• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Metaheuristic Optimization Algorithm for Signals Classification of Electroencephalography Channels

    2022-08-23 02:16:42MarwaEidFawazAlasseryAbdelhameedIbrahimandMohamedSaber
    Computers Materials&Continua 2022年6期

    Marwa M.Eid,Fawaz Alassery,Abdelhameed Ibrahim and Mohamed Saber

    1Department of Communications and Electronics,Delta Higher Institute of Engineering and Technology,Mansoura,35111,Egypt

    2Department of Computer Engineering,College of Computers and Information Technology,Taif University,Taif,21944,Saudi Arabia

    3Computer Engineering and Control Systems Department,Faculty of Engineering,Mansoura University,Mansoura,35516,Egypt

    4Department of Electronics and Communications Engineering,Faculty of Engineering,Delta University for Science and Technology,Mansoura,11152,Egypt

    Abstract: Digital signal processing of electroencephalography (EEG) data is now widely utilized in various applications, including motor imagery classification,seizure detection and prediction,emotion classification,mental task classification, drug impact identification and sleep state classification.With the increasing number of recorded EEG channels, it has become clear that effective channel selection algorithms are required for various applications.Guided Whale Optimization Method (Guided WOA), a suggested feature selection algorithm based on Stochastic Fractal Search(SFS)technique,evaluates the chosen subset of channels.This may be used to select the optimum EEG channels for use in Brain-Computer Interfaces (BCIs), the method for identifying essential and irrelevant characteristics in a dataset, and the complexity to be eliminated.This enables (SFS-Guided WOA) algorithm to choose the most appropriate EEG channels while assisting machine learning classification in its tasks and training the classifier with the dataset.The(SFSGuided WOA) algorithm is superior in performance metrics, and statistical tests such as ANOVA and Wilcoxon rank-sum are used to demonstrate this.

    Keywords: Signals; metaheuristics optimization; feature selection; multilayer perceptron;support vector machines

    1 Introduction

    Digital signal processing is critical for several applications,including seizure detection/prediction,sleep state classification,and categorization of motor imagery.As shown in Fig.1,digital EEG signal processing consists of three components: a signal collection unit, a feature extraction unit, and a decision algorithm.The EEG signal collected from the scalp,brain surface,or brain interior is used as the system’s input.Electrodes, whether invasive or non-invasive, are used to represent the signal acquisition unit.The feature extraction unit is a signal processing device responsible for extracting distinguishing characteristics from a channel (s).For example, in a brain-computer interface (BCI),the decision unit is a hybrid unit that performs categorization,decision-making,and decision-passing to external devices that output the subject’s intention[1].

    Figure 1:Processing of EEG signals

    As previously stated,the interface between the brain and the computer(or another device)may be intrusive or non-invasive.While invasive technologies have recently demonstrated some promise in a variety of applications due to their high accuracy and low noise [2], noninvasive technologies are still widely used for safety applications with some additional signal processing tasks to compensate for noise and resolution limitations.Scalp EEG acquisition devices are usually chosen because they are inexpensive, simple to use, portable, and provide excellent temporal resolution.The scalp EEG waves may be recorded in a variety of modalities,including unipolar and bipolar.The former mode records the voltage differential between all electrodes and a reference electrode,where each electrodereference pair forms a channel.In contrast,the bipolar mode records the voltage differences between two designated electrodes,each pair forming a channel.The International Federation of Societies for Electroencephalography and Clinical Neurophysiology (IFSECN) proposed an electrode placement method on the scalp dubbed the International 10–20 system [3].Fig.2 illustrates the 10–20 EEG electrode locations for electrode insertion on the left and top of the head.These electrodes(channels)depict the activity of several brain regions.

    Figure 2:EEG 10–20 electrode placement[3]

    The brain regions are shown in Fig.3.Most of the relevant information about the functioning condition of the human brain is contained in five main brain waves,each with its own distinct frequency band.Delta band within(0–4 Hz),theta band within(3.5–7.5 Hz),alpha band within(7.5–13 Hz),beta band within (13–26 Hz), and gamma band within (26–70 Hz) are these frequency bands [4].Delta waves are associated with profound slumber.Theta waves are associated with the most meditative state(body asleep/mind awake).Alpha waves are associated with dreams and relaxation.Beta waves are the most prevalent during the waking state of intense concentration.Gamma waves are intimately connected with the brain’s decision-making process.When dealing with mental disease situations,unanticipated changes in brain waves occur, necessitating a significant amount of signal processing to diagnose aberrant conditions[4].The frequency range,speed,mental state,and waveforms of the EEG are shown in Tab.1.

    Figure 3:Human brain and various lobes[4]

    Table 1: EEG frequency band,speed,state,and waveforms[4]

    The EEG signals collected are often multi-channel in nature.For example,we have two options while classifying these signals:work on a subset of channels chosen based on specific criteria or work on all channels [5].The method of EEG data categorization based on channel selection is shown in Fig.4.Reduce the number of channels in this signal processing environment since the setup procedure with many channels is time-consuming and inconvenient for the subject.Additionally,it increases the computational complexity of the system,which some applications need to be minimal.

    Figure 4:General process of EEG signal classification

    Seizure prediction and detection is another area where channel reduction may be helpful.The scientific and industry community are particularly interested in medical support systems’portable development.This can detect the onset of epileptic seizures early or even hours in advance by incorporating algorithms, thereby avoiding injury [6,7].Developing such portable systems based on computationally efficient prediction algorithms that use the fewest possible channels to reduce system power consumption is critical to system longevity.In the processing of EEG data,numerous channel selection techniques have been investigated.

    The current work contribution can be summarized as follow.

    1.A continuous version of the Guided Whale Optimization based on Stochastic Fractal Search algorithm(Continuous SFS-Guided WOA)is presented.

    2.A binary version of the SFS-Guided WOA algorithm (Binary SFS-Guided WOA) is also presented.

    3.Two publicly accessible datasets for electroencephalogram (EEG) signal processing, named BCI Competition IV-dataset 2a and BCI Competition IV-data set III,are utilized to test the suggested method.

    4.The SFS-Guided WOA algorithm is employed to evaluate the chosen subset of EEG channels of the two datasets.

    5.This is used to select the optimum EEG channels for use in Brain-Computer Interfaces(BCIs).

    6.Statistical tests such as ANOVA and Wilcoxon rank-sum are used to demonstrate the presented method’s performance.

    2 Literature Review

    Feature selection methods may be categorized as filter-based, wrapper-based, or hybrid-based[8–10].The advantage of filter-based completely characteristic selection methods over traditional characteristic selection strategies is their speed and capacity to expand to large datasets.

    2.1 Related Work

    The optimization technique is widely used in various fields of study,including computer science,engineering[11],health[12],agriculture,and feature selection[13].The primary aim of optimization is to choose the optimal solution to a given problem among the available solutions that match the problem description.Additionally, optimization algorithms have a goal that must be reduced or maximized under the addressed problem[14–16].

    Recently,numerous studies have used optimization to resolve given problems,such as the Whale Optimization Algorithm(WOA).WOA was used to locate the optimal weights for training the neural community and developed a multi-objective model of WOA,which was then applied to the problem of forecasting wind speed.Additionally,WOA was widely employed to determine the final location and length of capacitors used inside the radial system[17].Additionally,they used WOA to circumvent the difficulty of determining the final length used by a distributed generator[18],and they benefited from the use of WOA for image segmentation[19,20].

    2.2 EEG Signal

    The nature of EEG alerts may be very complicated since they are no longer linked, however random.The EEG dimension is determined by various factors, most notably the individual’s age,gender,psychological state,and intellectual state of the issue[21].Thus,comprehending the behavior and movement of brain cells involves various linear and nonlinear signal-processing methods that result in the physiological state and circumstances of the issue.Numerous ways are advocated for capturing the dynamic capabilities and sudden changes that may occur.The first step is preprocessing,which includes recording warnings, removing artifacts, signal averaging, output thresholding, and signal enhancement.The second stage is the function extraction technique within the procedure,which determines a feature vector from an ordinary vector[22].

    2.3 Traditional Optimizer

    Optimizer of Genetic Algorithm(GA)is inspired by biology(survival of the fittest).Initialization is a critical GA process.Alternatively,other genetic operators,such as elitism,may be used[23].The advantages of this optimizer are its simplicity and ability to deal with noisy fitness functions.Due to delayed convergence,premature convergence,and parameter change,complexity is not scalable.This technique is utilized in the construction of image processing filters as well as antennas.

    Particle Swarm Optimization(PSO)is another optimization technique that simulates the motions and interactions of individuals in a flock of birds or a school of fish[24].Every particle is guided by its best-known location and the swarm’s optimal position.It is stable,simple to implement,and a suitable model of collaboration, but starting settings are elusive.It has a long convergence time and a high computational cost.Gene clustering,antenna design,vehicle routing,control design,and dimension reduction are only a few examples of uses.

    The Grey Wolf Optimizer (GWO) is an algorithm that mimics grey wolf leadership, social structure, and hunting behavior.Encircling and assaulting the victim are the first two phases.This optimizer possesses Exploration and exploitation must be conducted in a balanced manner.While high search accuracy is simple to implement,it results in premature convergence due to the fluctuating positions of the three leaders.The greater the number of variables,the lower performance is achieved.It is utilized in feature selection, parameter adjustment of PID controllers, clustering, robotics, and route finding[25].

    The foraging behaviors of humpback whales inspired the Whale Optimization Algorithm(WOA).They catch fish with bubbles as they swirl around a school of fish.It is a simple method for exploring a vast search space that is sluggish to convergence, prone to local optima stagnation, and computationally costly.WOA is applied in route planning, voltage offset reduction, and precision control of laser sensor systems[26].

    3 Suggested(SFS-Guided WOA)Algorithm

    The Guided WOA is a variant of the standard WOA.In the Guided WOA technique,to address the main disadvantage of this method,the search strategy for a single random whale may be substituted with an advanced design capable of quickly moving the whales toward the optimal solution or prey.The original WOA compels whales to travel randomly around one another,comparable to the global search.A whale may follow three random whales rather than one to improve exploration performance in the modified WOA(Guided WOA)[27].This may encourage whales to do more exploration while remaining unaffected by the leading position.

    The Stochastic Fractal Search (SFS) technique’s diffusion process may generate a sequence of random walks around the optimum solution.This enhances the Guided WOA’s exploration capacity by using this diffusion process to find the optimal solution.Gaussian random walks are used as a component of the diffusion process that occurs around the updated optimum position.Algorithm 1 shows the continuous version of the SFS-Guided WOA algorithm.The binary conversion of the algorithm is shown in Algorithm 2, which explains step by step how to convert the continuous algorithm to a binary one to be applied for the tested EEG problem.

    Algorithm 1:Continuous SFS-Guided WOA Algorithm 1:Initialize Guided WOA population Gi(i=1,2,...,n)with size n,maximum iterations Maxiter,fitness function Fn.2:Initialize Guided WOA parameters a,A,C,l,r1,r2,r3 3:Initialize Guided WOA parameters w1,w2,w3 4:Set t=1 5:Calculate fitness function Fn for each Gi 6:Find best individual G*7:while t ≤Maxiter(Termination condition)do 8: for(i=1:i <n+1)do 9: if(r3 <0.5)then 10: if(|A|<1)then 11: Update position of current search agent as G(t+1)=G*(t)-A.D 12: else 13: Select three random search agents Grand1,Grand2,and Grand3 14: Update(z)by the exponential form of z=1-images/BZ_451_632_1924_663_1970.png t Maxiterimages/BZ_451_804_1924_835_1970.png2 15: Update position of current search agent as G(t+1)=w1*Grand1+z*w2*(Grand2-Grand3)+(1-z)*w3*(G-Grand1)16: end if 17: else 18: Update position of current search agent as G(t+1)=D′.ebl.cos(2πl(wèi))+G*(t)19: end if 20: end for 21: for(i=1:i <n+1)do 22: Calculate G′*i =Gaussion(μG*,σ)+(η×G*-η′×Pi)23: end for 24: Update a,A,C,1,r3 25: Calculate fitness function Fn for each Gi 26: Find best individual G*(Continued)

    Algorithm 1:Continued 27: Set t=t+1 28: end while 29: return G*Algorithm 2:Binary SFS-Guided WOA Algorithm 1:Initialize SFS-Guided WOA algorithm configuration,including population and parameters 2:Change current solutions to binary solution(0 or 1)3:Evaluate fitness function and determine the best solution 4:Train k-NN based model and then calculate error 5:while t ≤itersmax do 6: Apply SF5-Guided WOA algorithm 7: Change updated solution to binary solution(0 or 1)based on the following equation G(t+1)d =■■ ■1 if 1 1+e-10(G*-0.5) ≥0.5 0 otherwise 8: Evaluate fitness function for each agent 9: Update parameters 10: Update best solution 11:end while 12:Return optimal solution

    4 Results and Discussion

    This section discusses the experimental results.The data preprocessing process is explained,including the description and the correlation matrix of tested EEG datasets.Configuration of the suggested algorithm is also discussed.Performance metrics and results discussion are described in detail in this part.

    4.1 Data Preprocessing

    Two publicly accessible datasets for electroencephalogram(EEG)signal processing are utilized in this work to test our suggested method.Tab.2 shows the description of the dataset.The Statistics of the EEG Dataset is discussed in Tab.3 and Fig.5 shows the correlation matrix of EEG dataset.The BCI Competition IV dataset is the first.The fourth BCI competition was held in 2008 at Austria’s Graz University of Technology.For the sake of this research,we will analyze dataset 2a from the competition mentioned above.This dataset is freely accessible through [28].The dataset contains the EEG data of nine healthy individuals.The subjects were healthy and ordinary people.They were instructed to complete the motor imagery activities while seated in a comfy armchair in front of an LCD display.To finish all charges,subjects used four distinct kinds of motor imagery.These activities required the use of one’s imagination to move the left or right hand,foot,or tongue.To initiate the experimental paradigm, a brief auditory beep was played.Then, after two seconds, a fixation cross appeared on the LCD and was replaced by an arrow pointing up,down,right,or left.The participants completed one of the imaging tasks involving the mouth,feet,and left or right-hand motions,depending on the orientation of the needle.The performance subject retained the chosen item’s imagination for about three seconds until the fixation cross vanished and the LCD became completely dark.Then, after a brief pause of about two seconds,the next job was resumed.This procedure was repeated 72 times for each of the four activities,totaling 288 instances of motor imagery per participant.

    Table 2: Datasets description

    Table 3: Description statistics of EEG dataset

    Figure 5:Correlation matrix of EEG dataset

    4.2 Configuration

    Each dataset is subdivided into three equal-sized segments at random: training, validation, and test.During the learning phase, training is utilized to fine-tune the KNN classifier.Validation is a technique for testing.When determining the fitness function of a particular solution.Normalize data to ensure that all features are contained within the same limits and are handled equally by the machine learning model.One of the simplest methods for scaling data is to use the min-max scaler,which scales and bounds data features between 0 and 1.

    4.3 Evaluation Metrics

    The evaluation metrics of the suggested method and compared algorithms are shown in Tab.4.The used variables in Tab.4 are the number of optimizer’s runs,M,the best solution at the run numberj,In addition,vector size,.A number of tested points,N.Classifier label of the output for a pointi,Ci,and label of the class for a pointi,Li.Finally,the total number of features,D,andMatch,is used to calculate the matching between two inputs.

    Table 4: Evaluation metrics

    4.4 Results Evaluation

    Results of the experimental for the two tested datasets,D1 and D2,based on the suggested and compared methods are shown in Tab.5.The results are compared to GWO, GA, WOA, and PSO algorithms.The average error of (0.161956522) for D1 and of (0.027467811) is much better based on the suggested method.The average select error of (0.385714286) and (0.61875) for D1 and D2,respectively,show the performance of the SFS-Guided WOA algorithm.Average,best,worst fitness and standard deviation show the quality of the suggested method compared to other optimization techniques.

    Table 5: Experimental results of the suggested and compared methods

    ANOVA and Wilcoxon Signed Rank tests are performed to confirm the suggested method compared to other algorithms.Tabs.6 and 7 show the ANOVA test results of the tested algorithms based on the first dataset(D1)and the second dataset(D2),respectively.The results indicated that the p-value is less than 0.05.Wilcoxon Signed-Rank test results based on ten runs for the first dataset(D1)and the second dataset(D2)using the suggested and compared algorithms are shown in Tabs.8 and 9,respectively.The statistical tests results confirm the performance of the SFS-Guided WOA algorithm for the EEG datasets.

    Table 6: ANOVA test of the first dataset(D1)

    Table 7: ANOVA test of the second dataset(D2)

    Table 8: Wilcoxon signed rank test of the first datas et(D1)

    Table 9: Wilcoxon signed rank test of the first dataset(D1)

    The average error of the suggested (bSFS-Guided WOA) and compared algorithms (bPSO,bWOA, bGA and bGWO) over the two tested datasets (D1 and D2) is shown in Fig.6.The figure indicates the performance of the suggested method over the tested datasets.Residual,Homoscedasticity,QQ plots and heat map of the suggested and compared algorithms over the first tested dataset(D1)and the second dataset(D2)are shown in Figs.7 and 8,respectively.

    Figure 7: Continued

    Figure 7: Residual, Homoscedasticity, QQ plots and heat map of the suggested and compared algorithms over the first tested dataset(D1)

    Figure 8: Residual, Homoscedasticity, QQ plots and heat map of the suggested and compared algorithms over the first tested dataset(D2)

    5 Conclusion

    In this work, the Guided Whale Optimization Method (Guided WOA) algorithm based on Stochastic Fractal Search (SFS) technique is used to evaluate the chosen subset of channels for EEG datasets.This method is used to select the optimum EEG channels for use in Brain-Computer Interfaces (BCIs).The (SFS-Guided WOA) algorithm is superior in terms of performance metrics,and statistical tests such as ANOVA and Wilcoxon rank-sum are used to demonstrate this.The results for the two tested datasets based on the suggested and compared methods(GWO,GA,WOA,and PSO algorithms) show the quality of the recommended method.The average error and average select error confirm the performance of the SFS-Guided WOA algorithm.Other metrics, such as average, best, worst fitness and standard deviation, also show the quality of the suggested method compared to other optimization techniques.The average error of the presented(bSFS-Guided WOA)algorithm and compared algorithms (bPSO, bWOA, bGA and bGWO) indicates the performance of the recommended method over the tested datasets.Residual,Homoscedasticity,QQ plots and heat map of the suggested and compared algorithms are also tested over the two datasets.The recommended method in this work will be tested for other datasets in the future.

    Acknowledgement:The authors thank Taif University Accessibility Center for the study participants.We deeply acknowledge Taif University for supporting this study through Taif University Researchers Supporting Project Number(TURSP-2020/150),Taif University,Taif,Saudi Arabia.

    Funding Statement:Funding for this study is received from Taif University Researchers Supporting Project No.(Project No.TURSP-2020/150),Taif University,Taif,Saudi Arabia.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    一二三四中文在线观看免费高清| 毛片女人毛片| 各种免费的搞黄视频| 欧美日韩一区二区视频在线观看视频在线 | 亚洲欧美一区二区三区黑人 | 高清午夜精品一区二区三区| 在线观看av片永久免费下载| 国产一区二区三区av在线| 看非洲黑人一级黄片| 亚洲综合色惰| 青春草亚洲视频在线观看| 女人十人毛片免费观看3o分钟| 亚洲aⅴ乱码一区二区在线播放| 成人无遮挡网站| 性色avwww在线观看| 亚洲欧美一区二区三区国产| 丰满少妇做爰视频| 亚洲国产色片| 精品99又大又爽又粗少妇毛片| 极品少妇高潮喷水抽搐| 中文字幕久久专区| 岛国毛片在线播放| 在线观看av片永久免费下载| 亚洲av.av天堂| 高清av免费在线| 日韩不卡一区二区三区视频在线| 激情五月婷婷亚洲| 日韩欧美精品免费久久| 水蜜桃什么品种好| 中文字幕人妻熟人妻熟丝袜美| 日韩电影二区| 国产成人freesex在线| 网址你懂的国产日韩在线| 欧美xxⅹ黑人| 欧美bdsm另类| 亚洲国产欧美在线一区| 久久综合国产亚洲精品| 国产亚洲精品久久久com| 午夜激情福利司机影院| 熟妇人妻不卡中文字幕| 精品久久久噜噜| av专区在线播放| 可以在线观看毛片的网站| 麻豆成人av视频| 老司机影院毛片| 亚洲无线观看免费| 午夜福利在线观看免费完整高清在| 亚洲一区二区三区欧美精品 | 精品国产三级普通话版| 啦啦啦在线观看免费高清www| 在线观看国产h片| 69av精品久久久久久| 国产在视频线精品| 人妻少妇偷人精品九色| 国产久久久一区二区三区| 国产色婷婷99| 国产精品不卡视频一区二区| 亚洲欧美一区二区三区黑人 | 国产91av在线免费观看| 精品久久久噜噜| 中文字幕亚洲精品专区| 久久这里有精品视频免费| 久久鲁丝午夜福利片| 国产熟女欧美一区二区| 亚洲欧洲国产日韩| 亚洲精品国产色婷婷电影| 亚洲,一卡二卡三卡| 久久国内精品自在自线图片| 热re99久久精品国产66热6| 99久久精品国产国产毛片| av国产精品久久久久影院| 2021少妇久久久久久久久久久| a级毛色黄片| 国产爽快片一区二区三区| 免费人成在线观看视频色| 免费看光身美女| 国产成人精品福利久久| av在线观看视频网站免费| 国产成人91sexporn| 亚洲国产欧美人成| 日韩免费高清中文字幕av| 韩国高清视频一区二区三区| 亚洲人成网站高清观看| 网址你懂的国产日韩在线| 亚洲精品乱码久久久久久按摩| av国产免费在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久九九精品影院| 日韩一区二区三区影片| 国产精品麻豆人妻色哟哟久久| 97在线人人人人妻| 国产成人一区二区在线| 亚洲欧美一区二区三区黑人 | 国产精品久久久久久精品电影| 91久久精品国产一区二区三区| 观看美女的网站| 大香蕉97超碰在线| 亚洲成人久久爱视频| 精品99又大又爽又粗少妇毛片| 国产在线男女| 亚洲自拍偷在线| 国产精品成人在线| 97精品久久久久久久久久精品| 欧美97在线视频| 嫩草影院新地址| 插阴视频在线观看视频| 欧美97在线视频| 男的添女的下面高潮视频| 欧美另类一区| 亚洲成人一二三区av| 久久久久久久久久成人| 成人国产麻豆网| 18禁在线无遮挡免费观看视频| 日本三级黄在线观看| 黄色日韩在线| 高清日韩中文字幕在线| 久久97久久精品| 男女边摸边吃奶| 国产老妇女一区| 国产伦在线观看视频一区| 欧美精品一区二区大全| 99热这里只有是精品在线观看| 日韩av免费高清视频| 欧美+日韩+精品| 亚洲美女搞黄在线观看| 黄色怎么调成土黄色| 成人国产av品久久久| 国产精品.久久久| 国产片特级美女逼逼视频| 欧美国产精品一级二级三级 | 亚洲自偷自拍三级| 欧美zozozo另类| 免费看av在线观看网站| 久久精品国产亚洲av涩爱| 免费看日本二区| 中文字幕亚洲精品专区| 激情五月婷婷亚洲| 色网站视频免费| 熟女人妻精品中文字幕| 夫妻性生交免费视频一级片| 国产精品99久久99久久久不卡 | kizo精华| 国产一区二区在线观看日韩| 亚洲va在线va天堂va国产| 欧美成人午夜免费资源| 国产白丝娇喘喷水9色精品| 欧美bdsm另类| 久久韩国三级中文字幕| 免费黄色在线免费观看| 一个人观看的视频www高清免费观看| 97超碰精品成人国产| 天天躁夜夜躁狠狠久久av| 久久热精品热| 国产黄片美女视频| 免费看光身美女| 日韩国内少妇激情av| 国产精品久久久久久久久免| 欧美性猛交╳xxx乱大交人| 九色成人免费人妻av| 日韩精品有码人妻一区| 国产老妇女一区| 麻豆乱淫一区二区| 自拍欧美九色日韩亚洲蝌蚪91 | 看免费成人av毛片| 国产美女午夜福利| 人人妻人人爽人人添夜夜欢视频 | 亚州av有码| av福利片在线观看| 午夜爱爱视频在线播放| 97在线视频观看| 日本色播在线视频| 97在线人人人人妻| 亚洲三级黄色毛片| 日本免费在线观看一区| 国产精品一区www在线观看| 91精品国产九色| 亚洲欧美精品自产自拍| 日韩成人av中文字幕在线观看| 最近手机中文字幕大全| 我要看日韩黄色一级片| 久久精品国产a三级三级三级| 久久亚洲国产成人精品v| xxx大片免费视频| 午夜精品一区二区三区免费看| 午夜亚洲福利在线播放| 水蜜桃什么品种好| 久久久久久久亚洲中文字幕| 免费大片黄手机在线观看| 亚洲美女视频黄频| 国产精品久久久久久精品电影小说 | 精品久久久久久久久亚洲| 一个人观看的视频www高清免费观看| tube8黄色片| 边亲边吃奶的免费视频| 91在线精品国自产拍蜜月| 狠狠精品人妻久久久久久综合| 九九在线视频观看精品| 我要看日韩黄色一级片| 日日啪夜夜爽| 久久99精品国语久久久| 久久午夜福利片| 国产色婷婷99| 久久精品国产自在天天线| 热99国产精品久久久久久7| 午夜免费男女啪啪视频观看| 国产精品久久久久久精品电影| 久久久久九九精品影院| 精品人妻一区二区三区麻豆| 下体分泌物呈黄色| 欧美性感艳星| 一二三四中文在线观看免费高清| 免费黄色在线免费观看| 国产乱人偷精品视频| 欧美老熟妇乱子伦牲交| 少妇裸体淫交视频免费看高清| 精品久久久久久久末码| 青春草国产在线视频| 免费少妇av软件| 91精品一卡2卡3卡4卡| 国产免费视频播放在线视频| 国产精品熟女久久久久浪| 欧美成人精品欧美一级黄| 欧美潮喷喷水| 国产有黄有色有爽视频| 日本与韩国留学比较| 欧美另类一区| 成人鲁丝片一二三区免费| 人体艺术视频欧美日本| 七月丁香在线播放| videossex国产| 特大巨黑吊av在线直播| 高清视频免费观看一区二区| 国产精品一区二区性色av| 久久99热这里只有精品18| 国产黄片视频在线免费观看| 人妻少妇偷人精品九色| 乱码一卡2卡4卡精品| 伊人久久精品亚洲午夜| 91aial.com中文字幕在线观看| 夫妻午夜视频| 人妻少妇偷人精品九色| 三级男女做爰猛烈吃奶摸视频| 激情五月婷婷亚洲| 国产日韩欧美在线精品| 在线观看一区二区三区| 久久久久性生活片| 亚洲av日韩在线播放| 天美传媒精品一区二区| 亚洲三级黄色毛片| 久久精品国产自在天天线| 国产人妻一区二区三区在| 白带黄色成豆腐渣| 听说在线观看完整版免费高清| av黄色大香蕉| 在线观看一区二区三区| 久久久久国产精品人妻一区二区| 国产av码专区亚洲av| 亚洲精品国产成人久久av| 97在线人人人人妻| 26uuu在线亚洲综合色| av女优亚洲男人天堂| 人妻制服诱惑在线中文字幕| 在线观看国产h片| av黄色大香蕉| av播播在线观看一区| 在线观看免费高清a一片| 狠狠精品人妻久久久久久综合| 亚洲欧美日韩东京热| 亚洲欧美日韩无卡精品| 久久精品久久精品一区二区三区| 内地一区二区视频在线| 夜夜看夜夜爽夜夜摸| 免费av毛片视频| 久久午夜福利片| 涩涩av久久男人的天堂| 麻豆久久精品国产亚洲av| 大码成人一级视频| 在线免费观看不下载黄p国产| 人妻 亚洲 视频| 日韩一本色道免费dvd| 夫妻午夜视频| 18禁动态无遮挡网站| 久久鲁丝午夜福利片| 日韩中字成人| 麻豆国产97在线/欧美| 我的女老师完整版在线观看| 成人午夜精彩视频在线观看| 成人亚洲欧美一区二区av| 美女主播在线视频| 欧美zozozo另类| 18禁动态无遮挡网站| h日本视频在线播放| 日韩精品有码人妻一区| 男插女下体视频免费在线播放| 赤兔流量卡办理| 各种免费的搞黄视频| 国产69精品久久久久777片| 内射极品少妇av片p| 国产精品.久久久| 99久久精品一区二区三区| av福利片在线观看| 久久99热这里只有精品18| 性色avwww在线观看| 国产 一区 欧美 日韩| 国产有黄有色有爽视频| 高清av免费在线| 国产精品久久久久久精品古装| 边亲边吃奶的免费视频| 精品一区二区三区视频在线| 精品熟女少妇av免费看| 久久韩国三级中文字幕| 亚洲色图av天堂| 天美传媒精品一区二区| 亚洲,欧美,日韩| 国国产精品蜜臀av免费| 亚洲在线观看片| 国产精品秋霞免费鲁丝片| 美女视频免费永久观看网站| 日本色播在线视频| 热re99久久精品国产66热6| 在线观看av片永久免费下载| 亚洲国产色片| 亚洲av日韩在线播放| 亚洲va在线va天堂va国产| 白带黄色成豆腐渣| 午夜福利视频精品| 五月开心婷婷网| 青青草视频在线视频观看| 日韩欧美一区视频在线观看 | 我的老师免费观看完整版| 嫩草影院入口| 国产男女超爽视频在线观看| 欧美成人一区二区免费高清观看| 看十八女毛片水多多多| 女人十人毛片免费观看3o分钟| 在线播放无遮挡| 国产一区二区亚洲精品在线观看| 久久精品熟女亚洲av麻豆精品| 国产精品一及| 新久久久久国产一级毛片| 黄片wwwwww| 久久人人爽人人片av| 寂寞人妻少妇视频99o| 久久久久九九精品影院| 免费观看av网站的网址| 亚洲精品国产av成人精品| 国产高清不卡午夜福利| 亚洲婷婷狠狠爱综合网| 亚洲av二区三区四区| 亚洲欧美日韩卡通动漫| www.av在线官网国产| 免费大片18禁| 欧美人与善性xxx| 国产精品精品国产色婷婷| 赤兔流量卡办理| 国产一区二区亚洲精品在线观看| 午夜免费男女啪啪视频观看| 欧美少妇被猛烈插入视频| 日韩视频在线欧美| 男女边吃奶边做爰视频| 青春草视频在线免费观看| 亚州av有码| 国产精品成人在线| 啦啦啦啦在线视频资源| 日韩欧美精品v在线| 少妇熟女欧美另类| 交换朋友夫妻互换小说| 日韩强制内射视频| 亚洲精品乱码久久久v下载方式| 欧美xxxx黑人xx丫x性爽| av在线app专区| 亚洲欧美精品自产自拍| a级毛片免费高清观看在线播放| 亚洲精品456在线播放app| 免费观看在线日韩| 18禁在线播放成人免费| 亚洲天堂国产精品一区在线| 久久精品人妻少妇| 亚洲国产最新在线播放| 国产精品人妻久久久久久| 久久99热这里只有精品18| 国产爽快片一区二区三区| 欧美日韩精品成人综合77777| 欧美 日韩 精品 国产| 亚洲欧美日韩无卡精品| 国产爽快片一区二区三区| 又大又黄又爽视频免费| 亚洲精品一区蜜桃| 99久久中文字幕三级久久日本| 在线观看人妻少妇| 亚洲自偷自拍三级| 人妻 亚洲 视频| 男女国产视频网站| 欧美激情国产日韩精品一区| 国产高清有码在线观看视频| 少妇高潮的动态图| 最后的刺客免费高清国语| 久久久久久久久久人人人人人人| 日本欧美国产在线视频| 欧美精品人与动牲交sv欧美| 亚洲精品第二区| freevideosex欧美| 女人被狂操c到高潮| 欧美日韩视频精品一区| 午夜精品国产一区二区电影 | 啦啦啦中文免费视频观看日本| 久久精品国产亚洲av涩爱| av国产精品久久久久影院| 黄色配什么色好看| 亚洲国产精品成人综合色| 老司机影院毛片| 日本一二三区视频观看| 不卡视频在线观看欧美| 午夜福利视频精品| 免费观看在线日韩| 国产黄色视频一区二区在线观看| 国产午夜精品久久久久久一区二区三区| 日本黄色片子视频| 少妇人妻 视频| 99热这里只有精品一区| 亚洲精品成人久久久久久| 欧美成人午夜免费资源| av又黄又爽大尺度在线免费看| 天堂网av新在线| 国产av不卡久久| av专区在线播放| 丰满乱子伦码专区| 亚洲,欧美,日韩| 女人十人毛片免费观看3o分钟| 久久久久久久久久成人| 亚洲av成人精品一二三区| 91精品伊人久久大香线蕉| 好男人视频免费观看在线| 18+在线观看网站| 亚洲av成人精品一二三区| 日本黄色片子视频| 男女啪啪激烈高潮av片| 简卡轻食公司| 欧美精品一区二区大全| 色婷婷久久久亚洲欧美| 国产有黄有色有爽视频| 丰满少妇做爰视频| 黄色配什么色好看| 麻豆国产97在线/欧美| 午夜福利视频1000在线观看| 十八禁网站网址无遮挡 | 亚洲美女搞黄在线观看| 自拍偷自拍亚洲精品老妇| 久久久色成人| 最近中文字幕2019免费版| 自拍欧美九色日韩亚洲蝌蚪91 | 91精品国产九色| 国产午夜福利久久久久久| 午夜福利视频精品| 国产成人一区二区在线| av一本久久久久| tube8黄色片| 一区二区av电影网| 国产精品蜜桃在线观看| 国产黄频视频在线观看| 久久久久精品性色| 国产黄片视频在线免费观看| av在线天堂中文字幕| 九九爱精品视频在线观看| 久久99精品国语久久久| 欧美 日韩 精品 国产| 美女国产视频在线观看| 国产色婷婷99| 欧美日韩视频高清一区二区三区二| 国产精品一区二区三区四区免费观看| 大香蕉97超碰在线| 亚洲激情五月婷婷啪啪| 亚洲精品国产av蜜桃| 亚洲av.av天堂| 精品一区二区三卡| 色视频在线一区二区三区| av天堂中文字幕网| 麻豆成人午夜福利视频| 日本色播在线视频| 真实男女啪啪啪动态图| 亚洲国产欧美人成| 大香蕉久久网| 男人爽女人下面视频在线观看| 日产精品乱码卡一卡2卡三| 亚洲久久久久久中文字幕| 亚洲自偷自拍三级| 亚洲国产精品999| 卡戴珊不雅视频在线播放| 全区人妻精品视频| 51国产日韩欧美| 亚洲熟女精品中文字幕| 久久精品国产鲁丝片午夜精品| 少妇的逼好多水| 尾随美女入室| 精品久久久久久久末码| 久久精品人妻少妇| 亚洲美女搞黄在线观看| 丰满人妻一区二区三区视频av| 中文在线观看免费www的网站| 亚洲精品久久久久久婷婷小说| 久久久久久久久大av| 99久久人妻综合| 国内揄拍国产精品人妻在线| 麻豆精品久久久久久蜜桃| 亚洲av国产av综合av卡| 99热这里只有是精品在线观看| 国产真实伦视频高清在线观看| 三级国产精品片| 成人黄色视频免费在线看| 嘟嘟电影网在线观看| 男女下面进入的视频免费午夜| 高清在线视频一区二区三区| 亚洲av福利一区| 国产成人a区在线观看| 日韩三级伦理在线观看| 中文字幕久久专区| 精品一区在线观看国产| 国产高清三级在线| 久久久久久久久大av| 又爽又黄无遮挡网站| 亚洲精品日韩av片在线观看| 美女视频免费永久观看网站| 日韩欧美精品v在线| 99热这里只有是精品在线观看| 午夜福利在线在线| 成人鲁丝片一二三区免费| 亚洲真实伦在线观看| 久久精品夜色国产| 国内少妇人妻偷人精品xxx网站| 亚洲国产色片| 日本黄大片高清| 亚洲国产色片| 边亲边吃奶的免费视频| 乱系列少妇在线播放| 在线观看av片永久免费下载| 丝袜脚勾引网站| 国内少妇人妻偷人精品xxx网站| 日韩 亚洲 欧美在线| 交换朋友夫妻互换小说| 一本一本综合久久| 精品熟女少妇av免费看| 日韩亚洲欧美综合| 国产免费福利视频在线观看| 麻豆成人午夜福利视频| 国内少妇人妻偷人精品xxx网站| 国产成人aa在线观看| 男人舔奶头视频| 韩国高清视频一区二区三区| av免费在线看不卡| 人人妻人人爽人人添夜夜欢视频 | 国产精品一区二区性色av| 国产精品伦人一区二区| 日韩三级伦理在线观看| 伊人久久精品亚洲午夜| 亚洲欧美中文字幕日韩二区| 亚洲成人中文字幕在线播放| 久久精品熟女亚洲av麻豆精品| 欧美zozozo另类| 久久久亚洲精品成人影院| 欧美 日韩 精品 国产| 日韩av免费高清视频| 成人免费观看视频高清| 亚洲精品第二区| 七月丁香在线播放| 99re6热这里在线精品视频| 在现免费观看毛片| 97人妻精品一区二区三区麻豆| 男人添女人高潮全过程视频| 国产av国产精品国产| 男的添女的下面高潮视频| 丝瓜视频免费看黄片| 免费电影在线观看免费观看| 97超碰精品成人国产| 日本一二三区视频观看| 婷婷色综合大香蕉| 免费人成在线观看视频色| 国产精品久久久久久av不卡| 日韩av在线免费看完整版不卡| av黄色大香蕉| 校园人妻丝袜中文字幕| av网站免费在线观看视频| 久久精品国产a三级三级三级| 青春草亚洲视频在线观看| 在线天堂最新版资源| 蜜桃亚洲精品一区二区三区| 麻豆国产97在线/欧美| av天堂中文字幕网| 美女高潮的动态| 大码成人一级视频| 成人免费观看视频高清| 麻豆精品久久久久久蜜桃| 精品午夜福利在线看| 久久久久国产网址| 乱系列少妇在线播放| 免费av毛片视频| 久久精品国产亚洲av涩爱| 黄色视频在线播放观看不卡| 亚洲美女视频黄频| 人妻一区二区av| 国产精品久久久久久精品电影小说 | 26uuu在线亚洲综合色| 国产精品国产av在线观看| 性色avwww在线观看| av国产免费在线观看| 波多野结衣巨乳人妻| 午夜福利视频1000在线观看| 日韩伦理黄色片| 91精品一卡2卡3卡4卡| 好男人在线观看高清免费视频| 欧美bdsm另类| 看黄色毛片网站| 男插女下体视频免费在线播放| eeuss影院久久| 在线播放无遮挡| 亚洲精品日本国产第一区|