• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      基于“四基”的二元一次方程導學案設計探索*

      2022-08-15 07:24:48筅江蘇省江陰市徐霞客中學曾婷
      中學數學雜志 2022年12期
      關鍵詞:四基方程組學案

      筅江蘇省江陰市徐霞客中學 曾婷

      1 引言

      在全面推進新課改的進程中,對一線教師而言,其所關注的重點在于如何才能夠在初中數學教學過程中架構高效課堂.當前學案導學法已經得到了教學實踐的驗證,也成為架構高效課堂的必備舉措之一.在初中數學教學實踐中,教師可以對教材進行二次開發(fā),同時融合課程教學目標及學情,對教學導學案進行優(yōu)化設計,使其可以促進學生的自主合作,有助于推動科學探究活動的發(fā)展,激活學生參與其中的主觀能動性,發(fā)展其創(chuàng)造性.本文中以“二元一次方程組”為例,著重聚焦如何優(yōu)化導學案,如何精心設計,如何落實“四基”目標,積極探尋優(yōu)化設計導學案的巧妙方法,以實現和一線教師共享.

      2 初中數學導學案的編寫思路

      2.1 緊扣課程標準

      導學案的編寫與設計,必須尊重初中數學新課標,還要融入課程目標,完善教學內容的優(yōu)化設計,更要遵循初中課程的基本結構,輔以相應的教學建議及評價建議,這樣才能夠對初中數學教材展開深入解析,基于每一章節(jié)都能夠立足于不同的維度完成知識的講解、細化,使學生能夠高質量完成數學知識的學習.

      2.2 堅持學生本位

      新課改對教學活動提出的要求是以學生的需求為根本,這樣才能夠在課堂中體現學生的主體本位,才能使教學活動得以有力推進,使其能夠滿足學生的個性化發(fā)展.可見,針對導學案的應用,需要教師把握學生的心理特征,了解其學習習慣,這樣才能夠在其中設置有效的數學問題,才能實現知識的充分滲透,才真正有助于架設能夠促使學生展開高效學習的良好情境,并利用導學案和學生展開共同探究,更強烈地激活學生的求知渴望.在具體的教學過程中,導學案的設計和引入,不僅可以幫助學生掌握數學學習技巧及解題技巧,也能夠喚醒學生對數學這門學科的積極情緒.

      3 “二元一次方程組”導學案的編寫案例

      3.1 以舊引新,落實基礎知識

      數學學科在初中課程體系中占據著重要的地位,就其知識體系整體而言,相關知識點之間表現為關聯性,教材中所編排的所有數學知識點及數學規(guī)律,都存在一定的聯系.所以,在應用導學案的過程中,需要立足于宏觀的視角把握教材、處理教材,還要特別強調新知識和舊知識之間的邏輯關聯,只有以此為基礎對教學問題進行設計,才能夠使學生在問題的引領下,親歷知識的探索及形成過程,完成對數學知識體系的架構及系統化處理.

      例如,在教學“二元一次方程組”時,案例如下.?;@球隊備戰(zhàn)市籃球聯賽,規(guī)則如下:勝1場積2分,輸1場積1分,每場都有勝負之分.已知籃球隊預設目標為22場,積40分,求籃球隊勝負場次如何.在導入環(huán)節(jié),可以基于這一例題設計以下問題,要求學生自主處理和解決.

      (1)如果建立一元一次方程,應該如何求解?

      (2)假設勝x場,負y場,如何利用方程組揭示其中的等量關系?

      分析:比賽總場數=()場數+()場數;比賽總積分=()積分+()積分.根據已知可得:x+y=22,2x+y=40.

      思考:所寫出的兩個方程具有怎樣的特點?它們與一元一次方程又存在哪些差異?

      當學生可以順利解決問題之后,需要結合上述兩個方程歸納其定義.

      互動質疑:“二元”所指代的是什么?有何含義?“元”的本質是什么?“一次”的含義是什么?“次”的本質是指什么?嘗試舉例.

      本節(jié)課教學的根本就是為了推導二元一次方程,且學生能夠做出正確的判斷.所以,導學案的設計就是以學生現有的認知水平為基點,充分關聯前后知識,揭示其間的內在邏輯聯系,以此引發(fā)學生的深度思考,一方面,可以帶領學生梳理舊知、強化舊知;另一方面,也可實現對方程知識的正向遷移.顯然這種設計方式能夠降低理解難度,拉近學生和新知之間的距離,促進數學思維能力的進一步發(fā)展和提升.

      3.2 借助教材范例,培養(yǎng)基本技能

      在數學課程體系中,基本技能是一項關鍵的基礎目標,就是學生能夠根據所學習的數學知識有效解決實際問題.利用教材中與基礎知識相關的問題,以其作為學生展開思考和探究的重要載體,就能夠以考查知識這一視角作為出發(fā)點,徹底改變表面理解的尷尬現狀,不會在課后練習中出現各種錯誤,這是對其應用解題能力的進一步發(fā)展和鍛煉.

      3.3 引導數學探究,感悟數學思想

      初中數學知識體系,需要特別強調學生基本思想的形成過程,使學生能夠透過科學、正確的思維促進新知體系的架構,并結合應用不斷健全和完善,既能夠推動知識、能力的遷移,也能夠有效拓展數學認知的寬度和廣度.因此,應當在具體實施過程中遵循以下步驟:實踐操作、個人領悟及遷移運用.教師可以通過對導學案的優(yōu)化設計,創(chuàng)設能夠促使學生展開自主探究的良好情境,使學生可以在探究的過程中,真正感受數學基本思想的本質所在,使學生的解題能力得到提升.

      本課的教學目標在于理解二元一次方程組及解的概念,掌握求解方法,為了順利實現這一目標,我將所創(chuàng)設的實踐活動與導學案深度融合.具體內容如下.設計提問:能夠同時滿足兩個方程的一組值是多少?這樣便可順利求解二元一次方程組.基于上述探究過程,可以使學生發(fā)現:引入類比就是為了使學生可以把握其與一元一次方程解的不同,也能夠順利推導出二元一次方程組的解.而教師也有意識地設置問題,巧妙地滲透于導學案中,既是為了組織有效的探究,也是為了使學生準確把握基礎知識及基本規(guī)律,重要的是感知其中所蘊含的數學基本思想.

      3.4 設計實踐活動,積累基本經驗

      數學學習過程中,需要學生親歷具體的操作活動,而活動經驗的生成及積累,會對新知的學習起到顯著的促進作用.通過教學實踐可知,如果能夠使導學案呈現靈活性及可操作性,不僅落實了動手操作,也可以實現新知的順利融入.這種活動過程中,學生既能夠積累個性化的豐富經驗,也可就此塑造合理反思的良好習慣.

      例如,對導學案進行優(yōu)化設計的過程中,我特別增加了以下習題,以此強化學生對概念的理解:

      (1)在方程2x+3y=6中,包含幾個未知數?各未知數對應的項是幾次?應該被稱為怎樣的方程?

      (2)以下所呈現的方程中,哪些是二元一次方程?(方程略)

      (3)已知關于x,y的二元一次方程ax-2y=3x+4,嘗試求a的取值范圍.

      上述練習是為了落實學生的獨立思考及動手操作,使其能夠更深刻地理解所學習的數學知識,還能夠以此積累豐富的數學經驗,并在反思的過程中發(fā)展數學思維能力,拓展思維空間,在這個過程中,能夠有效地促進學生數學核心素養(yǎng)的提升.

      總之,進入初中教學階段之后,需要對數學導學案精心設計,不僅要落實基礎知識及基本技能,還要使學生聚焦基本思想及活動經驗,這樣的導學案設計才能呈現出靈動性和針對性,才能夠搭建良好的平臺,以此推動學生自主學力的發(fā)展,有助于促進數學思維及核心思維的進一步提升.W

      猜你喜歡
      四基方程組學案
      深入學習“二元一次方程組”
      《二元一次方程組》鞏固練習
      鄉(xiāng)愁導學案
      一類次臨界Bose-Einstein凝聚型方程組的漸近收斂行為和相位分離
      有關課程改革的點滴思考
      關注課堂教學,落實“四基”要求
      考試周刊(2016年88期)2016-11-24 13:41:29
      “比例尺(一)”導學案
      積極構建有效課堂促進學生“四基”發(fā)展
      非自治耗散Schr?dinger-Boussinesq方程組緊致核截面的存在性
      導學案不能淪落為“習題單”:以“中位數和眾數”的導學案為例
      黄龙县| 治多县| 四川省| 安阳县| 射洪县| 南阳市| 平阴县| 敦化市| 定结县| 柳江县| 黎城县| 舞阳县| 思南县| 广东省| 江油市| 新兴县| 宿松县| 久治县| 承德市| 西乌珠穆沁旗| 广南县| 巩留县| 高平市| 开平市| 石门县| 灵台县| 麻城市| 如皋市| 女性| 廊坊市| 吉木乃县| 江永县| 尚义县| 平安县| 大足县| 台江县| 连城县| 华坪县| 梅河口市| 泉州市| 浦城县|