• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cyclic heptapeptides with metal binding properties isolated from the fungus Cadophora malorum from Antarctic soil

    2022-08-10 07:35:18GuidmarDonalleMarMarthaMartorellGastSilessLucasRubertoandGabrielaCabrera
    Natural Products and Bioprospecting 2022年4期

    Guidmar C.Donalle, María Martha Martorell, Gastón E.Siless, Lucas Ruberto and Gabriela M.Cabrera*

    Abstract The Antarctic fungus Cadophora malorum produces previously undescribed cyclic heptapeptides (cadophorin A and B) containing an anthranilic acid residue.The planar structure of these peptides was determined by high-resolution mass spectrometry combined with extensive 1D and 2D NMR spectroscopy.The absolute configuration of the amino acids was determined by Marfey’s method, with HPLC analysis of FDVA (Nα-(2,4-dinitro-5-fluorphenyl)-l-valinamide)derivatives making use of a PFP column.Remarkably, cadophorin 2 possesses both the uncommon d-Ile and d-allo-Ile in its structure.The peptides have metal binding properties as shown by LCMS with post column addition of metal salt solutions.These results were supported by DFT calculations.

    Keywords: Cyclic peptide, Cadophora malorum, Metal binding

    1 Introduction

    Marine fungi are known to produce metabolites with a plethora of bioactivities, which include antimicrobial, antiviral, antitumoral, anti-inflammatory activities among others.Notably, marine natural products (MNP)from fungi represent nearly half of all reported MNP [1,2].Fungi isolated from Antarctic environments are not an exception and are also well-known as producers of bioactive metabolites [3, 4].Cadophorais a worldwide ubiquitous genus with 43 species nowadays [5] some of which, includingC.malorum, were reported from Antarctica locations [6].SomeCadophoraisolates have been reported to produce a series of bioactive metabolites with a wide range of structural scaffolds [7–9].

    Metallomics integrates multidisciplinary research for the study of the relationships between bio-metals to bio-function.One of the fields of increasing interest in this area is the study of the metal coordination capability of metabolites, which may account for many biological activities such as metal hijacking, resistance to reactive oxygen species, production of sexual spores in microorganisms [10].

    Electrospray ionization (ESI), a soft ionization technique able to transfer ions from solution to the gas phase, has been previously employed for the evaluation of the metal binding nature of secondary metabolites.Metal ions of alkali, alkaline earth and transition metals have been widely used in ESI, in order to record spectra of mixtures of metal salt solutions and samples, or by post-HPLC column addition of metal salt solutions [11,12].In particular, the latter technique has been applied as a screening method for the detection of compounds with metal binding properties [12, 13].

    As part of the search for new natural products produced from Antarctica-derived fungi, the LC–MS runs of extracts obtained from a collection of 26 strains were chemometrically analysed employing MS-DIAL [14] and an outlier sample,C.malorum, was selected.Two new cyclic peptides (cadophorins A and B) were isolated and identified from this extract.Since there are previous reports of cyclic peptides with metal binding properties [15], cadophorins A and B were evaluated as potential metal binders of alkaline-earth metals, Zinc and Copper.The new peptides showed the capability to form complexes with all the metals, although the stability of the formed species was higher in the case of Copper, Zinc and Magnesium.Although metal binding properties may account for certain bioactivities like ionophoric action [16], metal binders can be useful as well as self-assembling structures to construct ion channels in supramolecular chemistry, and also as asymmetric catalysts [17, 18].

    2 Results and discussion

    The organic extracts of small cultures ofC.malorumand other 25 strains isolated from Antarctic soil samples were analysed by LCMS using Electrospray in positive and negative ion mode, and the runs were screened using the free platform MS-DIAL [14].Principal component analysis (PCA), applied to the negative ion mode data,showed in the score plot an outlier strain,C.malorum.(Additional file 1: Fig.S1).A search on the ion table for unique metabolites, which were present in only one PCA class (Additional file 1: Fig.S2), and the PCA loading plot, exposed the presence of two metabolites of peptidic nature, according to their MS2 spectra, with molecular weights of 763 and 777.

    Based on this result, the components of the organic extract ofC.malorumwere separated by HPLC yielding two compounds, which were named cadophorins A and B (Fig.1).Both compounds were considered pure after analysis by LCMS and1H NMR in CDCl3/CD3OD.However, some duplicated nonexchangeable signals were observed in the1H NMR spectra in DMSO-d6or CD3OD(Additional file 1: Fig.S3.8).This fact indicated that the compounds exist in a slow conformational equilibrium in these solvents [19].

    Fig.1 Cadophorins A and B isolated from Cadophora malorum.A is cadophorin A and B is cadophorin B

    Cadophorin A (cadA) has a molecular formula of C39H54N7O9as determined by HRESIMS.The MS/MS spectrum showed the presence of characteristic signals corresponding to the loss of some amino acids like alanine (Ala), threonine (Thr), tyrosine (Tyr), valine (Val)and leucine or isoleucine (Ile), although the structure could not be fully determined considering proteinogenic amino acids only.The13C NMR (Table 1) and HSQC-DEPT spectra exhibited 12 aromatic carbon signals accounting for two phenyl groups, seven carbonyl signals and five methylene, nine methine and six methyl group signals (Table 1).The 2D NMR data (COSY, HSQC and HMBC) established substructures matching with Ala, Thr, Tyr, Val, Ile, Pro and an anthranilic acid residue (ATA).This last fragment exhibited a characteristic system of four consecutive aromatic protons (δH8.48,br d,J= 8.0 Hz;δH7.49, dt,J= 8.0, 1.3 Hz;δH7.13, dt,J= 8.0, 1.0 Hz;δH7.79, dd,J= 8.0, 1.3 Hz).The sequence of the amino acids was established by analyses of HMBC and NOESY correlations, in combination with Mass Spectrometry.An Ala was positioned between Thr and Ile by the HMBC correlations of Ala-NH (δH7.42 ppm)to C-1 (δC170.3) of Thr and of Ile-NH (δH8.23 ppm)to C-1 of Ala (δC172.0 ppm).In the same way, Thr was attached to a Tyr by the HMBC correlations of Thr-NH(δH8.33 ppm) and Thr-H-2 (δH4.05 ppm) to Tyr-C-1 (δC171.9).At the same time, Tyr-NH (δH8.18 ppm) correlated to Val-C-1 (δC170.2).A NOESY correlation of Val-NH (δH8.13 ppm) to ATA-H-3 (δH7.79 ppm) allowed us to place Val next to ATA.Moreover, the connectivity between ATA and Pro was identified based on an HMBC correlation of ATA-NH (12.03 ppm) and Pro-C-1(δC170.6 ppm).Finally, a NOESY correlation between Pro-H-5 (δH3.67–3.69 ppm) and Ile-H-2 (δH1.85 ppm)connected Pro to Ile and closed the cycle.Other HMBC and NOESY correlations supported this planar structure(Fig.2 and Additional file 1: Figs.S3.1–S3.7, S3.9–S3.11),as well as a detailed analysis of the MS/MS spectrum(Additional file 1: Table S3.1).Thetransconfiguration of Pro can be deduced from the difference betweenδCC-3 andδCC-4 [15].

    Table 1 13C NMR (500 MHz) and 1H NMR (125 MHz) data for cadophorins A and B

    Table 1 (continued)

    Fig.2 Relevant correlations observed in 2D NMR experiments.A is cadophorin A and B is cadophorin B

    The absolute configuration of each amino acid was determined via Marfey’s analysis.Cadophorin A was hydrolysed, and the hydrolysate was derivatized withN-(2,4-dinitro-5-fluorophenyl)-L-valinamide (L-FDVA,Marfey’s reagent) followed by HPLC–DAD/MS analysis and comparison with authentic standards of Marfey’s derivatized amino acid [20].For the separation ofthe diasteromeric D-allo-Ile and D-Ile MR derivatives, a PFP HPLC column was employed [21].This experiment revealed the presence of L-Ala, L-Thr, L-Tyr, D-Val, L-Pro and D-allo-Ile in cadophorin A (Table 2).The presence of D-allo-Ile was confirmed by co-injection of the L-FDVA derivative of D-allo-Ile and cadophorin A.Although PFP phase has been used previously for this application [21],in this work a different set of chromatographic conditions allowed a better differentiation of the four stereoisomers of isoleucine.Temperature is also an important factor for this separation, and higher temperatures were counterproductive in this respect.

    Table 2 Table retention times (RT) of amino acid l-FDVA derivatives

    Cadophorin B (cadB) showed a signal m/z 778.4135 corresponding to a protonated molecule with a molecular formula C40H55N7O9in the ESI-HR spectrum.The NMR spectra of cadophorin B were very similar to those of cadophorin A.The main difference was the absence of the methyl signals of D-Val and the appearance of thesignals of two methyl groups atδH0.86 (d) and 0.74 (t)in the1H NMR spectrum (Table 1), inferring the presence of an Ile instead of Val.2D NMR spectra and MS and MS2 data confirmed this assumption (Additional file 1: Figs S4.1–S4.12) and all the correlations in the HMBC and NOESY spectra also corroborated the similarity between cadA and cadB (Fig.2).Cadophorin B was hydrolised and derivatised in the same way as cadA and the analysis of the L-FDVA derivatised amino acids revealed a similar absolute configuration of the amino acids as in cadA and the presence of an additional D-Ile.Co-injection with authentic samples of derivatised D-Ile and D-allo-Ile showed that both aminoacids were present(Additional file 1: Fig.S5).Considering the similarity of cadophorin A and B, and the way this kind of peptides are biosynthesed [22], it can be assumed that D-Ile is in the same position as D-Val in cadophorin A.

    The presence of D-allo-Ile in cyclic peptides produced by microorganisms is quite common, however this is not the case for D-Ile.The monamycins, which are antibiotic hexapeptides are probably the only example of natural cyclic peptides incorporating this amino acid [23].D-Ile has an opposite configuration at C-3 compared to L-Ile or D-allo-Ile.Since this position is not vicinal to the carboxyl group of the aminoacid, D-Ile cannot be biosynthetised by the typical enolisation/epimerization sequence.Instead, biosynthetic studies have shown that the epimerization at C-3 occurs through an α-keto acid intermediate [24].Since the report of the monamycins, other cyclic peptides containing this amino acid were informed,although their structures were not adequately confirmed or were incorrect [25, 26].

    The cyclization of a linear peptide normally contributes to substantial conformational rigidity over the linear form, which explains the specificity of cyclic peptides for target sites and their increased resistance towards proteases.Proline itself gives a strong conformational rigidity compared to other amino acids, but the presence of ATA attached to Pro in a cyclic peptide further restricts the flexibility of the molecules.3D structures of the lower energy conformers of cad1 are shown in Additional file 1:Fig.S7.1.

    There are a few examples of cyclic peptides with this sequence ATA-Pro or p-hydroxy ATA-Pro, like the tricyclic peptide psychrophilin A, isolated from the psychrotolerant fungusPenicillium ribeum[27] and asperpetide A from a gorgonian-derivedAspergillussp.[28].

    Cadophorins were analysed by LCMS with post-columnin sourceaddition of metal chloride solutions of Magnesium, Calcium, Strontium, Copper, and Zinc to test their metal binding properties.These metals, except for Strontium, were selected due to their metabolic importance in living organisms, while Strontium was included in order to compare its performance with the other alkaline earth metals.The mass spectra showed the presence of a signal corresponding to the ion [cad + Me]2+, where Me is any metal, in all the cases as the main signal (Additional file 1: Fig.S6.1).The response of that signal was plotted for cadB giving a descending order of response from Sr, Ca, Mg, Zn to Cu(Additional file 1: Fig.S6.2).This response is related to the ease of ionization.When comparing related compounds,the less polar and less solvated species are nearest to the surface of the electrosprayed droplet and are easily ionised.In this sense, the relationship between the responses of alkaline earth complexes could be predicted (Sr > Ca > Mg).These MS experiments are also strongly influenced by the kinetics, as the complexes are formed in situ without time for equilibration, and for this reason the comparison between Mg, Cu and Zn complexes is not straightforward and would require additional kinetic studies.

    The optimised structures of the complexes of cadA with different metals were calculated by DFT methods to correlate the MS results with the stability of the complexes, which are shown in Fig.3.The site of coordination to the divalent cation was the oxygen of carbonyl moieties in all the cases.The geometry observed around the metal center was trigonal bipyramidal for Mg, Cu and Zn, with carbonyls of ATA, Val, Thr in equatorial and Pro and Tyr in the axial positions.In the case of Ca and Sr,an additional coordination to the carbonyl of theallo-Ile resulted in a distorted octahedral geometry.The relevant interatomic distances for the metal complexes are shown in Additional file 1: Table S7.1.These geometries and the distances from the cation to the carbonyl oxygen are typical for these metal cations [29].

    Fig.3 Optimised structures of cadA–Me complexes calculated at the B3LYP level of theory, Me = Mg2+ and Cu2+

    For most of the complexes [cadA + Me]2+(Me = Mg,Ca, Sr, Zn), an additional isomer of higher energy was found, also with trigonal bipyramidal geometry, which coordinates the divalent cation with the carbonyls of Pro,Ser and Val equatorially and Tyr andallo-Ile in the axial positions.This additional mode of coordination holds the metal in a central position, which is less exposed to the surface of the molecule (Additional file 1: Table S7.2).

    The calculated energies for the lower energy conformers are shown in Table 3, and show an order of stabilities: Cu > Zn > Mg > Ca > Sr.These results indicate that the metal complexes of cadophorins are more stable in the case of the smaller metal cations Cu, Zn and Mg which have similar ionic radii.

    It is worth to mention that the employed MS methodology allowed the evaluation of the binding properties of cyclic peptides present in small amounts, with the advantage of allowing hundreds of experiments using the same sample.

    Table 3 Optimised energies for cadA–Me complexes[cadA + Me]2+ calculated at the B3LYP level of theory,Me = Mg2+, Ca2+, Sr2+, Zn2+ and Cu2+ for: cadA + Me(H2O)62+ →[cadA + Me]2+ + 6 H2O

    Cadophorins A and B showed antifungal activity againstCandida albicansandC.haemuloniiat 20 μg/spot (Additional file 1).The extract ofC.malorumpossessed also antifungal activity against phytopathogenic strains, which was attributed to the presence of wortmannin, a known antifungal metabolite, also present in the extract (Additional file 1: Fig.S8) [30].

    3 Experimental section

    3.1 General experimental procedures

    Optical rotations were recorded on a PerkinElmer 343 polarimeter.Electronic Circular Dichroism spectra were determined in a Jasco J815 Spectropolarimeter.1H- and13C-NMR spectra were obtained on a Bruker Avance Neo 500 spectrometer operating at 500 MHz and 125 MHz,respectively; chemical shifts (δHand δC) are informed in ppm,Jin Hz.Two-dimensional NMR spectra (COSY,HSQC-DEPT, NOESY and HMBC) were recorded using standard Bruker software.HR (ESI) mass spectra and HPLC–MS runs were recorded using a MicrOTOF QII Bruker mass spectrometer.All solvents were distilled before use.LC/MS-grade methanol and water were purchased from Carlo Erba (Milan, Italy).Formic acid (p.a.,ACS) was purchased from Merck (Merck KGaA, Darmstadt, Germany).Standard amino acids were purchased from Sigma-Aldrich (Merck KGaA, Darmstadt, Germany), except for D-Isoleucine which was purchased from TCI (Tokyo Chemical Industry Co., Ltd, Alpharetta,USA).

    3.2 Isolation and cultivation of Antarctic fungi

    Soil samples were collected at Potter Peninsula, 25 de Mayo/King George Island (62° 14′ 18″ S, 58° 40′ 00″ W)Antarctica by M.M.M.and L.R..For experimental details,see Additional file 1.The strain ofC.malorumwas classified by M.M.M.and L.R., deposited in the Culture Collection at the Argentinean Antarctic Institute (IAA) and the DNA sequences were submitted to GenBank under Accession Number OM177061.

    3.3 Cultivation of Cadophora malorum

    For the large-scale cultures used for compound isolation,Cadophora malorumwas grown on PDA for at 15 °C for 14 days.From these plates, small plugs of the culture were transferred into Erlenmeyer flasks containing Potato Dextrose Broth (PDB) and incubated at 15 °C and 200 rpm for 4 weeks.Supernatant was separated from the biomass by centrifugation at 4000 rpm for 10 min.

    3.4 Extraction and isolation of the metabolites.

    The supernatant (1.5 L) was extracted with ethyl acetate(3 × 500 mL) and the organic extract (100 mg) was subjected to HPLC (column: YMC C18, 5 μm, 22.5 × 2.5 cm;MeOH-H2O 55:45) yielding cadophorin B (1.8 mg), cadophorin A, re-purified by the same technique (1.0 mg),and a fraction which was separated by prep.TLC(MeOH:CH2Cl25:95) yielding 2.4 mg of wortmannin.

    3.5 Marfey’s derivatives

    A sample of cadA and cadB (approximately 0.5 mg) were dissolved in 2.0 mL of 6 M hydrochloric acid and hydrolyzed overnight at 110 °C.The hydrolysates were treated with Marfey’s reagent (FDNP-Val-NH2) as previously reported [31].The derivatives were analysed by LC–DAD–MS (column: Luna PFP, 3 μm, 2.0 mm × 100 mm;Phenomenex, Torrance, CA, USA), set at 28 °C.The mobile phase was H2O containing 0.1% formic acid (A)and ACN (B), at a flow rate of 0.3 mL/min.A linear gradient elution was performed as follows: 25% B (3 min),25–65% B (3–40 min), 100% B (41–45 min), 25% B(45–50 min).

    The same procedure was repeated for cadophorin B(0.2 mg) to confirm the results.

    3.6 Binding metal experiments

    The MS instrument with an ESI source was operated using the following conditions: capillary voltage 4.5 kV;end plate offset 500 V; dry temperature 200 °C.Nitrogen was used as dry gas (11.0 L/min) and as nebuliser gas (nebuliser pressure 3.4 bar).Data acquisition and processing were performed using Bruker Compass Data Analysis software.A Luna PFP HPLC column (3 μm,2.0 mm × 100 mm; Phenomenex, Torrance, CA, USA),set at 30 °C, was employed as the stationary phase.The mobile phase was water containing 0.1% formic acid (A)and MeOH (B), at a flow rate of 0.3 mL/min.Linear gradient elution was performed as follows: 55% B (0–2 min),55–100% (2–7 min), 100% (7–14 min).

    Post-column addition of metal solutions.An aqueous solution (10 mM) of MgCl2, CaCl2, SrCl2, CuCl2or ZnCl2was introduced using a syringe pump at a flow rate of 3 μL/min, via a T-junction before entrance into the ion source.The solutions of metals were previously titrated with an EDTA solution employing murexide (Ca2+and Cu2+) or Eriochrome Black T (Mg2+, Zn2+) as indicators.

    3.7 Antifungal assays

    For experimental details, see Additional file 1.

    3.8 Computational section

    See Additional file 1.

    3.9 Compound information

    CadophorinA.White amorphous solid;? 11.8 (c0.065, CHCl3).UV (MeOH) λmax(log ε) 271 (3.0), 245 (3.3)nm.1H NMR and13C NMR (see Table 1).Positive ion HRESIMS m/z 764.3983 (Calcd for C39H54N7O9[M+H]+,764.3978).

    CadophorinB.White amorphous solid;? 35.1(c0.080, CHCl3).UV (MeOH) λmax(log ε) 271 (3.0), 245(3.4) nm.1H NMR and13C NMR (see Table 1).Positive ion HRESIMS m/z 778.4134 (Calcd for C40H56N7O9[M+H]+,778.4108).

    Supplementary Information

    The online version contains supplementary material available at https:// doi.org/ 10.1007/ s13659- 022- 00348-x.

    Additional file 1.PCA analysis (score plot); Spectroscopical data (1H NMR,13C NMR,1H,1H COSY, HSQC, HMBC, NOESY, HRMS (ESI), MS/MS spectra, ECD) of cadophorins A and B; Comparison of the retention times of the L-FDVA derivatives of d-Ile, d-allo-Ile present in cadophorin B, to co-injected standards; MS spectra of cadophorin B with post-columnin sourceaddition of metal salt solutions; Optimized structures and geometrical parameters of metal complexes calculated at the B3LYP level of theory;1H NMR and13C NMR of wortmannin; Isolation and cultivation of Antarctic fungal strains; Antifungal assay.

    Acknowledgements

    The authors thank Universidad de Buenos Aires [UBACYT 2018-100246, PDE-48-2020], CONICET [PIP 112 20200101898] and ANPCyT [PICT 2018-0930, PICT E 2018-0031] for partial financial support.

    Author contributions

    GD: isolation, structural elucidation, spectrum analysis.MMM: isolation and identification of strains, antifungal assay.GES.: molecular modelling.LR: supervision (microbiology), funding acquisition.GMC: MS experiments, supervision(chemistry), funding acquisition, writing.All authors read and approved the final manuscript.

    Declarations

    Competing interests

    No conflict of interest is declared.

    Author details

    1Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Buenos Aires, Argentina.2Unidad de Microanálisis y Métodos Físicos Aplicados a la Química Orgánica (UMYMFOR),CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.3Instituto Antártico Argentino, Instituto Nanobiotec, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.

    Received: 19 April 2022 Accepted: 9 May 2022

    韩国av一区二区三区四区| 久久人妻av系列| 一本精品99久久精品77| 一个人看的www免费观看视频| 亚洲av成人不卡在线观看播放网| 国产一区二区在线av高清观看| 丝袜美腿在线中文| 欧美中文综合在线视频| 又紧又爽又黄一区二区| 国产免费av片在线观看野外av| 亚洲欧美一区二区三区黑人| 亚洲一区高清亚洲精品| 国产亚洲精品av在线| 日韩欧美 国产精品| 国产精品,欧美在线| 母亲3免费完整高清在线观看| 国产精品美女特级片免费视频播放器| 真人做人爱边吃奶动态| 国产精品久久久久久亚洲av鲁大| 18禁在线播放成人免费| 狂野欧美激情性xxxx| 欧美日本视频| 少妇人妻一区二区三区视频| 日日干狠狠操夜夜爽| 美女高潮的动态| 久久久久久久久中文| 国产精品综合久久久久久久免费| 亚洲国产欧洲综合997久久,| 日韩有码中文字幕| 欧美日本视频| eeuss影院久久| 一夜夜www| 国产精品亚洲av一区麻豆| 欧美日本视频| 久久精品国产自在天天线| 一夜夜www| 久久久国产成人精品二区| 久久精品国产综合久久久| 日韩免费av在线播放| 国产高清视频在线观看网站| 别揉我奶头~嗯~啊~动态视频| xxx96com| 日韩人妻高清精品专区| 久久久久久久午夜电影| 国产97色在线日韩免费| 亚洲国产日韩欧美精品在线观看 | 日日干狠狠操夜夜爽| 久久久国产成人精品二区| 久久久久免费精品人妻一区二区| 国内少妇人妻偷人精品xxx网站| 99久久精品热视频| а√天堂www在线а√下载| 成年免费大片在线观看| 亚洲国产日韩欧美精品在线观看 | 日本在线视频免费播放| 不卡一级毛片| 女生性感内裤真人,穿戴方法视频| 精品一区二区三区视频在线 | 听说在线观看完整版免费高清| 狂野欧美白嫩少妇大欣赏| 人妻丰满熟妇av一区二区三区| 国产午夜福利久久久久久| 一二三四社区在线视频社区8| 成人无遮挡网站| av黄色大香蕉| 1000部很黄的大片| 久久久精品欧美日韩精品| 在线看三级毛片| 亚洲午夜理论影院| 国产一区在线观看成人免费| 色播亚洲综合网| 午夜福利成人在线免费观看| h日本视频在线播放| 男女做爰动态图高潮gif福利片| 免费人成视频x8x8入口观看| 国产高清三级在线| 欧美日韩瑟瑟在线播放| 欧美最新免费一区二区三区 | 亚洲成人免费电影在线观看| 亚洲自拍偷在线| 精品久久久久久久毛片微露脸| 1024手机看黄色片| 国产高清三级在线| 又黄又爽又免费观看的视频| 免费av不卡在线播放| 国产高潮美女av| 精品乱码久久久久久99久播| 露出奶头的视频| 综合色av麻豆| 丝袜美腿在线中文| 18禁黄网站禁片午夜丰满| 久久伊人香网站| 小蜜桃在线观看免费完整版高清| 国产精品亚洲一级av第二区| 99久久精品热视频| 久久天躁狠狠躁夜夜2o2o| 十八禁人妻一区二区| 欧美乱妇无乱码| 精品欧美国产一区二区三| av片东京热男人的天堂| 亚洲不卡免费看| 丁香六月欧美| 国产精品98久久久久久宅男小说| av中文乱码字幕在线| 国产成年人精品一区二区| 国产精品一及| 欧美性猛交╳xxx乱大交人| 毛片女人毛片| 中文字幕久久专区| 亚洲最大成人中文| 久久久久国产精品人妻aⅴ院| 亚洲人成网站在线播放欧美日韩| 日韩欧美国产一区二区入口| 国产蜜桃级精品一区二区三区| 亚洲无线在线观看| www.www免费av| 国产精品久久久久久久久免 | e午夜精品久久久久久久| 午夜精品一区二区三区免费看| 老司机深夜福利视频在线观看| 一区二区三区高清视频在线| 久久久成人免费电影| 一夜夜www| bbb黄色大片| 国产熟女xx| 国产一区二区在线观看日韩 | 757午夜福利合集在线观看| 亚洲片人在线观看| 99精品久久久久人妻精品| 午夜免费男女啪啪视频观看 | 日本一本二区三区精品| 国产野战对白在线观看| 黄片大片在线免费观看| 91九色精品人成在线观看| 国产一区在线观看成人免费| 久久久国产成人免费| 99久久99久久久精品蜜桃| 亚洲精品成人久久久久久| 天天躁日日操中文字幕| 国产激情偷乱视频一区二区| 国产不卡一卡二| 高清毛片免费观看视频网站| 国产亚洲精品一区二区www| 久久精品国产自在天天线| 久久久久九九精品影院| 波多野结衣巨乳人妻| 日韩成人在线观看一区二区三区| 18禁裸乳无遮挡免费网站照片| 99热精品在线国产| 在线观看一区二区三区| 亚洲成人久久爱视频| 久久精品国产亚洲av涩爱 | 国产亚洲精品久久久com| 成人精品一区二区免费| 国产精品久久久久久精品电影| 久久九九热精品免费| 成人精品一区二区免费| 免费av毛片视频| 午夜精品久久久久久毛片777| 99久久99久久久精品蜜桃| 国产精品香港三级国产av潘金莲| 可以在线观看的亚洲视频| 搡老熟女国产l中国老女人| 草草在线视频免费看| 久久久色成人| 中文资源天堂在线| 岛国视频午夜一区免费看| 午夜激情欧美在线| 岛国在线观看网站| 久久久久久国产a免费观看| 桃色一区二区三区在线观看| 成年女人看的毛片在线观看| 亚洲av第一区精品v没综合| 中文在线观看免费www的网站| 精品电影一区二区在线| 亚洲国产精品成人综合色| 亚洲av成人精品一区久久| av天堂在线播放| 一夜夜www| 国产在线精品亚洲第一网站| 亚洲真实伦在线观看| 老鸭窝网址在线观看| 国产激情欧美一区二区| 他把我摸到了高潮在线观看| 久久久国产成人精品二区| 熟女电影av网| 一夜夜www| 亚洲av成人精品一区久久| 最好的美女福利视频网| 国产精华一区二区三区| 亚洲成av人片在线播放无| av欧美777| 国产成人aa在线观看| 欧美激情久久久久久爽电影| 中文字幕人妻丝袜一区二区| 亚洲av不卡在线观看| 日本黄色视频三级网站网址| 精品免费久久久久久久清纯| 观看免费一级毛片| 国产不卡一卡二| 午夜精品久久久久久毛片777| 成人高潮视频无遮挡免费网站| 88av欧美| 狂野欧美激情性xxxx| 999久久久精品免费观看国产| 欧美一区二区亚洲| 成人一区二区视频在线观看| 国产私拍福利视频在线观看| 欧美极品一区二区三区四区| 成人国产一区最新在线观看| 日本一二三区视频观看| 国产精品一区二区三区四区免费观看 | 国产一区二区三区在线臀色熟女| 99热这里只有是精品50| 国产一区二区在线观看日韩 | 在线天堂最新版资源| 天天添夜夜摸| 免费观看精品视频网站| www日本黄色视频网| 日韩亚洲欧美综合| 亚洲专区国产一区二区| 欧美成人性av电影在线观看| 日韩欧美在线乱码| 色综合亚洲欧美另类图片| 精品一区二区三区视频在线 | 成年人黄色毛片网站| 好看av亚洲va欧美ⅴa在| 久久久久久久久大av| 老司机午夜十八禁免费视频| 最新美女视频免费是黄的| 欧美日韩黄片免| 超碰av人人做人人爽久久 | 久久这里只有精品中国| av片东京热男人的天堂| 一进一出抽搐gif免费好疼| 欧美激情在线99| 人妻丰满熟妇av一区二区三区| 一级a爱片免费观看的视频| 亚洲最大成人手机在线| 欧美不卡视频在线免费观看| av在线天堂中文字幕| 国产在视频线在精品| 午夜免费成人在线视频| 午夜精品久久久久久毛片777| 岛国在线观看网站| 久久久久久国产a免费观看| 内地一区二区视频在线| 国产三级中文精品| 最近最新免费中文字幕在线| 久久精品国产亚洲av涩爱 | 51国产日韩欧美| 一个人看的www免费观看视频| 成人特级av手机在线观看| www.熟女人妻精品国产| 一级a爱片免费观看的视频| 亚洲国产色片| 亚洲人成网站在线播放欧美日韩| 精品免费久久久久久久清纯| netflix在线观看网站| 久久久久久久久大av| 欧美黄色淫秽网站| 又粗又爽又猛毛片免费看| 久久精品91无色码中文字幕| 日韩国内少妇激情av| 国产黄a三级三级三级人| 亚洲人成网站在线播| 国内少妇人妻偷人精品xxx网站| 国产精品 国内视频| 亚洲中文日韩欧美视频| 五月玫瑰六月丁香| 午夜久久久久精精品| 亚洲精品在线美女| www.999成人在线观看| www.www免费av| 99久久精品一区二区三区| 婷婷六月久久综合丁香| 亚洲精品456在线播放app | 国产老妇女一区| 超碰av人人做人人爽久久 | 国产91精品成人一区二区三区| e午夜精品久久久久久久| 午夜福利在线观看免费完整高清在 | 成人午夜高清在线视频| 韩国av一区二区三区四区| 国产国拍精品亚洲av在线观看 | 欧美av亚洲av综合av国产av| 亚洲成人久久爱视频| 中文亚洲av片在线观看爽| 性色av乱码一区二区三区2| 99精品在免费线老司机午夜| 老汉色av国产亚洲站长工具| 国产成人a区在线观看| 在线观看一区二区三区| 欧美丝袜亚洲另类 | 国语自产精品视频在线第100页| 香蕉丝袜av| 一级毛片女人18水好多| 欧美黑人欧美精品刺激| 色尼玛亚洲综合影院| 日韩成人在线观看一区二区三区| 成年免费大片在线观看| 男女午夜视频在线观看| 桃色一区二区三区在线观看| 嫩草影视91久久| 精品欧美国产一区二区三| 麻豆成人av在线观看| 51午夜福利影视在线观看| 波多野结衣巨乳人妻| 亚洲精品美女久久久久99蜜臀| 中文字幕人妻熟人妻熟丝袜美 | 欧美大码av| 一区福利在线观看| 99热这里只有精品一区| 国产一区在线观看成人免费| 人妻久久中文字幕网| 国产三级在线视频| 成年免费大片在线观看| 色在线成人网| 成年女人毛片免费观看观看9| 日本免费一区二区三区高清不卡| 午夜精品久久久久久毛片777| 亚洲电影在线观看av| 一区二区三区免费毛片| 在线观看66精品国产| 天美传媒精品一区二区| 又黄又粗又硬又大视频| 亚洲av第一区精品v没综合| 搡老熟女国产l中国老女人| 久久久久久久午夜电影| 天堂av国产一区二区熟女人妻| 一二三四社区在线视频社区8| 最近最新中文字幕大全电影3| 中文字幕人成人乱码亚洲影| 人妻久久中文字幕网| 亚洲欧美日韩无卡精品| 久久久国产成人精品二区| 免费看a级黄色片| 非洲黑人性xxxx精品又粗又长| 1000部很黄的大片| 麻豆成人午夜福利视频| 欧美一区二区精品小视频在线| 亚洲最大成人手机在线| 我的老师免费观看完整版| 禁无遮挡网站| 精品国产亚洲在线| 欧美成狂野欧美在线观看| 国产精品亚洲一级av第二区| 制服丝袜大香蕉在线| 男女那种视频在线观看| 一本综合久久免费| svipshipincom国产片| 国产精品乱码一区二三区的特点| 亚洲内射少妇av| 黑人欧美特级aaaaaa片| 午夜a级毛片| 日本撒尿小便嘘嘘汇集6| 国产一区二区三区视频了| 91在线精品国自产拍蜜月 | 国产三级在线视频| 青草久久国产| 9191精品国产免费久久| 亚洲熟妇熟女久久| 亚洲国产中文字幕在线视频| 国产av在哪里看| 男插女下体视频免费在线播放| 日韩欧美在线乱码| 黄片小视频在线播放| 蜜桃亚洲精品一区二区三区| 中文字幕av成人在线电影| 一本一本综合久久| 无限看片的www在线观看| 国产三级黄色录像| 高清在线国产一区| 午夜两性在线视频| 91在线精品国自产拍蜜月 | 一二三四社区在线视频社区8| 欧美3d第一页| 国产高清视频在线播放一区| 综合色av麻豆| 狂野欧美激情性xxxx| av福利片在线观看| 九九热线精品视视频播放| 国产97色在线日韩免费| 精品国产亚洲在线| 日韩欧美免费精品| 黑人欧美特级aaaaaa片| 午夜免费成人在线视频| 变态另类成人亚洲欧美熟女| 舔av片在线| 亚洲av成人精品一区久久| 色噜噜av男人的天堂激情| 午夜激情欧美在线| 亚洲中文字幕日韩| 日日干狠狠操夜夜爽| 看片在线看免费视频| 亚洲,欧美精品.| 欧美一级毛片孕妇| 午夜福利高清视频| 在线观看午夜福利视频| 国产免费男女视频| 99在线人妻在线中文字幕| 中文在线观看免费www的网站| 亚洲精品在线观看二区| 桃红色精品国产亚洲av| 免费av不卡在线播放| a在线观看视频网站| 动漫黄色视频在线观看| 日韩亚洲欧美综合| 99国产极品粉嫩在线观看| 国产69精品久久久久777片| 亚洲成人精品中文字幕电影| 蜜桃久久精品国产亚洲av| 国产蜜桃级精品一区二区三区| 国产又黄又爽又无遮挡在线| 亚洲精品粉嫩美女一区| 一本综合久久免费| 母亲3免费完整高清在线观看| 在线观看免费视频日本深夜| www.www免费av| 成人高潮视频无遮挡免费网站| 嫩草影院精品99| 欧美绝顶高潮抽搐喷水| 亚洲性夜色夜夜综合| 免费在线观看日本一区| 女生性感内裤真人,穿戴方法视频| 亚洲国产欧美网| 欧美日韩乱码在线| 在线观看66精品国产| 给我免费播放毛片高清在线观看| 色哟哟哟哟哟哟| 热99re8久久精品国产| 色在线成人网| 丰满人妻熟妇乱又伦精品不卡| 精品乱码久久久久久99久播| 成人精品一区二区免费| 亚洲七黄色美女视频| 精品福利观看| 成年人黄色毛片网站| 伊人久久大香线蕉亚洲五| 女人被狂操c到高潮| 久久精品夜夜夜夜夜久久蜜豆| 国产精品一区二区三区四区免费观看 | 午夜福利成人在线免费观看| 黄片小视频在线播放| 国产欧美日韩精品一区二区| 欧美日韩乱码在线| 精品不卡国产一区二区三区| 国产真实乱freesex| 神马国产精品三级电影在线观看| 特大巨黑吊av在线直播| 在线免费观看的www视频| 亚洲在线观看片| 露出奶头的视频| 757午夜福利合集在线观看| 在线观看午夜福利视频| 精品人妻偷拍中文字幕| 久久精品国产99精品国产亚洲性色| 热99在线观看视频| 高潮久久久久久久久久久不卡| 午夜福利免费观看在线| 日韩精品中文字幕看吧| 一本一本综合久久| 国产野战对白在线观看| 精品久久久久久久久久久久久| 国产av不卡久久| 中文资源天堂在线| 中国美女看黄片| 色哟哟哟哟哟哟| 午夜激情福利司机影院| eeuss影院久久| 国产高清三级在线| 亚洲av电影在线进入| 欧美日韩瑟瑟在线播放| 男人的好看免费观看在线视频| 久久久久久人人人人人| 欧美成人免费av一区二区三区| 国产精品,欧美在线| 成人欧美大片| av视频在线观看入口| 成人特级黄色片久久久久久久| 一进一出抽搐动态| 国产一区二区在线观看日韩 | 男女下面进入的视频免费午夜| 国产色爽女视频免费观看| 欧美一区二区国产精品久久精品| 婷婷亚洲欧美| 午夜精品久久久久久毛片777| 午夜福利18| 精品人妻一区二区三区麻豆 | 亚洲在线自拍视频| 深爱激情五月婷婷| 99视频精品全部免费 在线| 18禁黄网站禁片午夜丰满| 精华霜和精华液先用哪个| 国产又黄又爽又无遮挡在线| 舔av片在线| 波野结衣二区三区在线 | 中文亚洲av片在线观看爽| 少妇人妻精品综合一区二区 | 床上黄色一级片| 欧美日韩国产亚洲二区| 一本久久中文字幕| 国产av在哪里看| 国产av一区在线观看免费| 亚洲国产欧美人成| 又黄又爽又免费观看的视频| 好男人在线观看高清免费视频| 国产午夜精品久久久久久一区二区三区 | 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产色片| 一a级毛片在线观看| 午夜精品一区二区三区免费看| 欧美一区二区亚洲| 亚洲 欧美 日韩 在线 免费| 桃色一区二区三区在线观看| 国产精品免费一区二区三区在线| 中文资源天堂在线| 午夜免费激情av| 亚洲精品一区av在线观看| 国产精品永久免费网站| 成人特级av手机在线观看| 精品福利观看| 热99re8久久精品国产| 草草在线视频免费看| 一区二区三区国产精品乱码| 男女视频在线观看网站免费| 91字幕亚洲| 欧美另类亚洲清纯唯美| 久久香蕉国产精品| h日本视频在线播放| 国产麻豆成人av免费视频| 热99在线观看视频| 久久久久久久久中文| 久久天躁狠狠躁夜夜2o2o| 波多野结衣高清无吗| 精品久久久久久久久久久久久| or卡值多少钱| 亚洲成人免费电影在线观看| 国产视频内射| 国产精品免费一区二区三区在线| 国产成+人综合+亚洲专区| 久久九九热精品免费| 亚洲精品日韩av片在线观看 | 久久精品国产清高在天天线| 亚洲国产日韩欧美精品在线观看 | 波多野结衣高清无吗| 尤物成人国产欧美一区二区三区| 最近视频中文字幕2019在线8| 久久香蕉精品热| 欧美黄色淫秽网站| 免费高清视频大片| 老熟妇乱子伦视频在线观看| 午夜激情福利司机影院| 亚洲激情在线av| 亚洲一区二区三区不卡视频| 久久九九热精品免费| 精华霜和精华液先用哪个| 99精品在免费线老司机午夜| 男女视频在线观看网站免费| 国产精品影院久久| 国产aⅴ精品一区二区三区波| 免费大片18禁| 精品一区二区三区视频在线观看免费| 中出人妻视频一区二区| 亚洲精品国产精品久久久不卡| 亚洲精品一卡2卡三卡4卡5卡| 很黄的视频免费| 国产私拍福利视频在线观看| 搞女人的毛片| 亚洲人成电影免费在线| 久久精品国产亚洲av香蕉五月| 91在线观看av| 黄片大片在线免费观看| 18禁黄网站禁片免费观看直播| 啦啦啦韩国在线观看视频| 欧美成人a在线观看| 国产男靠女视频免费网站| 国产成人av激情在线播放| 亚洲欧美日韩卡通动漫| 国产三级中文精品| xxx96com| 女人十人毛片免费观看3o分钟| 嫩草影视91久久| 久久人妻av系列| 亚洲精品在线美女| 精品久久久久久成人av| 舔av片在线| 国内精品美女久久久久久| 亚洲久久久久久中文字幕| 国产精品自产拍在线观看55亚洲| 亚洲中文字幕一区二区三区有码在线看| 午夜福利成人在线免费观看| 露出奶头的视频| 国产一级毛片七仙女欲春2| 人妻久久中文字幕网| 成人特级av手机在线观看| 亚洲成人免费电影在线观看| 99久久综合精品五月天人人| 九九热线精品视视频播放| 亚洲 欧美 日韩 在线 免费| 欧美日韩亚洲国产一区二区在线观看| 国产精品爽爽va在线观看网站| 精品国产超薄肉色丝袜足j| 熟女少妇亚洲综合色aaa.| 久久久国产精品麻豆| 精品国产超薄肉色丝袜足j| 99热这里只有精品一区| 俄罗斯特黄特色一大片| 日韩欧美 国产精品| 日韩欧美国产在线观看| 最近最新中文字幕大全免费视频| 又粗又爽又猛毛片免费看| 久久久久久久亚洲中文字幕 | 成人18禁在线播放| 香蕉丝袜av|