• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Graphene-Based RFID Tag Antenna for Vehicular Smart Border Passings

    2022-08-23 02:17:06PrachAsavanarakulAmnoiyRuengwareeandSuwatSakulchat
    Computers Materials&Continua 2022年6期

    Prach Asavanarakul,Amnoiy Ruengwareeand Suwat Sakulchat

    Department of Electronics and Telecommunication Engineering,Faculty of Engineering,Rajamangala University of Technology Thunyaburi(RMUTT),Pathumthani,12110,Thailand

    Abstract: Globalization has opened practically every country in the globe to tourism and commerce today.In every region,the volume of vehicles traveling through border crossings has increased significantly.Smartcards and radio frequency identification (RFID) have been proposed as a new method of identifying and authenticating passengers, products, and vehicles.However,the usage of smartcards and RFID tag cards for vehicular border crossings continues to suffer security and flexibility challenges.Providing a vehicle’s driver a smartcard or RFID tag card may result in theft, loss, counterfeit,imitation, or vehicle transmutation.RFID sticker tags would replace RFID tags as vehicle border passes to solve the mentioned problem.The RFID sticker tag adheres to the windscreen,side screen,dash,hood,or door of the vehicle,or any other acceptable location.Any damage or stripping from the installed location may cause data corruption and cannot be reused.Overall,these sticker tags will make the border crossings more secure and efficient.This article focuses on designing a rectangular-shaped RFID sticker tag antenna made of graphene sheets as a possible solution for smart border crossings.The proposed antenna is mathematically designed and analyzed with CST software to determine the optimum parameters.The design parameters are then used to create an antenna on a prepared graphene sheet.The performance results are carried out with CST software and a network analyzer.The designed RFID antenna stick on a car windscreen offers approximately 900 MHz bandwidth over the frequency range from 1.8 GHz to 2.7 GHz with an average gain of 1.23 dBi at the frequency to be used of 2.4 GHz microwave RFID band.The radiation is an omnidirectional pattern.The proposed graphene-sheet rectangular-shape monopole antenna is compact,low-cost, and bendable to fit into the windscreen of a car while retaining excellent wave propagation capabilities.These findings illustrate the suggested antenna’s potential as an RFID tag antenna in a vehicular smart border pass system.

    Keywords:Radio frequency identification:RFID;graphene antenna;monopole antenna;smart border pass

    1 Introduction

    Globalization has made almost every country in the world open to tourism and trade.The volume of vehicles passing through the border crossings has increased significantly in every region, such as crossing the border between the United States and Mexico, crossing borders between EU counties.In Asia,China’s one belt one road policy has greatly increased transportation routes for tourism.In Southeast Asia, all countries join the ASEAN Economic Community (refer to AEC).The border crossings between neighboring countries where the number of passers has increased dramatically.The executive report from the Office of Transport and Traffic Policy and Planning (OTP), Ministry of Transport, Thailand, shows that the volume of vehicular border crossings increases to 14 million per year [1].The government must use effective technologies to inspect the significant number of transportation and cargo transfers at the border checkpoints.

    Border crossings are classified as either human or vehicle.Unless someone wishes to pass through a border checkpoint with personal cars,trucks,or freight vehicles,for example,both the owner and vehicle will be inspected.The immigration officer will verify the traveler’s identity by checking the passport,driver’s license,and a few passing documents.Smartcard and Radio Frequency Identification(RFID)technologies have been proposed for use at border checkpoints to verify and confirm identity[1].The smart border pass system using RFID is shown in Fig.1.It is divided into three sections:(1)A database system comprises a host (or cloud) computer and software used to store user data and analyze it for identification and authentication.(2) An RFID reader is used to read and write data from a tag via radio frequency waves.(3)An RFID tag comprises an antenna and integrated circuits(ICs)that store an encrypted code associated with a user’s personal information.

    Figure 1:Smart border pass system

    Numerous research articles propose RFID development to secure data used in access control,electronic toll collection, transportation payment, and livestock management, among other applications.The electronic toll collection system (ETC) is an early example of how RFID technology automated toll collection [2–4].When passing through a toll gate, an rigid RFID card issued to a vehicle will be used as a toll card for collection.This system is limited to resolving issues with traffic flow;it does not address issues with identity security.Multiple articles have proposed solutions to RFID security concerns through the use of sophisticated protocols and encryption.That result eliminates the difficult-to-replicate problem of RFID identity theft[4–10].These articles instill trust in RFID applications.Additionally,several articles endorse developing an RFID tag antenna for RFID and sensing applications [11–16].However, the antennas in these articles are typically designed and constructed using traditional FR4 material.That is appropriate for rigid RFID cards but may not be appropriate for the RFID stickers presented in this research.

    A vehicular border pass is distinct from other applications since the requirements to apply an RFID tag.The RFID tag used as a vehicular border pass should be a sticker that can be easily applied to a windscreen, side screen, hood, door, or other difficult-to-remove parts of a vehicle as shown in Fig.1.Any damage to the installed location,such as a rupture or stripping,renders it corrupted and unusable.This RFID sticker tag must be flexible enough to paste or stick to various surfaces,bendable,resistant to extreme weather,and most importantly,inexpensive.Traditional copper-nickel and FR4-epoxy tags are ineffective in this situation due to the difficulty of bending and adhering to arched surfaces.Furthermore,it is still prohibitively expensive for RFID systems with a budget of 5 cents per tag[17].

    In the last decade,graphene and related materials were presented for low-cost,flexible electronic applications.Graphene possesses many remarkable properties:high conductivity,mechanically robust,flexible, transparent, chemically stable, and low-cost [18,19].Some models of antenna based on graphene were proposed for RFID applications [20–23].Almost all graphene antenna models were designed and fabricated with graphene-ink on various substrates by the conductive/graphene-ink printer.Numerous companies have offered graphene sheets for flexible electronic applications in recent years.New graphene-sheet models have a conductivity of up to S/m.It is incredibly affordable,versatile, and simple to cut to fit the design.As a result, we believe it will meet the requirements for an RFID tag antenna used in conjunction with the vehicular smart border pass system.As a result, this research article proposes developing a graphene-based RFID sticker tag antenna.The research objectives are to (i) investigate and survey the development of RFID tag antennas for incorporation into vehicular smart border pass systems,and(ii)design,verify,and propose a graphenesheet rectangular-shape microwave 2.4 GHz RFID sticker tag antenna for use in vehicular smart border pass systems.

    2 Antenna Design

    RFID applications utilize four types of frequencies: low frequency (LF, 125–134 kHz), high frequency (HF, 13.56 MHz), ultra-high frequency (UHF, 860–960 MHz) and microwave frequency(2.4,5.8,and 24 GHz).The purpose of this article is to design a graphene-based RFID tag antenna for the microwave frequency band,which offers a higher bandwidth and a smaller antenna size than the LF, HF, and UHF bands.Additionally, there is the possibility of manufacturing several microchips that comply with microwave RFID protocols that can be obtained for a few cents from various microelectronics companies shortly.As a result,this frequency is appropriate for the vehicular smart border pass system.

    The rectangular-shape monopole design illustrated in Fig.2 achieves the optimal trade-off between implantation ease and efficiency in developing a high-performance antenna.Based on the theory of microstrip antenna design [24] and previous research [25–31], the rectangular-shape monopole antenna model is used in this situation due to its simplicity of fabrication using standard tools and graphene sheets.The following is an empirical equation for any dimension in Fig.2.

    Figure 2:Rectangular-shape monopole antenna model

    wherehis substrate thickness andWis given by

    wherec= 3×108m/s,fris the resonant frequency(in this case,is microwave RFID frequency),andεris the dielectric constant of the substrate.

    whereλg=c/fr

    and

    The length of the rectangular monopole antenna is calculated from the following equation.

    where

    while

    and

    An impedance of antenna is calculated from a following equations.

    where

    While

    where

    and

    While

    and

    where

    and

    Almost all RFID tag integrated circuits have a 50 ohms input impedance with the RFID tag antenna designed for the tag.The gap dimension(g)between the feed line and the ground plane is assumed to be 0.3 mm,as shown in Fig.2,to achieve an antenna impedance near 50 ohms.The gap dimension will be slightly adjusted when the impedance does not match 50 ohms until the impedance approaches the accepted value.

    3 CST Simulation and Results

    The CST software carries out the antenna performance pattern.The optimized dimensions of the proposed antenna in the microwave 2.4 GHz band are listed in Tab.1.The graphene sheet used to build the antenna in this research has a polyimide substrate with a thicknessh=0.075 mm.,dielectric constantεr= 3.5 and loss tangent tanδ= 0.004.The conductivity of graphene isσ= 1.9 × 104S/m with a thickness oft=0.012 mm.The surface resistivity of graphene at this thickness,measured via the Hall effect measurement system(LakeShore:EMA4-HVA),is 9.30×10-5ohm/cm.Using the equations above, the dimensions of the proposed antenna are determined.However, the calculated value will be optimized to achieve the highest precision possible in terms of frequency and fabrication.

    Table 1: Optimized parameters of the proposed antenna

    The simulated reflection coefficient, S11, of the microwave 2.4 GHz band designed antenna is shown in Fig.3.At the same time, the simulated radiation pattern occurred in Fig.4.The antenna presents a bandwidth of 850 MHz approximately,corresponding to a reflected power less than 10%around the center frequency of 2.4 GHz, which covers the frequency range from 2.14 to 2.99 GHz.The lower reflection coefficient is -31.564 dB, as shown in Fig.3.As illustrated in Fig.4a, the XZ plane’s radiation pattern is omnidirectional.The co-polar plane receives the most radiation,while the cross-polar plane receives the least.In Fig.4b, the radiation pattern in the YZ plane is bi-directional.Maximum radiation occurs between 0 and 180 degrees in the co-polar plane, while the lowest radiation occurs between 90 and 270 degrees.The designed antenna is angled opposite the source antenna to minimize the radiation pattern in the cross-polar plane.Fig.5 illustrates the antenna’s three-dimensional radiation pattern.The pattern of radiation is omnidirectional and has a maximum gain of 1.93 dBi.This characteristic monopole antenna radiation pattern demonstrates that the antenna radiates effectively in the far-field.These simulation results illustrate the optimal parameters for fabricating the graphene antenna in the following section.

    Figure 3:Simulated reflection coefficient S11 at 2.4 GHz band

    Figure 4: Simulated normalized gain radiation patterns at 2.4 GHz band (a) XZ-plane and (b) YZplane

    4 Implementation and Measurement Results

    To fabricate the designed graphene antenna,print the draft antenna on paper to the dimensions specified in Tab.1.Then,adhere the draft paper to the graphene sheet that has been prepared.After that, cut the graphene sheet to the dimensions specified in the draft and remove any undesirable conductive material from the substrate.Finally, using silver conductive glue attaches the SMA connector to the graphene antenna.Fig.6a illustrates the completed graphene antenna.

    Figure 5:Antenna 3-dimension radiation pattern simulation result

    Figure 6:(a)Proposed graphene antenna(b)radiation pattern measurement setup

    The proposed graphene antenna’s reflection coefficient, radiation pattern, and gain are determined using a network analyzer.The measurements of the reflection coefficient are classified into two categories.In the first instance, the antenna has adhered to a rubber sheet in the laboratory.The second scenario is to attach the antenna to the windscreen of a car.The measurement results are as illustrated in Fig.7.In the case rubber sheet, the antenna has a bandwidth of approximately 700 MHz and a reflected power of less than 10%around the center frequency of 2.4 GHz.It covers the frequency range of 2.2 to 2.9 GHz.The reflection coefficient S11is approximately -42 dB.The antenna’s input impedance was measured.It has a resistance of 49.783+j0.55 ohms,which is close to the specification.The antenna has a bandwidth of approximately 900 MHz when mounted on a car windscreen,corresponding to a reflected power of less than 10%around the center frequency of 2.2 GHz,covering the frequency range of 1.8 to 2.7 GHz.The reflection coefficient S11is approximately-24.8 dB.The measurements indicate that attracting graphene to a glass windscreen results in more minor frequency shifts.The bandwidth, however, is sufficient to cover the active spectrum used in microwave RFID applications.In addition,the measured reflection coefficient S11has a slight ripple in both situations due to reflections in the interconnect caused by impedance discontinuities during the measurements.

    Figure 7:Measured results of proposed graphene antenna

    Furthermore, the proposed antenna has been evaluated against a curved surface.The antenna adheres to rolled foam in three diameters:3.5,5,and 6 inches,as illustrated in Fig.8.Fig.9 illustrates the measured results.The results indicate that while curvature affects the reflection coefficient,it does not affect the bandwidth or center frequency.A highly bent antenna reduces the reflection coefficient while maintaining the same bandwidth and center frequency as a flat case.

    Figure 8:(a)Rolled foam dimension(b)attached antenna on rolled foam

    The radiation pattern and gain are measured in the manner represented in Fig.6b,and the results are given in Fig.10.The radiation in the XZ plane is shaped differently in Fig.10a than in the simulation result.It does, however, retain its omnidirectional form.The co-polar plane receives the most radiation, while the cross-polar plane receives the least.In Fig.10b, the radiation pattern in the YZ plane is bi-directional.It is shaped similarly to the simulation result in the co-polar plane.It has a wider shape in the cross-polar plane than the simulation result but is still far from the co-polar shape.The average radiation gain at the frequency to be used of the 2.4 GHz microwave RFID band is 1.23 dBi.All measured values are consistent with those obtained from simulations.As a result, it is possible to confirm that the proposed graphene antenna can be used with RFID stickers in a vehicular smart border pass system.

    Figure 9:Measured S11 on curve surface

    Figure 10:Measured radiation patterns at 2.4 GHz band(a)XZ plane and(b)YZ plane

    5 Conclusions

    The article proposes and designs a graphene-sheet rectangular-shape monopole microwave RFID antenna for vehicular smart border pass systems.The experiments are applied in the laboratory and on a car’s windscreen to verify the proposed antenna’s efficiency.The proposed antenna provides approximately 700 MHz bandwidth around the 2.4 GHz center frequency, covering the frequency range of 2.2 to 2.9 GHz in a laboratory case.Simultaneously, the car windscreen case provides approximately 900 MHz of bandwidth around the 2.2 GHz center frequency, spanning the frequency range 1.8 GHz to 2.7 GHz.The achievable bandwidth covers the entire 2.4 GHz microwave RFID band in its entirety.The radiation pattern is omnidirectional,with an average gain of 1.23 dBi at the frequency to be used of the 2.4 GHz microwave RFID band and an input impedance of 49.783+j0.55.Due to its low cost,small size,and bendability,it is ideal for assembling various tag integrated circuits to serve as vehicular smart border passings.

    Acknowledgement:The authors would like to express their gratitude to the Department of Electronics and Telecommunications, Faculty of Engineering, Rajamangala University of Technology Thanyaburi,Thailand,for providing equipment and funding for this research.Moreover,the authors gratefully acknowledge the hall effect measurement system, which supported this research work sponsored by the National Electronics and Computer Technology Center,Thailand.Additionally,the authors wish to thank anonymous reviewers for their insightful comments,which aided in developing this research article.

    Funding Statement:The Rajamangala University of Technology Thanyaburi,Thailand,is funding this research.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    高清av免费在线| 美女福利国产在线| 久久久久久免费高清国产稀缺| 在线观看人妻少妇| 国产精品.久久久| 欧美日韩视频精品一区| 校园人妻丝袜中文字幕| 丰满饥渴人妻一区二区三| 日日啪夜夜爽| 亚洲欧美色中文字幕在线| 美女视频免费永久观看网站| 好男人视频免费观看在线| av又黄又爽大尺度在线免费看| 日韩人妻精品一区2区三区| 黄频高清免费视频| 一级毛片黄色毛片免费观看视频| 国产成人免费观看mmmm| 99久国产av精品国产电影| 中文字幕亚洲精品专区| 久久人人97超碰香蕉20202| 激情视频va一区二区三区| a 毛片基地| 国产熟女欧美一区二区| 日本午夜av视频| 人人澡人人妻人| 久久久久国产精品人妻一区二区| 男女无遮挡免费网站观看| 啦啦啦 在线观看视频| 亚洲激情五月婷婷啪啪| 少妇人妻 视频| 欧美日韩福利视频一区二区| 制服丝袜香蕉在线| 国产又爽黄色视频| 国产精品久久久久久久久免| 最近的中文字幕免费完整| 色婷婷久久久亚洲欧美| 最近的中文字幕免费完整| www.自偷自拍.com| 午夜影院在线不卡| 国产亚洲精品第一综合不卡| 黄色视频在线播放观看不卡| 激情五月婷婷亚洲| e午夜精品久久久久久久| 成年女人毛片免费观看观看9 | 中国国产av一级| 美女国产高潮福利片在线看| 日韩一区二区视频免费看| 色网站视频免费| 视频在线观看一区二区三区| 一级,二级,三级黄色视频| 午夜福利乱码中文字幕| 亚洲av综合色区一区| 9热在线视频观看99| 在现免费观看毛片| 午夜福利影视在线免费观看| 日韩中文字幕欧美一区二区 | 男人添女人高潮全过程视频| 亚洲av欧美aⅴ国产| 熟女少妇亚洲综合色aaa.| 女性被躁到高潮视频| 在线观看一区二区三区激情| 女性生殖器流出的白浆| 天天躁夜夜躁狠狠久久av| 亚洲人成77777在线视频| 自线自在国产av| 韩国高清视频一区二区三区| 热re99久久精品国产66热6| 韩国高清视频一区二区三区| 人妻 亚洲 视频| 交换朋友夫妻互换小说| 在线观看国产h片| 国产精品国产三级国产专区5o| 亚洲av成人不卡在线观看播放网 | 精品人妻一区二区三区麻豆| 午夜福利网站1000一区二区三区| 成人影院久久| 黄色 视频免费看| 欧美日本中文国产一区发布| 少妇人妻久久综合中文| a级毛片黄视频| 在线观看免费视频网站a站| 欧美精品人与动牲交sv欧美| av一本久久久久| 麻豆乱淫一区二区| 看十八女毛片水多多多| 啦啦啦在线观看免费高清www| 色婷婷久久久亚洲欧美| 人妻一区二区av| 成人黄色视频免费在线看| 中文字幕av电影在线播放| 999久久久国产精品视频| 欧美最新免费一区二区三区| 日本猛色少妇xxxxx猛交久久| 9热在线视频观看99| 国产成人午夜福利电影在线观看| 中文天堂在线官网| 日韩不卡一区二区三区视频在线| 亚洲av男天堂| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品国产三级专区第一集| 90打野战视频偷拍视频| 天天添夜夜摸| 亚洲一区二区三区欧美精品| 国产人伦9x9x在线观看| 狠狠精品人妻久久久久久综合| videosex国产| 国产精品免费大片| 国产精品免费视频内射| 1024香蕉在线观看| 久久久精品国产亚洲av高清涩受| 丰满少妇做爰视频| tube8黄色片| 亚洲欧美一区二区三区黑人| 久久久久人妻精品一区果冻| 国产欧美日韩一区二区三区在线| 亚洲av日韩精品久久久久久密 | 一级毛片 在线播放| 国产在视频线精品| 亚洲欧美成人精品一区二区| 亚洲av成人精品一二三区| 9191精品国产免费久久| 赤兔流量卡办理| 欧美日韩成人在线一区二区| 日本av手机在线免费观看| 狠狠精品人妻久久久久久综合| 国产高清不卡午夜福利| 欧美中文综合在线视频| 最近的中文字幕免费完整| 国产伦理片在线播放av一区| 国产精品秋霞免费鲁丝片| netflix在线观看网站| 日本91视频免费播放| 国产成人精品在线电影| av免费观看日本| 亚洲一区二区三区欧美精品| 999精品在线视频| 亚洲欧美日韩另类电影网站| 日韩,欧美,国产一区二区三区| 人人妻人人澡人人看| 亚洲综合精品二区| 欧美黄色片欧美黄色片| 日韩大片免费观看网站| 九色亚洲精品在线播放| 人人妻人人澡人人爽人人夜夜| 爱豆传媒免费全集在线观看| 午夜激情av网站| 国产伦理片在线播放av一区| 日本vs欧美在线观看视频| 99久国产av精品国产电影| 蜜桃在线观看..| 日本一区二区免费在线视频| 777久久人妻少妇嫩草av网站| 亚洲国产精品999| 亚洲欧洲国产日韩| 大片免费播放器 马上看| 在线观看www视频免费| 亚洲伊人色综图| 成人午夜精彩视频在线观看| 考比视频在线观看| 欧美黄色片欧美黄色片| 欧美日韩综合久久久久久| 日韩人妻精品一区2区三区| 亚洲欧美成人综合另类久久久| 亚洲情色 制服丝袜| 成年av动漫网址| 在线看a的网站| 久久综合国产亚洲精品| 一级爰片在线观看| 国产 一区精品| 亚洲国产最新在线播放| 亚洲男人天堂网一区| 久久这里只有精品19| 亚洲欧美中文字幕日韩二区| 亚洲成色77777| 亚洲精品国产一区二区精华液| 久久久精品区二区三区| 亚洲一码二码三码区别大吗| 卡戴珊不雅视频在线播放| 精品国产一区二区三区四区第35| 一区二区三区精品91| 最近中文字幕高清免费大全6| 精品人妻一区二区三区麻豆| 哪个播放器可以免费观看大片| av电影中文网址| 亚洲欧美成人精品一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 麻豆精品久久久久久蜜桃| 性高湖久久久久久久久免费观看| 国产亚洲最大av| 久久人人97超碰香蕉20202| 亚洲精品aⅴ在线观看| 观看美女的网站| 丝袜喷水一区| 99热国产这里只有精品6| 在线 av 中文字幕| 精品酒店卫生间| 中文精品一卡2卡3卡4更新| 亚洲精品国产区一区二| 免费观看人在逋| 丰满迷人的少妇在线观看| 精品亚洲乱码少妇综合久久| 黄片无遮挡物在线观看| 国产精品久久久久成人av| a级片在线免费高清观看视频| 午夜老司机福利片| 亚洲国产欧美网| 嫩草影视91久久| 午夜福利一区二区在线看| 欧美日本中文国产一区发布| 啦啦啦 在线观看视频| 欧美日韩综合久久久久久| 黄片无遮挡物在线观看| 午夜激情久久久久久久| 国产日韩欧美视频二区| 男女之事视频高清在线观看 | 国产日韩一区二区三区精品不卡| 亚洲第一av免费看| 久久这里只有精品19| 免费黄色在线免费观看| 大陆偷拍与自拍| 久久热在线av| 免费少妇av软件| 婷婷色综合大香蕉| 久久久久国产精品人妻一区二区| 亚洲欧美一区二区三区黑人| 99久久99久久久精品蜜桃| 国产精品国产av在线观看| 色婷婷av一区二区三区视频| 亚洲国产欧美日韩在线播放| 1024视频免费在线观看| 久久久久网色| 丝袜美腿诱惑在线| 国产av国产精品国产| 久久狼人影院| 一级毛片 在线播放| 另类精品久久| 日韩av在线免费看完整版不卡| 王馨瑶露胸无遮挡在线观看| 欧美日本中文国产一区发布| 两个人看的免费小视频| 国产午夜精品一二区理论片| 国产成人欧美在线观看 | 国产在线免费精品| 欧美另类一区| 美女午夜性视频免费| 别揉我奶头~嗯~啊~动态视频 | 无限看片的www在线观看| 一本一本久久a久久精品综合妖精| 中文字幕色久视频| 女的被弄到高潮叫床怎么办| 亚洲精品自拍成人| 国产片特级美女逼逼视频| 午夜福利免费观看在线| av国产精品久久久久影院| 欧美黑人精品巨大| 日韩一卡2卡3卡4卡2021年| 久久精品亚洲熟妇少妇任你| 韩国精品一区二区三区| 欧美变态另类bdsm刘玥| 久久人妻熟女aⅴ| 69精品国产乱码久久久| 亚洲精品国产一区二区精华液| 我要看黄色一级片免费的| av线在线观看网站| 性高湖久久久久久久久免费观看| 欧美国产精品一级二级三级| 97在线人人人人妻| 日韩不卡一区二区三区视频在线| 如何舔出高潮| 国产精品成人在线| 亚洲精品成人av观看孕妇| 男女之事视频高清在线观看 | netflix在线观看网站| 亚洲成av片中文字幕在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产爽快片一区二区三区| 成人毛片60女人毛片免费| 中文字幕最新亚洲高清| 国产精品国产三级国产专区5o| 少妇被粗大的猛进出69影院| 久久久久久久久免费视频了| av女优亚洲男人天堂| 亚洲av电影在线进入| 精品一区二区三区av网在线观看 | 视频区图区小说| 一边摸一边做爽爽视频免费| 麻豆av在线久日| 亚洲四区av| 成人亚洲精品一区在线观看| 卡戴珊不雅视频在线播放| 高清视频免费观看一区二区| 国产视频首页在线观看| 久久精品aⅴ一区二区三区四区| 99热网站在线观看| 亚洲专区中文字幕在线 | 国产亚洲精品第一综合不卡| 国产成人91sexporn| 女人被躁到高潮嗷嗷叫费观| 哪个播放器可以免费观看大片| 亚洲欧美日韩另类电影网站| 亚洲激情五月婷婷啪啪| 亚洲欧美精品综合一区二区三区| 国产女主播在线喷水免费视频网站| 午夜91福利影院| 日韩,欧美,国产一区二区三区| 中国国产av一级| 欧美黑人精品巨大| 国产精品三级大全| 秋霞伦理黄片| 欧美国产精品一级二级三级| 精品一区二区三卡| 2018国产大陆天天弄谢| 久久国产精品男人的天堂亚洲| 一区二区av电影网| av线在线观看网站| 少妇人妻久久综合中文| 十八禁高潮呻吟视频| 久久久久精品久久久久真实原创| 久久久久久久国产电影| 最黄视频免费看| 国产无遮挡羞羞视频在线观看| 婷婷色麻豆天堂久久| 亚洲国产精品成人久久小说| 交换朋友夫妻互换小说| 不卡av一区二区三区| 丝袜美腿诱惑在线| 亚洲欧美一区二区三区久久| 久久国产精品大桥未久av| 国产成人免费无遮挡视频| 国产成人一区二区在线| 人人妻人人添人人爽欧美一区卜| 国产毛片在线视频| 校园人妻丝袜中文字幕| 黄色视频不卡| 男男h啪啪无遮挡| 免费看不卡的av| 国产一区二区在线观看av| 麻豆乱淫一区二区| 久久精品亚洲av国产电影网| 亚洲三区欧美一区| 日韩av不卡免费在线播放| 久久精品久久精品一区二区三区| 亚洲专区中文字幕在线 | 免费观看性生交大片5| 三上悠亚av全集在线观看| 老汉色av国产亚洲站长工具| 亚洲美女黄色视频免费看| 精品一区在线观看国产| 一区二区三区激情视频| 国产成人一区二区在线| 国产熟女午夜一区二区三区| 亚洲欧美一区二区三区久久| 亚洲成人av在线免费| 91精品国产国语对白视频| 欧美激情极品国产一区二区三区| 91精品国产国语对白视频| 国产在线免费精品| 王馨瑶露胸无遮挡在线观看| 香蕉丝袜av| 亚洲欧美一区二区三区久久| 黄频高清免费视频| 欧美 亚洲 国产 日韩一| 国产免费现黄频在线看| 国产免费一区二区三区四区乱码| 亚洲人成77777在线视频| 大片免费播放器 马上看| 90打野战视频偷拍视频| 亚洲综合精品二区| 欧美激情高清一区二区三区 | 天天操日日干夜夜撸| 免费日韩欧美在线观看| 天天躁夜夜躁狠狠久久av| 水蜜桃什么品种好| 久久免费观看电影| 建设人人有责人人尽责人人享有的| 免费人妻精品一区二区三区视频| 另类精品久久| 操出白浆在线播放| 精品人妻一区二区三区麻豆| 亚洲国产欧美在线一区| 日韩欧美一区视频在线观看| 亚洲国产欧美在线一区| 老熟女久久久| 欧美精品一区二区免费开放| 欧美亚洲日本最大视频资源| 亚洲天堂av无毛| 亚洲精品中文字幕在线视频| 制服诱惑二区| 最近2019中文字幕mv第一页| 你懂的网址亚洲精品在线观看| 91精品伊人久久大香线蕉| 久久久欧美国产精品| 日韩制服骚丝袜av| 欧美av亚洲av综合av国产av | 尾随美女入室| 亚洲色图综合在线观看| 国产高清不卡午夜福利| 国产在视频线精品| 满18在线观看网站| 最近的中文字幕免费完整| 最新的欧美精品一区二区| 麻豆精品久久久久久蜜桃| 青草久久国产| 久久久久久人妻| 日韩不卡一区二区三区视频在线| 丝袜喷水一区| 夫妻午夜视频| 免费在线观看完整版高清| 日韩成人av中文字幕在线观看| 啦啦啦 在线观看视频| 在线观看免费高清a一片| 波野结衣二区三区在线| 欧美国产精品va在线观看不卡| 高清黄色对白视频在线免费看| 丝袜脚勾引网站| 国产精品 国内视频| 最近手机中文字幕大全| 亚洲国产日韩一区二区| 2018国产大陆天天弄谢| 国产一级毛片在线| 亚洲av日韩精品久久久久久密 | 午夜福利在线免费观看网站| 国产成人欧美在线观看 | 男女边吃奶边做爰视频| 欧美成人精品欧美一级黄| 成年美女黄网站色视频大全免费| 精品一区二区三区av网在线观看 | 国产在线视频一区二区| 大片免费播放器 马上看| 国产有黄有色有爽视频| 水蜜桃什么品种好| 国产 一区精品| 嫩草影视91久久| 亚洲一级一片aⅴ在线观看| 美女中出高潮动态图| 国产视频首页在线观看| 九草在线视频观看| 美国免费a级毛片| 纵有疾风起免费观看全集完整版| 黄网站色视频无遮挡免费观看| 天堂俺去俺来也www色官网| a 毛片基地| 欧美日本中文国产一区发布| 搡老乐熟女国产| 日韩精品免费视频一区二区三区| 国产精品一区二区在线不卡| 日韩,欧美,国产一区二区三区| 亚洲婷婷狠狠爱综合网| 永久免费av网站大全| 一级a爱视频在线免费观看| 久久精品亚洲av国产电影网| 亚洲av成人不卡在线观看播放网 | 日韩伦理黄色片| 亚洲国产精品国产精品| 国产精品免费大片| 精品人妻熟女毛片av久久网站| 卡戴珊不雅视频在线播放| 肉色欧美久久久久久久蜜桃| 亚洲欧美日韩另类电影网站| 免费在线观看黄色视频的| 日本91视频免费播放| 男女边吃奶边做爰视频| 老汉色av国产亚洲站长工具| 日韩免费高清中文字幕av| 美女大奶头黄色视频| 另类精品久久| 女人精品久久久久毛片| 亚洲人成网站在线观看播放| 久久久久久久精品精品| 99精国产麻豆久久婷婷| 亚洲欧美精品综合一区二区三区| 婷婷色综合大香蕉| 在线观看一区二区三区激情| 国产精品欧美亚洲77777| 人妻一区二区av| 丝袜美足系列| 欧美精品人与动牲交sv欧美| 国产精品久久久久久久久免| 国产成人欧美在线观看 | 亚洲精品视频女| 国产精品久久久久久精品古装| 国产精品秋霞免费鲁丝片| 精品一区二区三卡| 午夜免费鲁丝| 美女脱内裤让男人舔精品视频| 国产精品久久久久久精品电影小说| 国产精品久久久久久人妻精品电影 | 国产有黄有色有爽视频| 免费观看性生交大片5| 日本欧美视频一区| 少妇人妻久久综合中文| 国产一级毛片在线| 国产黄频视频在线观看| 国产黄色视频一区二区在线观看| 精品国产乱码久久久久久男人| 国产1区2区3区精品| 亚洲在久久综合| 国产激情久久老熟女| 天天影视国产精品| 欧美久久黑人一区二区| 久久精品人人爽人人爽视色| 下体分泌物呈黄色| 99精品久久久久人妻精品| 国产成人系列免费观看| 成人18禁高潮啪啪吃奶动态图| 90打野战视频偷拍视频| 最近2019中文字幕mv第一页| 久久精品亚洲av国产电影网| 丁香六月天网| 久久热在线av| 精品国产乱码久久久久久男人| 秋霞在线观看毛片| 日本vs欧美在线观看视频| 考比视频在线观看| 亚洲成人手机| 亚洲精品自拍成人| 成年av动漫网址| 国产男女内射视频| 亚洲中文av在线| 在现免费观看毛片| 欧美人与性动交α欧美精品济南到| 亚洲国产毛片av蜜桃av| 丰满迷人的少妇在线观看| 欧美日韩综合久久久久久| 免费黄色在线免费观看| 精品一区二区免费观看| 考比视频在线观看| 99久久99久久久精品蜜桃| 一级,二级,三级黄色视频| 免费黄网站久久成人精品| www.精华液| 国产一区二区激情短视频 | av在线播放精品| 久久精品国产亚洲av高清一级| 国产精品久久久久久精品古装| 少妇的丰满在线观看| 一本一本久久a久久精品综合妖精| 久久韩国三级中文字幕| 天天添夜夜摸| 亚洲精品国产av成人精品| 色网站视频免费| 99久国产av精品国产电影| 在线看a的网站| 在线 av 中文字幕| 51午夜福利影视在线观看| 久久精品国产综合久久久| 欧美最新免费一区二区三区| 一二三四中文在线观看免费高清| 熟女av电影| 国产精品一区二区在线不卡| 成人午夜精彩视频在线观看| 亚洲国产中文字幕在线视频| 免费黄频网站在线观看国产| 99热网站在线观看| videos熟女内射| 中文精品一卡2卡3卡4更新| 热99久久久久精品小说推荐| 一级毛片我不卡| 国产精品偷伦视频观看了| 少妇精品久久久久久久| 久久青草综合色| 中文天堂在线官网| 黑人巨大精品欧美一区二区蜜桃| 男女高潮啪啪啪动态图| 99精国产麻豆久久婷婷| 另类精品久久| 高清av免费在线| videosex国产| 亚洲熟女毛片儿| 久久久久视频综合| www.av在线官网国产| 国产精品免费视频内射| 国产成人免费观看mmmm| 亚洲在久久综合| 9热在线视频观看99| 国产精品秋霞免费鲁丝片| 亚洲精华国产精华液的使用体验| av电影中文网址| 亚洲天堂av无毛| 午夜免费观看性视频| 久久精品国产综合久久久| 中文欧美无线码| 男女无遮挡免费网站观看| 亚洲成人手机| 国产精品偷伦视频观看了| 欧美在线黄色| 久久国产亚洲av麻豆专区| 最新的欧美精品一区二区| 国产精品麻豆人妻色哟哟久久| 黄色怎么调成土黄色| 母亲3免费完整高清在线观看| 黑人巨大精品欧美一区二区蜜桃| 美女扒开内裤让男人捅视频| 在线精品无人区一区二区三| 亚洲欧美一区二区三区久久| 亚洲国产精品一区二区三区在线| 国产 精品1| 99香蕉大伊视频| 91成人精品电影| 伦理电影免费视频| 女人久久www免费人成看片| 欧美国产精品va在线观看不卡| 成人国产麻豆网| 国产伦理片在线播放av一区| 亚洲一区中文字幕在线| 日韩一卡2卡3卡4卡2021年| 亚洲成av片中文字幕在线观看| 丝袜脚勾引网站| 最新在线观看一区二区三区 | 欧美激情极品国产一区二区三区| 久久久久国产精品人妻一区二区| 精品国产一区二区久久| 国产精品久久久av美女十八| 亚洲国产精品一区三区| 天天躁夜夜躁狠狠躁躁|