optimal fully-digital precoding and lower precision such as 1-bit quantized adaptive connection structure is achievable and rate performance is severely reduced.In order to solve the problem of poor accessibility a rate performance of the 1-bit quantized phase shifter of the adaptive connection structure,this paper proposes a 1-bit quantized phase shift based on machine learning adaptive crossentropy hybrid precoding.The adaptive connection structure that obtains the matching relationship between the RF chain and the base station antenna by maximizing the user’s received signal power is more flexible than the fixed sub-connection.According to the probability distribution,the analog precoder is randomly generated, and the classic ZF precoding is used to obtain the corresponding digital precoder.The analog precoder is adaptively weighted according to the reach and rate.Then,the probability distribution of the simulated precoding is updated by reducing the cross entropy and adding a constant smoothing parameter,and repeating this way,a hybrid precoder with almost optimal performance and rate is finally obtained.Numerical simulations are performed to evaluate the effectiveness of the proposed scheme.

    2 System Model

    As shown in Fig.1,consider the massive MIMO system of multi-user downlink,the base station deploysNantennas,NRFradio frequency chains,and simultaneously servesKnon-cooperative users with a single antenna.Generally,the massive MIMO system satisfiesK≤NRF≤N,andNRF=Kis set in this article.The analog precoderFRFis composed of a small number of radio frequency (RF)chains, an adaptive connection network and a large number of antennas [24].It is assumed that the symbols sent toKuserss=[s1,,s2...,sK]Tare independently and identically distributed,and they are all symbols that obey the zero-mean complex Gaussian distribution,satisfyingE(ssH)=P/KIKwherePis the total transmitted signal power of the base station[25].

    Figure 1:Proposed system model

    The signal received byKusers can be expressed as

    Among them,Nis the number of antennas of the base station ULA antenna.Lkrepresents the number of propagation paths of thek-th user,andrespectively represent the complex gain and departure azimuth angle of thel-th path of thek-th user,anda(Φ)represents the response vector of the transmission array with a dimension ofN×1,which can be expressed for

    Here,λis the wavelength of the millimeter wave,anddis the distance between the ULA antenna elements,usually set to half the wavelengthd=λ/2[27–28].

    3 Proposed Algorithm

    The analog precoding of the traditional low-precision phase shifter partial connection structure often fails to achieve the array gain of the millimeter wave large-dimensional antenna.Therefore,this article simulates the precoder adaptive connection and deploy adaptive connection network instead of fixed sub-connection switch and reverse vectorizer(equivalent to a phase shifter with 1-bit quantization).The same as the fixed sub-connection structure,the adaptive connection only requiresNnumber of 1-bit quantized phase shifters,NRFnumber of radio frequency chains, and no adders.Compared with fully connectedN×NRFhigh-precision phase shifters,NRFradio frequency chains,andNadders,it greatly reduces the hardware complexity,cost and energy consumption.The adaptive connection network can better match the downlink to improve the user’s reach and rate.In order to make better use of adaptive cross-entropy optimization to apply to the adaptive connection structure,it is necessary to match the RF chain and the antenna under specific channel state information,that is,to find the position of the non-zero element in the corresponding analog precoding matrixFRF.

    Indicates the connection relationship between all radio frequency chains and all antennas of the base station.Assuming thatN/K=Mis an integer, divide theNbase station antennas intoKindependent sets,useSkto represent the set ofk-th radio frequency chain connected to base station antennas,andSk(j)to denote thek-th radio frequency chain connected tojth base station antenna,and|Sk|=M.So Eq.(5)is also equivalent to

    The designed analog precodingFRFand digital precodingFBBshould maximize the downlink reachability and rate of theKusers served

    where SINRkrepresents the signal-to-interference and noise ratio of thek-th user,which is expressed as

    Performing Eq.(10)once can match thek-th radio frequency chain with a base station antenna,that is,get a non-zero element position in theFRF.To ensure the fairness of the radio frequency chain,Kradio frequency chains are matched in turn, andMturns are performed.The position of theNnon-zero elements of theFRFthat meets the constraint (5) can be obtained, or the set of matching relationships between the RF chain and the antenna that meets the constraint(6)

    In order to ensure that the adaptive cross entropy optimization converges to the optimal solution to avoid local convergence, a constant smoothing parametercan be further added between the current probability distribution and the next probability distribution.

    Here 0<≤1, until the end of the l iteration is reached, the probability distributionp(l)for generating the optimal analog precoding will be obtained,and the optimal analog precodingand the optimal number in the l generation sample will be selected precodingwhich is the almost optimal adaptive connection hybrid precoding under the corresponding channel state information.The specific algorithm is as follows in Algorithm 1.

    ?

    Algorithm 1:Continued 3:jopt =arg max j∈S{|hk,j|}4:Sk =jopt 5:S =S-jopt 6:end for 7:end for 8:for i=1 to I 9:Randomly generate Z candidate vectors{--→fRF,z x }Zz=1 according to ξ(--→fRF,z x ,p(i))10:According to the matching relationship set{Sk}Kk=1 and{--→fRF,z x }Z z=1,reconstruct Z{Fz RF}Z z=1,namely:FzR F(S1,S2,...,SK)=--→fRF,z x 11:Calculate digital precoding{Fz BB}Z z=1 according to Eq.(11)12:Calculate the achievable rate{R(Fz RF)}Z z=1 using Eqs.(7)and(8)13:Arrange achievable in descending order R(F1 RF)≥R(F2RF),...,≥R(FZRF)14:Choose the first ZeliteR(F1 RF),R(F2 RF),...,R(FZeliteRF )to get{Fz RF}Zelitez=1 .15:Determine the Zelite weighting coefficients wz 16:Update p(i+1)using Eqs.(16)and(17)17:End for 18:Output:F1 RF,F1 BB

    4 Simulation Results

    This section provides the simulation results and analysis.The proposed machine learning based precoding algorithm is compared with fully digital precoding,hybrid precoding of adaptive connection structure,and the conventional OMP precoding of structure.The combined precoding has the same lower hardware complexity and eliminates theNNRFphase shifters andNadders required by the fully connected hybrid structure.Therefore, the sum rate and complexity are used here as a comparison of the performance of different precoding schemes.The simulation parameters are set as follows in Tab.1.

    Table 1: Simulation parameters

    4.1 Achievable Sum Rate Comparison with Different Number of RF Chains and Data Streams with Fixed Antennas

    Fig.2 compares the achievable sum rate of the proposed algorithm, fully digital, and other algorithmsvs.SNR for system configuration when the number of RF chains= 4 and number of data streamsNs= 4.As can be seen from Fig.2 that, the achievable sum rates of all algorithms increase with increasing SNR.Moreover,the proposed algorithm gives close performance with optimal fully digital scheme which indicates its effectiveness over the existing algorithms.

    Figure 2:Comparison of achievable sum rate of algorithms vs.SNR when =Ns =4

    Figure 3:Comparison of achievable sum rate of algorithms vs.SNR when =8,Ns =4

    Fig.3 illustrates the achievable sum rate of the proposed algorithm, fully digital, and other algorithmsvs.SNR for system configuration when the number of RF chains= 8 and number of data streamsNs= 4.As can be seen from Fig.3, the achievable sum rates of all algorithms increases with increasing SNR.Moreover,the proposed algorithm gives close performance with optimal fully-digital scheme which indicates its effectiveness over the existing algorithms.Here,the results are closed for all algorithms because the number of RF chains are increased.But the energy consumption drastically increases in the existing algorithms in contrast,which makes them unsuitable for deployment.Also, increasing the number of RF chains increases the computational complexity and hardware structure.

    4.2 Achievable Sum Rate Comparison with Different Number of Antennas with Fixed Number of RF Chains and Data Streams

    Fig.4 compares the achievable sum rate of the algorithms versus SNR when the number of transmitter antennas Nt= 256,the number of receiver antennas Nr= 16 and number of RF chains and data streams is= Ns= 4.As can be seen from Fig.4, the achievable rate of all algorithms increases with SNR.Moreover, the proposed algorithm gives better performance and shows close sum rate with optimal fully digital precoding.It is also clear from Fig.4 that, due to increasing number of antennas,the sum rate is about 72 bps/Hz for SNR=25 dB,whereas the sum rate is 63 bps/Hz for SNR=25 dB in Figs.3 and 4,respectively.This proves that the sum rate increases with increasing the number of antennas,which is one of the main features of massive MIMO.Fig.5 compares the achievable sum rate of the algorithms versus SNR when the number of transmitter antennas Nt= 1024, the number of receiver antennas Nr= 64 and number of RF chains and data streams is= Ns= 4.As can be seen from Fig.5, the achievable rate of all algorithms increases with SNR.Moreover,the proposed algorithm gives better performance and shows close sum rate with optimal fully digital precoding.It is also clear from Fig.5 that, due to increasing number of antennas, the sum rate is about 87 bps/Hz for SNR=25 dB, whereas the sum rate is 63 bps/Hz for SNR=25 dB in Figs.3 and 4, respectively.This further proves that the sum rate increases with increasing the number of antennas,which is one of the main features of massive MIMO.

    Figure 4: Comparison of achievable sum rate of algorithms vs.SNR when 4,Nt =256,Nr =16

    Figure 5: Comparison of achievable sum rate of algorithms vs. SNR when 4,Nt =1024,Nr =64

    4.3 Complexity Analysis

    Fig.6 compares complexity of the algorithms with increasing number of antennas at the transmitters and= 4,andNr= 64.As can be seen from Fig.6,the complexities of all algorithms increase with increasing the number of antennas at the BS.Moreover,the complexity of the proposed algorithm is lower than the complexities of existing algorithms and also closed to the optimal fully digital precoding.This means that the proposed algorithm requires less number of iterations to achieve the same performance as compared with existing algorithms.

    5 Conclusions

    This paper proposes an adaptive connection network hybrid precoding with 1-bit quantization,and applies the adaptive algorithm based on machine learning to the adaptive connection structure hybrid precoding, which improves the 1-bit quantization phase shift of the adaptive connection structure.Under the same low hardware complexity,the proposed solution has a higher computational complexity than the switch and inverter hybrid precoding based on the fixed sub-connection of machine learning and the hybrid precoding based on the adaptive connection structure and achievable rate performance.Recently, highly efficient deep learning methods have been applied to hybrid precoding,and precoding with lower computational complexity and better spectral efficiency is worthy of further research.

    Acknowledgement:Taif University Researchers Supporting Project Number(TURSP-2020/260),Taif University,Taif,Saudi Arabia.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    色尼玛亚洲综合影院| 18+在线观看网站| 黄色一级大片看看| 亚洲乱码一区二区免费版| 99热网站在线观看| 国产精品久久久久久av不卡| 久久99热6这里只有精品| 大又大粗又爽又黄少妇毛片口| 熟妇人妻久久中文字幕3abv| 国产亚洲精品av在线| 国产有黄有色有爽视频| 精品人妻偷拍中文字幕| eeuss影院久久| 天堂√8在线中文| 床上黄色一级片| 噜噜噜噜噜久久久久久91| 久久97久久精品| 亚洲高清免费不卡视频| av卡一久久| 国内精品宾馆在线| 韩国av在线不卡| 啦啦啦啦在线视频资源| 免费看不卡的av| 亚洲欧美精品自产自拍| 亚洲av成人av| 午夜福利视频1000在线观看| 精品人妻一区二区三区麻豆| 女人久久www免费人成看片| 亚洲自拍偷在线| 97在线视频观看| 在现免费观看毛片| 国产精品麻豆人妻色哟哟久久 | www.色视频.com| 日本免费a在线| 久久人人爽人人片av| 天堂网av新在线| 全区人妻精品视频| 五月玫瑰六月丁香| 国产精品嫩草影院av在线观看| 中文字幕人妻熟人妻熟丝袜美| 特级一级黄色大片| 久久国产乱子免费精品| 91精品伊人久久大香线蕉| 国产精品久久久久久久久免| 欧美不卡视频在线免费观看| 男人舔女人下体高潮全视频| 啦啦啦中文免费视频观看日本| 国产单亲对白刺激| 色5月婷婷丁香| 不卡视频在线观看欧美| 国产精品福利在线免费观看| 久久久国产一区二区| 久久97久久精品| 亚洲婷婷狠狠爱综合网| 亚洲精品一区蜜桃| 午夜视频国产福利| 男的添女的下面高潮视频| 亚洲av成人精品一二三区| 日韩大片免费观看网站| 高清欧美精品videossex| 少妇人妻精品综合一区二区| 超碰97精品在线观看| 秋霞伦理黄片| 国产极品天堂在线| 天堂8中文在线网| 秋霞在线观看毛片| 亚洲久久久国产精品| 久久99蜜桃精品久久| 夫妻午夜视频| 国产精品国产三级国产专区5o| 考比视频在线观看| 国产极品天堂在线| 久久青草综合色| 国产精品国产三级国产专区5o| 国产精品国产av在线观看| 满18在线观看网站| 91久久精品国产一区二区三区| 亚洲欧美中文字幕日韩二区| 国产又色又爽无遮挡免| 亚洲精品,欧美精品| √禁漫天堂资源中文www| 欧美人与性动交α欧美软件| 欧美精品高潮呻吟av久久| 国产成人精品在线电影| 国产成人91sexporn| 国产精品久久久久久av不卡| av在线app专区| 午夜福利一区二区在线看| 成人毛片60女人毛片免费| 日韩不卡一区二区三区视频在线| 我的亚洲天堂| 欧美日韩亚洲高清精品| 久久女婷五月综合色啪小说| 亚洲成国产人片在线观看| 嫩草影院入口| 九九爱精品视频在线观看| 亚洲中文av在线| 久久精品国产自在天天线| 久久99热这里只频精品6学生| 成人二区视频| 国产伦理片在线播放av一区| 亚洲色图 男人天堂 中文字幕| 黄片播放在线免费| 飞空精品影院首页| 欧美日韩综合久久久久久| 性少妇av在线| 老司机影院成人| 精品国产一区二区三区四区第35| 18在线观看网站| 久久影院123| 麻豆精品久久久久久蜜桃| 亚洲男人天堂网一区| 欧美精品一区二区免费开放| av国产久精品久网站免费入址| 国产深夜福利视频在线观看| av.在线天堂| 777米奇影视久久| 国产精品嫩草影院av在线观看| 久久狼人影院| 亚洲精品久久久久久婷婷小说| 91久久精品国产一区二区三区| 久久精品夜色国产| 老汉色av国产亚洲站长工具| 搡女人真爽免费视频火全软件| 日日摸夜夜添夜夜爱| 久久精品国产a三级三级三级| 欧美最新免费一区二区三区| 熟女少妇亚洲综合色aaa.| 曰老女人黄片| 午夜免费男女啪啪视频观看| 欧美日韩视频精品一区| 人妻人人澡人人爽人人| 亚洲精华国产精华液的使用体验| 最新中文字幕久久久久| 在现免费观看毛片| 午夜福利一区二区在线看| 1024视频免费在线观看| 国产av国产精品国产| 久久人人97超碰香蕉20202| 大陆偷拍与自拍| 精品久久蜜臀av无| 国产精品一二三区在线看| 精品人妻熟女毛片av久久网站| 欧美bdsm另类| 又黄又粗又硬又大视频| 18禁国产床啪视频网站| 中文字幕人妻熟女乱码| www日本在线高清视频| 巨乳人妻的诱惑在线观看| 男女下面插进去视频免费观看| www.熟女人妻精品国产| 丝袜在线中文字幕| 99精国产麻豆久久婷婷| 日本猛色少妇xxxxx猛交久久| 狂野欧美激情性bbbbbb| 看十八女毛片水多多多| 大片电影免费在线观看免费| 婷婷色av中文字幕| 你懂的网址亚洲精品在线观看| 国产男女内射视频| 丰满饥渴人妻一区二区三| 少妇精品久久久久久久| 叶爱在线成人免费视频播放| 一本色道久久久久久精品综合| 亚洲欧美清纯卡通| 久久这里有精品视频免费| 久久99一区二区三区| 国产一区二区在线观看av| 精品少妇久久久久久888优播| 亚洲精品在线美女| 久久久欧美国产精品| 丝袜美腿诱惑在线| 69精品国产乱码久久久| freevideosex欧美| 亚洲欧美成人综合另类久久久| 看免费av毛片| 夜夜骑夜夜射夜夜干| 久久久久久人人人人人| 精品人妻在线不人妻| 欧美日韩一区二区视频在线观看视频在线| 五月伊人婷婷丁香| 欧美国产精品一级二级三级| 在现免费观看毛片| 久久国产精品男人的天堂亚洲| 成人亚洲精品一区在线观看| 日韩伦理黄色片| 久久久久人妻精品一区果冻| 777久久人妻少妇嫩草av网站| 国产野战对白在线观看| 国产精品.久久久| 亚洲天堂av无毛| 在线观看国产h片| 午夜激情av网站| 精品视频人人做人人爽| 美女脱内裤让男人舔精品视频| 又大又黄又爽视频免费| 黄色怎么调成土黄色| 国产精品一二三区在线看| kizo精华| 精品国产乱码久久久久久男人| 日韩精品有码人妻一区| 精品卡一卡二卡四卡免费| 天天躁狠狠躁夜夜躁狠狠躁| 青草久久国产| 又黄又粗又硬又大视频| 成年人免费黄色播放视频| 女人精品久久久久毛片| 香蕉精品网在线| 欧美日韩一区二区视频在线观看视频在线| 看免费av毛片| 精品亚洲成a人片在线观看| 亚洲激情五月婷婷啪啪| 最近手机中文字幕大全| 人人妻人人爽人人添夜夜欢视频| 又粗又硬又长又爽又黄的视频| 青春草国产在线视频| 大陆偷拍与自拍| 男女国产视频网站| 午夜福利视频在线观看免费| 99香蕉大伊视频| 中文字幕精品免费在线观看视频| 国产一区二区三区综合在线观看| 一本—道久久a久久精品蜜桃钙片| 欧美精品人与动牲交sv欧美| 丰满乱子伦码专区| 国产野战对白在线观看| 欧美亚洲 丝袜 人妻 在线| 亚洲 欧美一区二区三区| 老熟女久久久| 黄片无遮挡物在线观看| 天天躁日日躁夜夜躁夜夜| 人妻 亚洲 视频| 99香蕉大伊视频| av卡一久久| 亚洲人成网站在线观看播放| 成年女人毛片免费观看观看9 | 国产av码专区亚洲av| 可以免费在线观看a视频的电影网站 | 尾随美女入室| 亚洲内射少妇av| 黄色 视频免费看| 国产熟女欧美一区二区| 久久青草综合色| 久久久a久久爽久久v久久| 丝袜人妻中文字幕| 国产在视频线精品| 国产又色又爽无遮挡免| 亚洲一级一片aⅴ在线观看| 亚洲欧美日韩另类电影网站| 免费高清在线观看日韩| 美女xxoo啪啪120秒动态图| 精品人妻一区二区三区麻豆| 五月伊人婷婷丁香| 亚洲欧美一区二区三区国产| 国产成人精品久久久久久| 国产精品女同一区二区软件| 午夜免费男女啪啪视频观看| 99热网站在线观看| 免费黄网站久久成人精品| 日韩av不卡免费在线播放| 99九九在线精品视频| 宅男免费午夜| 国产亚洲午夜精品一区二区久久| av在线老鸭窝| 精品一区二区三区四区五区乱码 | 国产片内射在线| 新久久久久国产一级毛片| 日本av免费视频播放| 五月天丁香电影| 亚洲经典国产精华液单| 久久99热这里只频精品6学生| 日韩一区二区视频免费看| 亚洲综合色惰| 老熟女久久久| 一区在线观看完整版| a 毛片基地| 最近中文字幕2019免费版| 国产综合精华液| 亚洲三级黄色毛片| 七月丁香在线播放| 乱人伦中国视频| 如日韩欧美国产精品一区二区三区| 在线 av 中文字幕| 香蕉丝袜av| 啦啦啦在线免费观看视频4| 久久久精品免费免费高清| 色婷婷av一区二区三区视频| 三上悠亚av全集在线观看| 亚洲精品自拍成人| 亚洲欧美中文字幕日韩二区| 99精国产麻豆久久婷婷| 久久国产亚洲av麻豆专区| 一区二区日韩欧美中文字幕| 91国产中文字幕| 最近手机中文字幕大全| 亚洲精品美女久久av网站| 欧美国产精品一级二级三级| 一区福利在线观看| 女人精品久久久久毛片| 极品少妇高潮喷水抽搐| 精品国产一区二区久久| 天堂俺去俺来也www色官网| 精品福利永久在线观看| 国产精品嫩草影院av在线观看| 老司机影院毛片| 久久青草综合色| 国产精品不卡视频一区二区| 一级毛片电影观看| av视频免费观看在线观看| 777米奇影视久久| 精品人妻一区二区三区麻豆| 日本wwww免费看| 国产精品久久久久久久久免| 免费观看a级毛片全部| 一边摸一边做爽爽视频免费| 男女边摸边吃奶| 老司机亚洲免费影院| 99精国产麻豆久久婷婷| 一级毛片我不卡| 久久精品人人爽人人爽视色| 黄色毛片三级朝国网站| 国产精品.久久久| 色视频在线一区二区三区| 久久久欧美国产精品| 日本猛色少妇xxxxx猛交久久| 欧美av亚洲av综合av国产av | 99九九在线精品视频| www.av在线官网国产| 两个人看的免费小视频| 欧美激情 高清一区二区三区| 男女边吃奶边做爰视频| 精品一品国产午夜福利视频| 一边亲一边摸免费视频| 国产精品香港三级国产av潘金莲 | 少妇被粗大猛烈的视频| 999久久久国产精品视频| 男人操女人黄网站| 国产精品蜜桃在线观看| 欧美人与性动交α欧美精品济南到 | 国产日韩欧美在线精品| 亚洲综合色网址| 国产野战对白在线观看| 成人国语在线视频| 精品亚洲乱码少妇综合久久| 亚洲av.av天堂| 99久久人妻综合| 国产欧美日韩综合在线一区二区| 亚洲精品国产av蜜桃| 两性夫妻黄色片| 秋霞在线观看毛片| 国产精品成人在线| 黄色 视频免费看| 国产精品一国产av| 国产精品蜜桃在线观看| 日韩中字成人| 国产深夜福利视频在线观看| 美女国产视频在线观看| 少妇精品久久久久久久| 大片电影免费在线观看免费| 两个人免费观看高清视频| 又粗又硬又长又爽又黄的视频| 一级爰片在线观看| 国产男女内射视频| 国产精品国产av在线观看| 丰满乱子伦码专区| 久久亚洲国产成人精品v| 中国国产av一级| 国产精品国产av在线观看| 精品一区在线观看国产| 亚洲第一青青草原| 日韩成人av中文字幕在线观看| 亚洲第一青青草原| 亚洲精品久久午夜乱码| 五月开心婷婷网| 91精品伊人久久大香线蕉| 女性生殖器流出的白浆| 亚洲欧美一区二区三区久久| 国产有黄有色有爽视频| 老司机影院成人| 成人毛片60女人毛片免费| 国产精品久久久久久精品电影小说| 边亲边吃奶的免费视频| 国产精品99久久99久久久不卡 | 男女高潮啪啪啪动态图| 国产又色又爽无遮挡免| 亚洲精品乱久久久久久| 少妇被粗大猛烈的视频| 国产精品免费视频内射| 黑丝袜美女国产一区| 久久午夜综合久久蜜桃| 黑人巨大精品欧美一区二区蜜桃| 久久久亚洲精品成人影院| 中文乱码字字幕精品一区二区三区| 亚洲欧美一区二区三区黑人 | 超色免费av| 国产精品国产三级国产专区5o| 一区二区三区精品91| 婷婷色av中文字幕| 日韩精品有码人妻一区| 精品亚洲成国产av| 国产男女内射视频| 熟女av电影| 国产精品女同一区二区软件| 美女高潮到喷水免费观看| 大片免费播放器 马上看| 99精国产麻豆久久婷婷| 亚洲精品日本国产第一区| 伊人亚洲综合成人网| 最近的中文字幕免费完整| 免费高清在线观看视频在线观看| 婷婷色av中文字幕| 69精品国产乱码久久久| 侵犯人妻中文字幕一二三四区| av网站免费在线观看视频| 91精品伊人久久大香线蕉| 亚洲,欧美精品.| 国产亚洲欧美精品永久| 极品少妇高潮喷水抽搐| 亚洲精品久久久久久婷婷小说| 看免费av毛片| 男人添女人高潮全过程视频| 一区二区av电影网| 国产乱来视频区| 纵有疾风起免费观看全集完整版| 91精品国产国语对白视频| 亚洲男人天堂网一区| av一本久久久久| 午夜影院在线不卡| 日韩不卡一区二区三区视频在线| 人妻系列 视频| 寂寞人妻少妇视频99o| 亚洲,一卡二卡三卡| 国产午夜精品一二区理论片| 国产成人精品婷婷| 精品人妻一区二区三区麻豆| 日本色播在线视频| 久久精品夜色国产| 纵有疾风起免费观看全集完整版| 一区二区三区乱码不卡18| 不卡视频在线观看欧美| 欧美精品av麻豆av| 精品视频人人做人人爽| 精品久久蜜臀av无| 91成人精品电影| 一级毛片 在线播放| 精品人妻一区二区三区麻豆| 国产精品秋霞免费鲁丝片| 久久久久久免费高清国产稀缺| 午夜福利网站1000一区二区三区| 亚洲四区av| 丝袜美腿诱惑在线| 久久韩国三级中文字幕| 欧美激情 高清一区二区三区| 少妇的丰满在线观看| 女的被弄到高潮叫床怎么办| 1024视频免费在线观看| 午夜免费观看性视频| 欧美日韩成人在线一区二区| 午夜福利影视在线免费观看| 90打野战视频偷拍视频| 国产成人a∨麻豆精品| 99精国产麻豆久久婷婷| 水蜜桃什么品种好| 美女主播在线视频| 日日啪夜夜爽| 多毛熟女@视频| 在线精品无人区一区二区三| 丰满少妇做爰视频| 老鸭窝网址在线观看| 婷婷色av中文字幕| 99久久中文字幕三级久久日本| 男女无遮挡免费网站观看| 久久ye,这里只有精品| 精品人妻熟女毛片av久久网站| 午夜91福利影院| av网站免费在线观看视频| 丰满饥渴人妻一区二区三| 日本午夜av视频| 超碰97精品在线观看| 欧美精品一区二区免费开放| 国产精品国产三级国产专区5o| 精品人妻熟女毛片av久久网站| 欧美中文综合在线视频| 国产又爽黄色视频| 一级毛片 在线播放| 一级黄片播放器| 午夜福利网站1000一区二区三区| 欧美人与性动交α欧美软件| 成人免费观看视频高清| 久久久久久久精品精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 午夜日韩欧美国产| 看十八女毛片水多多多| 黄色毛片三级朝国网站| 大香蕉久久网| 国产综合精华液| 国产精品二区激情视频| 久久综合国产亚洲精品| 亚洲,欧美精品.| 久久综合国产亚洲精品| 高清视频免费观看一区二区| 成人影院久久| 久久亚洲国产成人精品v| 国产日韩一区二区三区精品不卡| 免费看不卡的av| 男女高潮啪啪啪动态图| 热99久久久久精品小说推荐| 成人影院久久| 欧美激情 高清一区二区三区| 制服人妻中文乱码| 国产不卡av网站在线观看| 亚洲内射少妇av| av视频免费观看在线观看| √禁漫天堂资源中文www| 国产成人午夜福利电影在线观看| 搡老乐熟女国产| 欧美变态另类bdsm刘玥| 啦啦啦中文免费视频观看日本| 亚洲第一区二区三区不卡| 一边摸一边做爽爽视频免费| 国产成人91sexporn| 久久毛片免费看一区二区三区| 午夜福利视频精品| 久久久亚洲精品成人影院| 国产爽快片一区二区三区| 亚洲精品国产一区二区精华液| 亚洲精品美女久久av网站| 99久国产av精品国产电影| 国产一区二区三区av在线| 天天躁狠狠躁夜夜躁狠狠躁| 国产综合精华液| 欧美激情高清一区二区三区 | a级片在线免费高清观看视频| 国产av国产精品国产| 永久免费av网站大全| 女人被躁到高潮嗷嗷叫费观| xxx大片免费视频| 十八禁网站网址无遮挡| 女性被躁到高潮视频| 国产一区二区三区av在线| 亚洲欧美色中文字幕在线| 国产成人av激情在线播放| 欧美日韩一区二区视频在线观看视频在线| 韩国高清视频一区二区三区| 亚洲精品乱久久久久久| 精品少妇黑人巨大在线播放| 久久国内精品自在自线图片| 一区在线观看完整版| 日韩视频在线欧美| 啦啦啦视频在线资源免费观看| 久久99一区二区三区| 国产精品蜜桃在线观看| 有码 亚洲区| 久久久久久久久久久免费av| 少妇人妻精品综合一区二区| 美女国产视频在线观看| 人妻一区二区av| 欧美人与性动交α欧美软件| 成人黄色视频免费在线看| 男人添女人高潮全过程视频| 国产免费视频播放在线视频| 视频在线观看一区二区三区| 丁香六月天网| 观看美女的网站| 亚洲一码二码三码区别大吗| 国产精品蜜桃在线观看| 国产男人的电影天堂91| 伦理电影大哥的女人| 9热在线视频观看99| 又大又黄又爽视频免费| 午夜免费男女啪啪视频观看| 一本—道久久a久久精品蜜桃钙片| 在线观看免费视频网站a站| 成人18禁高潮啪啪吃奶动态图| 黄色一级大片看看| 超碰成人久久| 午夜日本视频在线| 亚洲欧美一区二区三区久久| 纵有疾风起免费观看全集完整版| 黄网站色视频无遮挡免费观看| 26uuu在线亚洲综合色| 国产亚洲精品第一综合不卡| 一边亲一边摸免费视频| 国产成人一区二区在线| av国产精品久久久久影院| 久久女婷五月综合色啪小说| 热99国产精品久久久久久7| 久久久亚洲精品成人影院| 999精品在线视频| 亚洲国产av新网站| 免费少妇av软件| 中文字幕最新亚洲高清| 久久鲁丝午夜福利片| av电影中文网址| 1024视频免费在线观看| 欧美成人精品欧美一级黄| 美女国产视频在线观看| 精品一品国产午夜福利视频| 午夜免费鲁丝| 亚洲av电影在线进入| a级毛片黄视频| 制服诱惑二区| 涩涩av久久男人的天堂| 色哟哟·www| 久久精品国产亚洲av涩爱| av卡一久久| 人成视频在线观看免费观看| 另类精品久久| av片东京热男人的天堂| 在线观看免费视频网站a站| 色视频在线一区二区三区| 久久国产精品大桥未久av| 亚洲欧美中文字幕日韩二区| 国产一区二区三区av在线| 涩涩av久久男人的天堂|