• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Plant Identification Using Fitness-Based Position Update in Whale Optimization Algorithm

    2022-08-23 02:17:02AymanAltameemSandeepKumarRameshChandraPooniaandAbdulKhaderJilaniSaudagar
    Computers Materials&Continua 2022年6期

    Ayman Altameem,Sandeep Kumar,Ramesh Chandra Poonia and Abdul Khader Jilani Saudagar

    1Department of Computer Science,College of Applied Studies,King Saud University,Riyadh,11495,Saudi Arabia

    2Department of Computer Science and Engineering,CHRIST(Deemed to be University),Bangalore,560074,India

    3Department of Computer Science,CHRIST(Deemed to be University),Bangalore,560029,India

    4Information Systems Department,Imam Mohammad Ibn Saud Islamic University(IMSIU),Riyadh,11432,Saudi Arabia

    Abstract:Since the beginning of time,humans have relied on plants for food,energy,and medicine.Plants are recognized by leaf,flower,or fruit and linked to their suitable cluster.Classification methods are used to extract and select traits that are helpful in identifying a plant.In plant leaf image categorization,each plant is assigned a label according to its classification.The purpose of classifying plant leaf images is to enable farmers to recognize plants,leading to the management of plants in several aspects.This study aims to present a modified whale optimization algorithm and categorizes plant leaf images into classes.This modified algorithm works on different sets of plant leaves.The proposed algorithm examines several benchmark functions with adequate performance.On ten plant leaf images, this classification method was validated.The proposed model calculates precision, recall, F-measurement,and accuracy for ten different plant leaf image datasets and compares these parameters with other existing algorithms.Based on experimental data, it is observed that the accuracy of the proposed method outperforms the accuracy of different algorithms under consideration and improves accuracy by 5%.

    Keywords: Bag-of-features; feature optimization; plant leaf classification;swarm intelligence;nature-inspired algorithm

    1 Introduction

    In the agricultural sector, plants play a vital role for all living things.Plant identification with greater precision is a complex issue that requires interdisciplinary research.The multidisciplinary approach combines computer vision and plant/botanical taxonomy.This approach helps in the automated classification and identification of plants.These techniques use leaf images as an input and perform classification/identification using machine learning and deep learning approaches.The main obstacle to automated identification is the lack of a suitable dataset.With the advancement in computer vision,many sophisticated models have been proposed to automate agricultural activities,including plant identification,soil classification,disease identification,weeds plant identification,and crop row detection.The timely and efficient identification of plants helps in management of crop related activities,including timely irrigation,supply of fertilizer,and removal of weed plants.

    The process of plant identification includes feature extraction, optimization, and classification.Generally, feature extraction is performed by speed-up robust features (SURF) [1], scale-invariant feature transform (SIFT) [2] etc.The feature optimization phase is an important step where an individual can deploy an algorithm to select the best feasible set of features.Recent research used spider monkey optimization(SMO)[3],whale optimization algorithm(WOA)[4],bat algorithm[5],differential evolution (DE) [6], salp swarm algorithm (SSA) [7], sine cosine algorithm (SCA) [8],and many other swarms and evolutionary algorithms for solving this combinatorial optimization problem.Most of the recent research in the domain of plant identification used artificial neural network (ANN) and support vector machine (SVM) [9], deep residual network [10], convolutional neural network (CNN) [11], deep learning models (AlexNet, VGGNet, and GoogLeNet) [12] CNN models (Xception, ResNet50, InceptionV3, and MobileNet) and recurrent neural networks (RNN)including simple RNN, gated recurrent unit (GRU), and long short term memory (LSTM) models[13],and convolutional siamese network(CSN)[14]for efficient classification.

    The automated identification of plants is based on the analysis of leaf images.Therefore,leaves are critical sources of information about the plant.However,this task is challenged by many hurdles like similarity in plant leaves, background variation, and the colour of leaves.Moreover, natural images require an efficient segmentation approach for further processing.Thus,developing machine learning and deep learning approaches to identify plants with higher accuracy is highly desirable.This study presents a new method for plant identification with improved WOA-based feature selection,leading to efficient classification.The significant research contribution of this paper is as follows:

    1.A fitness-based WOA(FWOA)was proposed,and its performance was evaluated over a set of benchmark functions.

    2.Feature extraction was performed using SIFT and SVM classifier used for classification.

    Following is a breakdown of the rest of the paper.Section 2 discusses some recent developments in plant identification and WOA.Feature extraction,feature selection,and classification are discussed in Section 3.Section 4 discusses the experimental results of FWOA and its application to plant leaf identification.Section 5 concludes the paper.

    2 Preliminaries

    Computational intelligence-based techniques can solve a complex optimization problem with fewer resources.These techniques are classified into different classes based on their source of inspiration, like swarm-based, evolutionary, and bio-inspired.These algorithms start with a set of randomly generated populations.Subsequently, each update their position shares details with other individuals and selects the best one for the next iteration.This section discusses recent development in plant identification and the basics of WOA[15].

    2.1 Plant Identification

    Machine learning and deep learning are becoming more popular nowadays for the identification of plants.Some of the recent research contributions for the identification of plants using these techniques are discussed here.Pankaja and Suma deployed WOA to reduce dimensions and classified using Random Forest (RF) [15].The author extracted texture, shape, and color features from the leaf image dataset.The WOA-based approach selects a set of optimal features.They used Flavia and Swedish leaf datasets for this experiment.Results reported that the WOA-based strategy outperformed other considered algorithms for feature extraction,feature selection,and plant identification.Sun et al.deployed a deep residual network with 26 layers on the BJFU100 dataset collected from their university campus[16].The new approach was first validated on the Flavia leaf dataset with a 99.65%recognition rate.The main feature of this work is that Sun et al.acquired this data set on a mobile device [16].Ghazi et al.employed transfer learning with a deep neural network[12].Here,the author performed fine-tuning of the pre-trained model and used AlexNet,VGGNet,and GoogLeNet.The new model gives significantly improved results.Zhu et al.deployed a deep CNN with a set of five max-pooling layers, five soft-max layers, three fully connected layers, and sixteen convolutional layers [11].This study concluded that the use of ReLUs along with these layers improved overall performance.Finally,Rzanny et al.studied various image acquisition and preprocessing techniques to identify plants with varying backgrounds[17].Kho et al.focused on intact leaves[9]and used ANN and SVM to identify Ficus species plants.Original images were preprocessed by detecting edges and segmentation.While extracting shape and texture features,they reported 83%accuracy.Bodhwani et al.deployed a 50-layer deep residual network for plant identification and achieved 93%accuracy[10].Liu et al.combined pretrained CNN(Exception,ResNet50,InceptionV3,and Mobile Net)and RNN(simple RNN,GRU,and LSTM)models[13].Some of the combinations archived very high accuracy.A summary of some of the recent development in plant identification is illustrated in Tab.1.

    Table 1: Recent development in plant identification

    Table 1:Continued

    2.2 Whale Optimization Algorithm

    The WOA is a new nature-inspired algorithm developed by Mirjalili and Lewis in 2016 [4].This nature-inspired optimization algorithm is used to solve many complex real-world optimization problems.WOA is inspired by the bubble-net hunting approach used by humpback whales during foraging.This method mimics the hunting style by using the fittest search agent to hunt the prey,and the spiral method is used to model the bubble-net attacking mechanism.The hunting method is an exciting mechanism for humpback whales.This approach of hunting is recognized as the bubble-net feeding strategy[20].The mathematical model of this optimization algorithm majorly consists of three steps.The first step is encircling prey,the second step is a bubble net attacking method(exploitation phase), and the last step is the search for prey (exploration phase) [4].Each phase is illustrated in subsequent sections.

    2.2.1 Encircling Prey

    Humpback whales locate the target and encircle it.Initially,the optimal design is unknown;hence,the WOA method assumes the target prey as the present ideal candidate solution,or it can be close to the optimum.Once the optimal search agent is well-defined,some other agent will update the location of the existing best search agent.

    2.2.2 Bubble-Net Attacking Method

    The exploitation phase in WOA is simulated by the bubble-net behaviour of humpback whales with two steps.

    where d is the distance of prey fromithwhale to take the best solution obtained so far,l is a random number,b is a constant,which defines the shape of the spiral.Thus,humpback whales continuously swim in a spiral-shaped path within a decreasing circle around the prey.To model this synchronized behaviour,assume a 50%probability of selecting either a shrinking circle or a spiral model to update the whale’s location.The calculated model is shown in Eq.(6).

    where p is a random number within the range[0,1].

    2.2.3 Search for Prey

    In the bubble net technique, humpback whales hunt prey randomly according to each other’s location.Vector A is used to search for prey in the exploration phase, calculated in the first phase.In this step,update the location of the search agent by using the randomly selected search agent.This method sheds light on exploration and allows this algorithm to perform global searches.The calculated model is shown in Eqs.(7)and(8).

    whereXrandis an||arbitrarily chosen whale from the current population.The detailed pseudo code for WOA is given in Algorithm 1.

    Algorithm 1:Whale Optimization Algorithm Initialize population of N whales Evaluate the fitness of all individuals and choose the best search agent while Termination criteria is not meet do for every individual do Update value of A,C,a,1,p if p <0.5 then if|A|<1 then Update position using Eq.(2)else Update position using Eq.(8)end if else Update position using Eq.(5)end if end for Evaluate the fitness of new solution and update the best search agent End while

    Initially, the WOA starts with some arbitrary solutions.Then, individuals update the positions using the best answer ever found on each iteration or an arbitrarily picked individual.Using vector,update the location of an individual with the condition ifselects a random search agent,and if<1 selects the best solution.WOA includes the exploration and exploitation phase.Hence it is considered a global optimizer.Moreover, the proposed method describes a search space in the locality.WOA mainly includes two vector parameters, namelyHowever, modification and additional evolutionary procedures are included in WOA formulation to mimic the behaviour of humpback whales.

    Algorithm 2:Fitness-based solution update strategy Input:Current solution,pr.=0,A,C,a,1,p Compute pr using pr=0.9 x(Fitnessi/Fitnessmax)+0.1 if pr <0.2 then if|A|<1 then Update position using Eq.(2)else Update position using Eq.(8)end if else Update position using Eq.(5)end if

    3 Fitness-Based Whale Optimization Algorithm

    Exploitation and exploration are two significant phases in all the meta-heuristic algorithms for accomplishing the precise solution.The performance of an algorithm is strongly reliant on balancing these two opposing processes.In the WOA algorithm, bubble-net attacking is responsible for exploitation and search for prey phase perform exploration.They are essential phases in the WOA algorithm and affect the convergence behavior of WOA.The exploration phase searches whales’property for renovating position; this selection uses the random function for updating to recognize the best whale[4].To improve the performance of WOA,a new version of WOA is proposed here and named fitness-based status update WOA(FWOA).The new variant update uses highly fitted solutions and explores the search space for a solution with low fitness.The introduced concept works on the principle that solutions in the proximity of higher fitness solutions are also highly fitted and try to exploit the best solution.In the case of low fitness,it updates its position according to the search for prey phase.Detailed pseudo-code for the new strategy is given in Algorithm 2.

    Additionally, a fitness-based method is used to compute the value ofandinstead of a random function,which improves the performance of the current method.In addition,the accuracy of the proposed model is increased by using the fitness function.Calculate the values ofandto surround the hunting stage according to Eqs.(9)and(10).

    The new approach takes advantage of a highly fitted solution.It assumes that the proximity of highly-fitted solutions may be a feasible solution for the considered problem.As a result,the swarm always moves in the direction of the solution with good fitness with self-organizing characteristics,and it improves the convergence speed and avoids skipping real solutions.

    The performance of the newly proposed FWOA is evaluated over a set of thirteen benchmark problems [4].The selected problems are uni-modal and multi-modal optimization problems with known solutions and search.Performance of FWOA and other competitive algorithms compared in terms of the average function value(Avg),standard deviation(SD),and optimal function value.All the algorithms are implemented in MATLAB R2020b on an Intel Core i7 machine with 16 GB RAM and 8 GB GeForce GTX1650Ti Graphics processor to measure these parameters.Tabs.2 and 3 illustrate results for FWOA, WOA [4], SSA [16], SCA [8].Tab.2 illustrates the efficiency and robustness of FWOA in comparison to other algorithms.Graphical representations of results for functions F1,F8,and F12 are depicted in Fig.1.These results proved that FWOA outperformed considered algorithms in terms of best function value,as shown in Tab.3.

    Table 2: Results for benchmark problems

    Table 3: Comparison of optimal value for benchmark problems

    Figure 1: Performance assessment for selected functions.(a) F1 WOA (b) F1 SSA (c) F1 SCA (d) F1 FWOA(e)F8 WOA(f)F8 SSA(g)F8 SCA(h)F8 FWOA(i)F12 WOA(j)F12 SSA(k)F12 SCA(l)F12 FWOA

    4 FWOA-Based Plant Identification System

    The proposed model introduced a fitness-based WOA to classify plants based on the leaf image dataset.The suggested model has three significant steps:feature extraction using the SIFT algorithm,feature selection, histogram generation using the modified WOA, and classification of plants based on their leaf image using the SVM classifier, as shown in Fig.2.A detailed description is given in later sections.The detailed process of the plant leaf classification model is shown in Fig.3.To validate the proposed model, images of apple, banana, borages, maize, grapes, mint, orange, pepper, potato,and tomato leaf were used in this research.This dataset is used as a sample dataset for validating this model.Some sample images from each category are depicted in Fig.4.

    Figure 2:Process of the proposed model

    4.1 Feature Extraction

    In image processing and computer vision, a feature is an information in a picture [21].Objects,edges,and points,for example,have extraordinary quality and distinct structure.Feature extraction is a process of classifying essential features of an image, classifying common themes from a broad collection of images,and pattern recognition[22].The proposed model’s first step is to extract all image features and group them into corresponding groups.This extraction is one of the leading steps for image analysis relating to their features.Similar and different image features have to be extracted and stored in respective clusters for practical analysis.The SIFT algorithm is used to extract the features in the proposed method.SIFT is a feature detection method that detects and defines local features of plant leaf images.These local features are essential points in the image that aid in identifying the object of the image[23].This method can rotate and select an image of a different scale and handle the noise points.Therefore,it is a practical algorithm for feature extraction.

    Figure 3:Proposed plant leaf classification model

    4.2 Feature Selection

    Feature selection is a technique that significantly affects the performance of the proposed classification model.A combinatorial optimization problem is selecting an optimal collection of features from a vast set of extracted features.Thus, it is highly desired to solve this problem with a non-conventional optimization algorithm.This step chooses the most relevant elements that will aid in estimating the class of each leaf image.Next, extracted features from the previous step are used to select the optimal features and create clusters using selected features,increasing accuracy and decreasing overfitting.This paper used the modified WOA for clustering to select optimal features.Finally,a histogram is plotted using selected features by the proposed model.This histogram shows the fundamental frequency distribution of the selected features.In addition, the histogram allows the review of the selected features in terms of outliers and skewness.The graphical representation is depicted in Fig.5.

    Figure 4:Sample plant leaf image set for considered plants.(a)Apple(b)Banana(c)Borages(d)Corn(e)Grapes(f)Mint(g)Orange(h)Pepper(i)Potato(j)Tomato

    Figure 5:Histogram of the proposed model

    4.3 Plant Leaf Classification

    Classification of plants using a leaf image dataset is the final step of this proposed method.In the previous step,the histogram is generated based on the selected features and passed to SVM classifier along with their labels[24].SVM is a high-performance binary classifier,which creates a hyperplane in ample feature space for separate leaf images into their respective classes[25].In this step,the SVM classifier predicts the class labels of each plant leaf image based on training.Hence labelling,training and testing plant leaf image dataset confirm the accuracy of this model.Experimental results are discussed in the next section.

    5 Experimental Results for Plant Identification

    Three steps are used to analyze the proposed plant classification using a leaf image dataset based on FWOA.The first step represents plant leaf dataset description, the second step shows the performance of benchmark functions,and the third step analyses the result of FWOA based plant leaf classification.

    5.1 Dataset Description

    This dataset consists of more than 10000 images; 200 images from each category are used for training and testing this model.This dataset is categorized into ten different classes named apple,banana,borages,corn,grapes,mint,orange,pepper,potato,and tomato.This dataset is taken from Plant Village[26]and Kaggle[27].This dataset is used to measure the performance of the proposed method in terms of the accuracy of classification of each class using a leaf image dataset.These images are divided into a 70%–30%train cross-test split for each class.

    5.2 Experimental Results for Plant Leaf Image Classification

    The proposed model has been predicted outputs using Python programming.In this section,the proposed approach is described using experimental results based on the input image dataset.Tab.4 shows some of the parameters and best fitness values.The value of these parameters is decided with exhaustive experiments.The proposed modified WOA has been compared with SCA,BAT,SSA,DE,and WOA.An equal number of image sets have been from each class for these algorithms.Create a confusion matrix concerning each class for performance analysis.The confusion matrix for each class is depicted in Fig.6.These matrixes show the comparison of actual data and predicted data.The performance of all the considered algorithms for classification is illustrated in Fig.6.It is important as the considered data set has ten classes.In the case of three or more categories,it is better to visualize results with confusion matric as accuracy can be misleading.The results are measured by calculating the F1 score,precision,recall,and accuracy.

    where TP stands for true positive,TN for true negative,FP for false positive,and FN for false negative.The measured performance and comparisons are shown in Tab.5.This table summarizes accuracy and other matrices for considered algorithms.The proposed method shows better performance when compared with another existing algorithm.For example,compare the accuracy of the modified WOA algorithm with some other algorithms, which is depicted in Fig.7.Hence, it can be stated that the proposed modified WOA classification method is better than the existing algorithms.

    Table 4: Parameter setting for WOA

    Figure 6:Confusion matrix for considered algorithms.(a)SCA(b)BAT(c)SSA(d)DE(e)WOA(f)MWOA

    Table 5: Performance comparison of modified WOA with BAT,SSA,SCA,DE and WOA

    Table 5:Continued

    Figure 7:Comparison of overall accuracy

    6 Conclusion

    Using a plant leaf image dataset,this study presents a new plant classification method.The new version of WOA uses a fitness-based status update method instead of random numbers.This method shows the effectiveness of the results by estimating the maximum accuracy value.In this study, we primarily used three steps: feature extraction using the SIFT method, feature selection using the modified WOA method, and classification using the SVM classifier.The proposed method achieves maximum recall,precision,F1 scores,and accuracy with 80.16%.We analyze the experimental results,and it was found that the WOA with the fitness function increased the efficiency of the proposed algorithm.WOA is employed to handle the problem of feature selection and clustering in this study.The proposed algorithm results are compared with well-known stochastic algorithms such as BAT,DE,WOA,SCA,and SSA.

    Furthermore,when compared to other algorithms,the proposed method’s results were effective,practical,and simple to implement.In the future,the proposed method can be applied to various plant classifications utilizing different plant leaf image datasets.Besides this,the WOA can be combined with another clustering approach to improve performance.

    Acknowledgement:The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this research.

    Funding Statement:This work was supported by the Deanship of Scientific Research, King Saud University,Saudi Arabia.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    久久久欧美国产精品| 国产男人的电影天堂91| 久久av网站| 日韩电影二区| 亚洲国产毛片av蜜桃av| av线在线观看网站| 久久久久久久大尺度免费视频| 欧美 日韩 精品 国产| 久久精品国产亚洲网站| 美女高潮的动态| 水蜜桃什么品种好| 下体分泌物呈黄色| 乱系列少妇在线播放| 日韩免费高清中文字幕av| 嫩草影院入口| 欧美日韩国产mv在线观看视频 | av在线app专区| av专区在线播放| 亚洲欧美成人精品一区二区| av在线蜜桃| 亚洲一级一片aⅴ在线观看| 卡戴珊不雅视频在线播放| 美女视频免费永久观看网站| 久久久久久久久久成人| 日日啪夜夜撸| 国产高清国产精品国产三级 | 国产真实伦视频高清在线观看| 男女国产视频网站| 最近的中文字幕免费完整| 国产成人精品一,二区| 一个人看的www免费观看视频| 最黄视频免费看| 最近中文字幕高清免费大全6| a级毛色黄片| 另类亚洲欧美激情| 日日啪夜夜撸| 一级毛片久久久久久久久女| 啦啦啦啦在线视频资源| 99国产精品免费福利视频| 亚洲av二区三区四区| 少妇高潮的动态图| 大片免费播放器 马上看| 日韩制服骚丝袜av| av在线观看视频网站免费| 九九久久精品国产亚洲av麻豆| 97超视频在线观看视频| 亚洲精品色激情综合| 少妇的逼好多水| 午夜福利在线在线| 22中文网久久字幕| 国产探花极品一区二区| 成人综合一区亚洲| 精品亚洲乱码少妇综合久久| 熟妇人妻不卡中文字幕| 欧美成人精品欧美一级黄| 亚洲精品一区蜜桃| 国产午夜精品一二区理论片| 国产成人午夜福利电影在线观看| 2022亚洲国产成人精品| 国产精品精品国产色婷婷| 免费在线观看成人毛片| 91狼人影院| 少妇高潮的动态图| 精品久久久久久久久亚洲| 午夜免费鲁丝| 久久久久久久大尺度免费视频| 国产成人freesex在线| 一区在线观看完整版| 一级毛片久久久久久久久女| 如何舔出高潮| 欧美日本视频| 黄片无遮挡物在线观看| av在线播放精品| 亚洲av不卡在线观看| 九草在线视频观看| 亚洲怡红院男人天堂| 王馨瑶露胸无遮挡在线观看| 中文在线观看免费www的网站| 亚洲成人av在线免费| 色婷婷av一区二区三区视频| 免费观看的影片在线观看| 老女人水多毛片| av.在线天堂| 亚洲精品乱久久久久久| 精品人妻熟女av久视频| 在线播放无遮挡| 蜜臀久久99精品久久宅男| 国产精品一区二区在线不卡| 男人狂女人下面高潮的视频| 女性生殖器流出的白浆| 各种免费的搞黄视频| 能在线免费看毛片的网站| 涩涩av久久男人的天堂| 亚洲av日韩在线播放| 在线观看三级黄色| 亚洲欧美一区二区三区国产| 亚洲精品一二三| 亚洲真实伦在线观看| 视频中文字幕在线观看| 熟妇人妻不卡中文字幕| 九九在线视频观看精品| 麻豆国产97在线/欧美| 狂野欧美激情性bbbbbb| 在线播放无遮挡| 深夜a级毛片| 久久久久久久精品精品| 亚洲不卡免费看| av天堂中文字幕网| 欧美精品国产亚洲| 久久精品国产亚洲网站| 少妇高潮的动态图| 久久久久视频综合| 亚洲欧美中文字幕日韩二区| 熟女av电影| 日本午夜av视频| 91精品伊人久久大香线蕉| 少妇熟女欧美另类| 老熟女久久久| 十八禁网站网址无遮挡 | 午夜福利在线观看免费完整高清在| 免费人妻精品一区二区三区视频| 七月丁香在线播放| 女人十人毛片免费观看3o分钟| 日韩亚洲欧美综合| 国产精品一二三区在线看| 尤物成人国产欧美一区二区三区| 夜夜爽夜夜爽视频| 亚洲国产精品999| 国产精品一区二区在线观看99| 日韩av在线免费看完整版不卡| 亚洲欧洲国产日韩| 日韩强制内射视频| 一级毛片我不卡| 日本黄色片子视频| av线在线观看网站| 精品少妇黑人巨大在线播放| freevideosex欧美| 大片电影免费在线观看免费| 99热全是精品| 日本黄色日本黄色录像| www.色视频.com| 亚洲精品日本国产第一区| 欧美变态另类bdsm刘玥| 精品久久久久久久久亚洲| 精品久久久精品久久久| 一级毛片aaaaaa免费看小| 国产精品国产三级专区第一集| 国产黄片视频在线免费观看| 亚洲美女搞黄在线观看| 岛国毛片在线播放| 亚洲伊人久久精品综合| 乱系列少妇在线播放| 国产伦在线观看视频一区| 久久久久精品久久久久真实原创| 热99国产精品久久久久久7| 午夜免费男女啪啪视频观看| 最新中文字幕久久久久| 久久久久网色| 极品少妇高潮喷水抽搐| 不卡视频在线观看欧美| 22中文网久久字幕| 搡女人真爽免费视频火全软件| 天天躁夜夜躁狠狠久久av| 精品久久久久久久久亚洲| 熟女av电影| 日本免费在线观看一区| 深夜a级毛片| 精品久久国产蜜桃| 国产亚洲精品久久久com| 国产91av在线免费观看| 人人妻人人爽人人添夜夜欢视频 | 亚洲av中文字字幕乱码综合| 成人亚洲欧美一区二区av| 亚洲av国产av综合av卡| 亚洲精品视频女| 日韩精品有码人妻一区| 一本色道久久久久久精品综合| 校园人妻丝袜中文字幕| 熟女人妻精品中文字幕| 在线观看人妻少妇| 国产伦理片在线播放av一区| 精品熟女少妇av免费看| 久久精品国产自在天天线| 免费av中文字幕在线| 我要看黄色一级片免费的| 在线亚洲精品国产二区图片欧美 | 国产亚洲精品久久久com| 中文字幕久久专区| 亚洲国产高清在线一区二区三| 午夜激情久久久久久久| 国产精品蜜桃在线观看| 国产免费一级a男人的天堂| 丰满迷人的少妇在线观看| 欧美高清性xxxxhd video| 国产免费一级a男人的天堂| 青青草视频在线视频观看| 亚洲美女搞黄在线观看| 91午夜精品亚洲一区二区三区| 日本爱情动作片www.在线观看| 国产日韩欧美亚洲二区| 只有这里有精品99| 国产亚洲精品久久久com| 国产伦理片在线播放av一区| 99热网站在线观看| 少妇 在线观看| 久久久久久久久久久免费av| 日韩强制内射视频| 涩涩av久久男人的天堂| 亚洲欧美精品专区久久| 久久国内精品自在自线图片| 国产一区二区三区综合在线观看 | 亚洲精华国产精华液的使用体验| 亚洲怡红院男人天堂| 国产精品99久久99久久久不卡 | 在线播放无遮挡| 亚洲伊人久久精品综合| 国产69精品久久久久777片| av天堂中文字幕网| 深爱激情五月婷婷| 成人美女网站在线观看视频| av免费观看日本| 日本欧美国产在线视频| 欧美激情极品国产一区二区三区 | 欧美激情国产日韩精品一区| 免费不卡的大黄色大毛片视频在线观看| 青春草国产在线视频| 欧美日韩综合久久久久久| 伦理电影免费视频| 国产精品麻豆人妻色哟哟久久| 国产亚洲5aaaaa淫片| 丰满少妇做爰视频| 麻豆成人av视频| 丰满人妻一区二区三区视频av| 日韩一区二区三区影片| 成年美女黄网站色视频大全免费 | 亚洲精品国产成人久久av| 亚洲精品乱码久久久v下载方式| 久久热精品热| 国产成人免费无遮挡视频| 美女中出高潮动态图| 久久精品国产自在天天线| 亚洲精品日本国产第一区| www.av在线官网国产| 大片电影免费在线观看免费| 99久久人妻综合| 亚洲精品亚洲一区二区| 亚洲va在线va天堂va国产| 欧美老熟妇乱子伦牲交| 午夜激情久久久久久久| 国产精品久久久久久久久免| 伊人久久精品亚洲午夜| 啦啦啦啦在线视频资源| 久久久久久久亚洲中文字幕| 人人妻人人澡人人爽人人夜夜| 汤姆久久久久久久影院中文字幕| 26uuu在线亚洲综合色| 高清av免费在线| 在线 av 中文字幕| 精品人妻一区二区三区麻豆| 看免费成人av毛片| 久久国产乱子免费精品| 国产精品爽爽va在线观看网站| 女性被躁到高潮视频| 国产成人a区在线观看| 99精国产麻豆久久婷婷| 亚洲伊人久久精品综合| 欧美日韩视频高清一区二区三区二| 国产中年淑女户外野战色| 成人一区二区视频在线观看| 在线观看av片永久免费下载| 久久ye,这里只有精品| 最近的中文字幕免费完整| 人人妻人人看人人澡| 国产有黄有色有爽视频| 又黄又爽又刺激的免费视频.| 国产精品一区二区在线观看99| 国产黄色免费在线视频| 免费av中文字幕在线| 国产成人aa在线观看| 午夜视频国产福利| 亚洲精品自拍成人| 免费av中文字幕在线| 亚洲精品成人av观看孕妇| 夜夜爽夜夜爽视频| 22中文网久久字幕| 2018国产大陆天天弄谢| 乱系列少妇在线播放| 午夜视频国产福利| 国产黄色免费在线视频| 欧美一区二区亚洲| 在线免费十八禁| 人妻 亚洲 视频| 婷婷色麻豆天堂久久| 精品国产露脸久久av麻豆| 免费大片黄手机在线观看| 成人黄色视频免费在线看| 少妇猛男粗大的猛烈进出视频| 纯流量卡能插随身wifi吗| 免费大片黄手机在线观看| 国产精品av视频在线免费观看| 一级毛片我不卡| 国产日韩欧美在线精品| 午夜福利高清视频| 久久ye,这里只有精品| 超碰97精品在线观看| 精品酒店卫生间| 我的女老师完整版在线观看| 婷婷色综合www| 欧美变态另类bdsm刘玥| 国产真实伦视频高清在线观看| 国产精品久久久久久av不卡| 国产成人精品一,二区| 街头女战士在线观看网站| 男男h啪啪无遮挡| 亚洲,欧美,日韩| 欧美另类一区| 久久久久久久亚洲中文字幕| 日韩三级伦理在线观看| 少妇精品久久久久久久| 各种免费的搞黄视频| 九九爱精品视频在线观看| 中文欧美无线码| 亚洲精品第二区| 国产爱豆传媒在线观看| 一区二区三区四区激情视频| 精品久久久精品久久久| 夜夜骑夜夜射夜夜干| 国产色婷婷99| 精品人妻视频免费看| 午夜福利影视在线免费观看| 日韩在线高清观看一区二区三区| 亚洲av中文av极速乱| 国产亚洲最大av| 99久国产av精品国产电影| 亚洲国产精品国产精品| 你懂的网址亚洲精品在线观看| 国产成人精品婷婷| 国产片特级美女逼逼视频| 亚洲人成网站在线观看播放| 少妇被粗大猛烈的视频| 欧美成人一区二区免费高清观看| 联通29元200g的流量卡| 一区二区三区精品91| 丰满少妇做爰视频| 国产精品不卡视频一区二区| 久久精品久久久久久噜噜老黄| 日本欧美国产在线视频| 亚洲久久久国产精品| 18禁裸乳无遮挡动漫免费视频| 嘟嘟电影网在线观看| 国产黄频视频在线观看| 国产精品久久久久久精品古装| 国产亚洲5aaaaa淫片| 99热全是精品| 免费人妻精品一区二区三区视频| 亚洲av综合色区一区| 国产午夜精品久久久久久一区二区三区| 亚洲欧美一区二区三区国产| 2022亚洲国产成人精品| 超碰97精品在线观看| 日本av免费视频播放| 性色av一级| 亚洲真实伦在线观看| 麻豆精品久久久久久蜜桃| 亚洲精品久久久久久婷婷小说| 国产精品99久久99久久久不卡 | 亚洲美女搞黄在线观看| 亚洲色图av天堂| 久久久成人免费电影| 国产精品国产三级国产专区5o| 尾随美女入室| av免费观看日本| 国产亚洲精品久久久com| 久久亚洲国产成人精品v| 最新中文字幕久久久久| 97热精品久久久久久| 国产成人午夜福利电影在线观看| 成人国产麻豆网| 黄色视频在线播放观看不卡| 伦理电影大哥的女人| 亚洲av福利一区| 欧美成人精品欧美一级黄| 高清黄色对白视频在线免费看 | 少妇裸体淫交视频免费看高清| 精品亚洲乱码少妇综合久久| 国产精品偷伦视频观看了| 国语对白做爰xxxⅹ性视频网站| 久久鲁丝午夜福利片| 久久青草综合色| 黄色一级大片看看| 日韩欧美精品免费久久| 精品熟女少妇av免费看| 亚洲欧美中文字幕日韩二区| 中文天堂在线官网| a级毛色黄片| 免费人妻精品一区二区三区视频| 蜜桃亚洲精品一区二区三区| 黄片wwwwww| 国产爽快片一区二区三区| 欧美日韩精品成人综合77777| 女的被弄到高潮叫床怎么办| 久久精品久久久久久噜噜老黄| 国产91av在线免费观看| 日韩制服骚丝袜av| 久久久久久久亚洲中文字幕| 97在线视频观看| 久久这里有精品视频免费| a级毛片免费高清观看在线播放| 人妻 亚洲 视频| 国产高清国产精品国产三级 | 精品久久久久久久末码| 夜夜看夜夜爽夜夜摸| 毛片女人毛片| 亚洲av欧美aⅴ国产| 国产美女午夜福利| 亚洲熟女精品中文字幕| 亚洲精品乱码久久久v下载方式| 亚洲av男天堂| 精品一区二区三卡| 狂野欧美激情性xxxx在线观看| 国产伦在线观看视频一区| 国产av国产精品国产| h日本视频在线播放| 丰满少妇做爰视频| 中文天堂在线官网| a级毛色黄片| 亚洲欧美日韩无卡精品| 纯流量卡能插随身wifi吗| 日韩伦理黄色片| 欧美高清性xxxxhd video| 日本wwww免费看| 老女人水多毛片| 亚洲内射少妇av| 国产精品不卡视频一区二区| 最近中文字幕高清免费大全6| 日本黄色日本黄色录像| 18禁裸乳无遮挡免费网站照片| 日本免费在线观看一区| 久久久久精品性色| 一区二区三区精品91| 久久久久性生活片| 国产黄频视频在线观看| 老熟女久久久| 日韩av免费高清视频| 免费观看av网站的网址| 最近2019中文字幕mv第一页| 久久国产乱子免费精品| 精品亚洲成国产av| 夫妻午夜视频| 亚洲在久久综合| 美女内射精品一级片tv| 我的老师免费观看完整版| 亚洲欧美日韩另类电影网站 | 色综合色国产| 超碰av人人做人人爽久久| 国产大屁股一区二区在线视频| 中文字幕免费在线视频6| 免费久久久久久久精品成人欧美视频 | 在线精品无人区一区二区三 | tube8黄色片| 少妇人妻久久综合中文| 欧美日韩亚洲高清精品| av免费观看日本| 伊人久久国产一区二区| 国产精品欧美亚洲77777| 亚洲无线观看免费| 欧美成人一区二区免费高清观看| 制服丝袜香蕉在线| 狂野欧美激情性bbbbbb| 国产真实伦视频高清在线观看| 国产v大片淫在线免费观看| 日韩不卡一区二区三区视频在线| 亚洲第一av免费看| 亚洲av电影在线观看一区二区三区| 看免费成人av毛片| 亚洲av免费高清在线观看| 亚洲精品自拍成人| 欧美日韩亚洲高清精品| 日韩三级伦理在线观看| 成人一区二区视频在线观看| 国产精品一区二区在线不卡| 国产精品一区二区在线观看99| 一本一本综合久久| 91aial.com中文字幕在线观看| 99热这里只有精品一区| 少妇的逼好多水| 99re6热这里在线精品视频| 午夜老司机福利剧场| 久久久久久九九精品二区国产| 国产一级毛片在线| 国产精品人妻久久久影院| 中文资源天堂在线| 国精品久久久久久国模美| 久久久久久久久久成人| 国产精品免费大片| 国产高清有码在线观看视频| av专区在线播放| 五月玫瑰六月丁香| 久久久久久人妻| 亚洲精品日韩av片在线观看| a 毛片基地| 男女免费视频国产| 精品久久久精品久久久| 美女脱内裤让男人舔精品视频| 亚洲婷婷狠狠爱综合网| 国产白丝娇喘喷水9色精品| 久久97久久精品| 久久鲁丝午夜福利片| 精品久久久久久久久亚洲| 一边亲一边摸免费视频| 青春草视频在线免费观看| 欧美精品国产亚洲| 亚洲国产精品国产精品| 欧美日韩精品成人综合77777| 国产精品一区www在线观看| 成人高潮视频无遮挡免费网站| 黑人猛操日本美女一级片| 欧美一级a爱片免费观看看| 亚洲av男天堂| videos熟女内射| 亚洲精品乱久久久久久| 精品亚洲成国产av| 日本vs欧美在线观看视频 | 国产乱来视频区| 亚洲av国产av综合av卡| 三级国产精品片| 国产精品无大码| 中文字幕制服av| 一区二区av电影网| 中文在线观看免费www的网站| 97超视频在线观看视频| 成人综合一区亚洲| 夫妻午夜视频| 国产精品不卡视频一区二区| 99九九线精品视频在线观看视频| 尾随美女入室| 国产成人a∨麻豆精品| 国产高潮美女av| 在线亚洲精品国产二区图片欧美 | www.色视频.com| 蜜桃在线观看..| 美女内射精品一级片tv| 日日啪夜夜撸| 99久久人妻综合| 久久ye,这里只有精品| 色网站视频免费| 国产视频内射| 一本色道久久久久久精品综合| 熟女av电影| 我要看黄色一级片免费的| 亚洲欧美日韩无卡精品| 欧美97在线视频| 免费观看无遮挡的男女| 男女啪啪激烈高潮av片| 丝瓜视频免费看黄片| 国产视频首页在线观看| 国产av码专区亚洲av| 啦啦啦啦在线视频资源| 欧美精品国产亚洲| 五月开心婷婷网| 少妇人妻精品综合一区二区| 色婷婷av一区二区三区视频| 久久亚洲国产成人精品v| 免费观看的影片在线观看| 亚洲欧美精品专区久久| 亚洲第一av免费看| 亚洲aⅴ乱码一区二区在线播放| 日韩欧美 国产精品| 九九爱精品视频在线观看| 欧美少妇被猛烈插入视频| 小蜜桃在线观看免费完整版高清| 丰满少妇做爰视频| 精品人妻视频免费看| 国产淫语在线视频| 国产成人a∨麻豆精品| 日日啪夜夜撸| 一级爰片在线观看| 啦啦啦视频在线资源免费观看| 亚洲激情五月婷婷啪啪| 国产 一区 欧美 日韩| 国产亚洲欧美精品永久| 人人妻人人澡人人爽人人夜夜| a级毛色黄片| 国产精品人妻久久久影院| 岛国毛片在线播放| 99热6这里只有精品| 亚洲精品乱久久久久久| 欧美激情极品国产一区二区三区 | 欧美日韩精品成人综合77777| a级一级毛片免费在线观看| 一级毛片我不卡| 亚洲天堂av无毛| 亚洲av中文字字幕乱码综合| 国语对白做爰xxxⅹ性视频网站| 成人黄色视频免费在线看| a级一级毛片免费在线观看| 一级毛片我不卡| 精华霜和精华液先用哪个| h视频一区二区三区| 六月丁香七月| 在线观看免费日韩欧美大片 | 国产日韩欧美亚洲二区| 黄色怎么调成土黄色| 天天躁夜夜躁狠狠久久av| 国产日韩欧美亚洲二区| 免费观看性生交大片5| 亚洲精品视频女| 国产日韩欧美在线精品| 天天躁日日操中文字幕| 91aial.com中文字幕在线观看| 国产欧美日韩精品一区二区| 欧美日韩国产mv在线观看视频 | 在线观看一区二区三区激情| 欧美zozozo另类| 亚洲精品久久久久久婷婷小说|