• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of retinal vasculature changes in indirect traumatic optic neuropathy using optic coherence tomography angiography

    2022-08-10 01:39:46HuanMaYangGaoJinMiaoLiYueKunBaoCongNiePanYinXiLyuXiaoYanDingRongLu
    關(guān)鍵詞:功名利祿蝦苗發(fā)電廠

    INTRODUCTION

    I ndirect traumatic optic neuropathy (ITON) refers to acute visual impairment due to optic nerve injury following remote forces applied to the head or face

    . Common causes include vehicle and bicycle accidents, falling, or hits

    , and ITON occurs in 2% to 5% of facial and 0.5% to 2% of head traumas

    . Diagnostic characteristics of ITON include acutely decreased visual acuity (VA), change in color recognition,visual field defects, impaired visual evoked potentials (VEP)and relative afferent pupil defect (RAPD)

    .

    External concussive forces transmits shockwave to the optic nerve and causes indirect injuries

    . A highly recognizable report by Gross

    reported that the traumatic impact force may result in deformation of the ipsilateral orbital roof near the optic foramen, and such deformation could cause damage to the supporting vasculature and shear stress to the nerve

    . The subsequent vascular ischemia-induced optic nerve swelling and compression due to optic canal are causes of insufficient blood supply to retinal ganglion cell (RGC)leading to irreversible degeneration of RGC axons at the time of injury or progress within ensuing weeks, and present with optic disc pallor

    . This two-stage hypothesis is the basis for treatment of ITON with optic canal decompression

    ,among others such as steroid treatments and close observation with no interventions

    . It is important to evaluate the degree of injury for trauma-induced indirect damages to the retina and optic nerve, therefore, it is necessary to adopt an appropriate examination method.

    3.3.3學(xué)生對專業(yè)學(xué)習(xí)興趣的提升由課后的問卷調(diào)查結(jié)果發(fā)現(xiàn),PBL教學(xué)改革提高了學(xué)生對專業(yè)課的學(xué)習(xí)興趣.在水文學(xué)教學(xué)改革開始前,S1班學(xué)生對地理學(xué)專業(yè)有了深入的認識,很多學(xué)生不再認為學(xué)習(xí)這種理論沒有用,而是覺得地理學(xué)能夠解決現(xiàn)實的問題,開始轉(zhuǎn)變對專業(yè)的排斥心理,超過70%的學(xué)生決定報考地理專業(yè)研究生.

    Axon degeneration has been demonstrated in rodent models as reported by several studies

    . Thinning of RNFL at the ONH region has shown to be strongly correlated with impaired visual function and visual field loss in patients with compressive lesions, and suggest that damaging to the anterior pathways may occur before visual field loss

    . A report showed that a significant thinning of macular GCC (the combination of RGC and IPL) was observed in the outer nasal, superior and inferior field in early traumatic optic neuropathy, which implied that RGC loss may participate in the development of traumatic optic neuropathy

    . Hence, visual dysfunction might delay in up to 10% of patients, which is attributed to a deferred clinical diagnosis

    . Concordantly, we found significant thinning of macular GCC in all assessed sectors, and all patients presented with decreased VA and impaired visual functions assessed by VEP, suggesting that changes in retinal thickness had already occurred before their first visit to clinic. Yet, an interesting finding from our OCTA result demonstrated a slight increase in RNFL thickness within 7d after injury and followed by significant decrease from 7 to 30d, with observation in fundoscopy examination, together suggested that acute edema at the ONH may have occurred immediately after injury and subsiding of RNFL swelling took place in the next few weeks.The OCTA also provides measurement of vessel density,which is evidential to the alteration of blood supply following traumatic impact to the optic nerve. To date, the discussion on vascular changes in optic neuropathies with OCTA has been scarce. Chan

    showed that significant decrease in blood suppl and oxygenation to the retina was associated with choroidal thinning in chronic ITON patients. Although a different OCTA platform was used, our OCTA findings showed apparent attenuation in microvasculature densities at the RPC region of the ONH cube scan, as well as the perifovea sectors at the macular, suggesting possible impaired perfusion to the retina.

    SUBJECTS AND METHODS

    This is a retrospective observational study. Ethical approval and patient consent were obtained before surgery and the procedures adhered to the tenets of the 1964 Declaration of Helsinki. For patients of age below 18,consent was obtained from their parents or legal guardians.Protocols were approved by the Institutional Ethics Committee(2019KYPJ155, Medical Ethics Committee, Zhongshan Ophthalmic Center, Guangzhou, Guangdong Province, China).

    1941年4月4日,熊式輝向蔣介石進言:“領(lǐng)袖只宜以思想領(lǐng)導(dǎo)干部,功名利祿,只能奔走一般中下之士,凡為革命奮斗冒險犯難而不辭者,皆思想上信仰力之驅(qū)使,故把握正確的思想路線是第一要務(wù)?!?實則亦是針對蔣以功名利祿籠絡(luò)干部的做法提出的改進意見。

    All statistical calculation and analysis were performed with IBM SPSS Statistics 24 software (IBM Corp., Armonk, NY, USA) and GraphPad Prism 8 (GraphPad Software, San Diego CA, USA). Alteration in retinal thickness and vasculature density were calculated as percentage of measurements in ITON eyes as compared to the contralateral unaffected eye. For continuous variables, data were presented as mean±standard deviation (SD) unless otherwise stated;parametric (

    -tests or ANOVA) or non-parametric tests (Mann-Whitney

    or Kruskal Wallis) for comparisons between groups(pairwise where appropriate); Pearson’s correlation analysis was performed to reveal time-dependent changes in parameters where appropriate. Statistical significance was calculated for two-tail significance and was defined with

    -value of less than 0.05.

    2006年首屆香山論壇舉辦時,僅有來自14個國家的24名外國代表與會。而在第八屆論壇上,來自74個國家和國際組織的400余名代表不遠萬里齊聚北京,共商打造新型安全伙伴關(guān)系之道。北京香山論壇之所以能在短短十幾年內(nèi)異軍突起,是因為秉持平等、開放、包容、互鑒精神,求同存異、聚同化異,倡“和”而不倡“斗”,推動構(gòu)建人類命運共同體。

    All patients had comprehensive systemic and ophthalmic examination. ITON was diagnosed according to patients’traumatic history and ophthalmic examination, including symptoms: 1) a close head injury with no direct force trauma made to the optic nerve; 2) decrease of VA; 3) positive of RAPD; 4) abnormal VEP with normal fundus examination.

    All subjects were examined under one OCTA system (AngioVue; Optovue Inc., Fremont, CA, USA), which scanned at speed of 70 000 A-scans per second, and wavelength of 840 nm. For each eye of all patients, 4.5×4.5 mm

    cube angio scan was centered at the optic nerve head (ONH), and 3.0×3.0 mm

    cube angio scan was centered at the fovea for macular region.

    “由于健康需求的迫切性和多樣化,我國特殊食品市場潛力巨大?!敝袊鵂I養(yǎng)保健食品協(xié)會秘書長劉學(xué)聰說,隨著中國居民生活水平和健康意識增強,人們的觀念正在從吃得飽、滿足基本生理需要,向均衡營養(yǎng)攝入、利于身體健康的方向轉(zhuǎn)變;從有病治病向無病預(yù)防、提高健康質(zhì)量轉(zhuǎn)變,這些都將促進特殊食品產(chǎn)業(yè)迅猛發(fā)展。

    Vessel density was defined as the proportion (in percentage)of perfused vascular area in the whole selected region in en face views. OCTA output data from the 4.5×4.5 mm

    ONH scan included readings for vessel densities of whole ONH image (onh-wiVD), inside-disc and peripapillary sectors.The 3.0×3.0 mm

    macular scan included readings for vessel densities of whole macular image (m-wiVD), fovea, parafovea and peri-fovea sectors. OCTA also provided automated measurements of retinal thickness parameters, which included retinal nerve fiber layer (RNFL) at the ONH and a complexed layer (GCC) at the macular B-scans. The latter is the combination of RNFL, RGC, and inner plexiform layers (IPL).Representative images of OCTA performed on both eyes of the same patient was shown in Figure 1. At very early stage of the disease (day 4 from injury), retina thickness and vessel density did not change greatly in the ITON eye as compared to the unaffected fellow eye. After approximately 3mo from injury,retina thickness and vessel density decreased significantly in the ITON eye, suggesting progression of RGC over time.

    A total of 73 patients who were diagnosed of monocular ITON in Zhongshan Ophthalmic Center (ZOC)from August 2016 to May 2020 were recruited in this study.The inclusion criteria were as follows: 1) diagnosed of ITON;2) no history of other ophthalmic conditions or ocular surgeries apart from optic canal decompression. Patient details on age, gender,cause of injuries and time of visit after injury were recorded.

    RESULTS

    1.1.3 試驗用蝦 2018年4月從距武漢農(nóng)業(yè)氣象試驗基地30 min車程的蝦苗養(yǎng)殖基地購入平均質(zhì)量3~5 g的蝦苗,每個網(wǎng)箱蝦苗投放數(shù)量均為20尾。

    Thickness of RNFL and GCC were compared between ITON eyes and the unaffected fellow eyes(Table 2). Pair-wised statistical analysis revealed that RNFL was significantly thinner in ITON eyes for most of ONH sectors (all

    <0.05) except for temporal quadrant. Meanwhile,for the macular region and quadrants, thinning of GCC was significant in ITON eyes for all sectors (all

    <0.05) except the fovea.

    Time-dependent correlation analysis on retinal thinning was performed with the inter-eye difference of retinal thickness between ITON and unaffected eyes. Data were acquired at different post-injury timepoints, at which the patients were examined with OCTA: within 7d, 8 to 30d, 31 to 90d, and 91 to 365d. Correlation analysis findings revealed that the change in retinal thickness, of both radial papillary capillary (RPC)and macular, were inversely time-dependent,

    thinning of retina at the RPC and macular had been worsening with time after injury (all

    <0.05; Table 3). It was noteworthy that the thinning of retina was most significant during 31 to 90d and became stabilized after 3mo from injury.

    ITON is the commonest type of optic nerve injury related to orbital trauma. It often causes severe vision loss in patients who suffers from craniofacial trauma, which remotely induces indirect injuries to the optic nerve. With the advancement of neuroimaging in clinical practice, detailed ophthalmic examination are routinely necessitated by the requirement of indication for treatment. In the current study, we are the first to in-depth assess changes of retinal vasculature in ITON patients using the OCTA.

    隨著社會經(jīng)濟的不斷發(fā)展,人們對于能源的需求也呈現(xiàn)出不斷上升的趨勢,在我國電力市場供應(yīng)中發(fā)電廠具有非常重要的位置。在發(fā)電廠的運行以及發(fā)展過程中,還需要提高發(fā)電廠的發(fā)電效率以及能源利用率,才能夠更好地降低能源損耗,而通過小真空泵技改能夠更好地促進發(fā)電廠能源效率的提升。

    Again, time-dependent correlation analysis on vessel density attenuation was performed with the inter-eye difference of vessel densities between ITON and unaffected eyes. The findings revealed that the change in vessel densities, of both RPC and macular, were inversely time-dependent,

    vessel density attenuation had been worsening with time after injury(all

    <0.05; Table 5). Similar to that of retina thickness, the decrease of vessel density was most significant during 31 to 90d and became stabilized after 3mo from injury.

    A total of 73 patients diagnosed with monocular ITON were recruited in this study. Patient and clinical information were listed in Table 1.

    Recruited patients were categorized according to their preoperative vision: no light perception (NLP), light precepted (LP), hand movement (HM),finger count (FC), VA between 0.01 and 0.08, and VA between 0.1 and 0.3. For each group, time-dependent correlation analysis was performed for retinal layer thinning and vascular alteration. For NLP patients, retina thinning, and vessel density changes were time-dependent for all measured parameters and sectors. For non-NLP patients (

    LP, HM, FC, 0.01-0.08, and 0.1-0.3), preserved vision was not associated with time-dependent alteration in retina thickness and vascular attenuation (Table 6).

    本文采用相關(guān)性分析對研究假設(shè)H1、假設(shè)H1a~假設(shè)H1d、假設(shè)H3a~假設(shè)H3c進行檢驗,采用線性回歸模型擬合方法對研究假設(shè)H2進行檢驗。為滿足假設(shè)檢驗需求設(shè)置如下變量:全國兩化融合發(fā)展水平DLIII、企業(yè)兩化融合發(fā)展水平EDLIII、重點行業(yè)兩化融合發(fā)展水平SDLIII、第二產(chǎn)業(yè)兩化融合發(fā)展水平SIDLIII、上市公司市場總價值EMV、產(chǎn)業(yè)全要素生產(chǎn)率TFPI,第二產(chǎn)業(yè)的投入產(chǎn)出比IOR、人均增加值A(chǔ)VPC和全要素生產(chǎn)率TFPSI。

    Changes in vessel density and retinal layer thickness were analyzed for correlation with clinical parameters such as patient age, gender, and cause of injuries. For all these parameters, alterations in retinal vasculature parameters were not statistical significantly correlated.

    DISCUSSION

    Vasculature perfusion in retina was presented as percentage of vessel densities per en face views.Vessel densities of the RPC and the macular for ITON eyes and the unaffected fellow eyes were listed in Table 4. Pairwised statistical analysis revealed that RPC vessel density was significantly lower in ITON eyes for all RPC regions and quadrants (all

    <0.05). Meanwhile, for macular regions and quadrants, vessel density was significantly lower in ITON eyes for whole image, perifovea, superior, inferior and nasal quadrants (all

    <0.05).

    Optical coherence tomography (OCT) was one of the biggest advances in ophthalmic imaging. Based on this technology,optical coherence tomography angiography (OCTA) was established in mid-2000’s, offers non-invasive, depth-resolved images to access retinal and choroidal vasculature and layering details

    . It has been proven to show many important clinical findings in neovascularization, impaired perfusion, macular telangiectasia, and capillary remodeling

    . Also, OCTA is currently applied for diagnosing and evaluating a wide variety of ophthalmic conditions, including age-related macular degeneration

    , glaucoma

    and diabetic retinopathy

    ,and some optic neuropathies

    . The underlying etiology in ITON remains unclear and may be multifactorial, and vascular insufficiency might be a vital causal factor as in other optic neuropathies

    . The emergence of OCTA provides the feasibility to explore the pathology and microvascular perfusion with the development of traumatic optic neuropathy.In this study, we have collected OCTA data from serial followup from ITON patients and performed in-depth analysis in order to clarify the time-course retinal vessel layer changes in ITON patients.

    It has been suggested by several studies that the retrograde degeneration of post-traumatic retinal vasculature is a time-dependent progress, and takes at least six weeks to complete

    . In concordance, we found that decrease in retinal layer thickness and vasculature were most significant within the first three months after injury. For OCTA examinations taken in follow-up timepoints after three months, alterations in retinal layer thickness and vasculature reached plateau with less progressive worsening.

    In our study, when comparing preoperative macula retinal thickness and vessel densities between ITON and the good fellow eyes, GCC thinning was significant in all segments except the fovea, and vessel attenuation was significant in all segments except the fovea and temporal. Traumatic ischemia-induced optic nerve swelling and compression from optic canal are causes of insufficient blood supply in RGC,and degeneration of RGC axons starts from chiasma RNFL at the ONH in the earlier stage of the disease and extendsperipherally towards the macula at the temporal over time.Gradual axonal loss and progressive macula GCC thinning in ITON has been reported in some case studies

    , and in our cohort, we anticipated that further RGC axon degeneration progressed and reached the macula. Therefore, although we may not have observed significant GCC thinning or macular vessel attenuation at the fovea in early-stage data, analysis of long-term data demonstrates time-dependent significance in decrease of macular GCC thickness and vasculature density at the fovea.

    Moreover, we investigated the association between the alteration in retinal thickness and vasculature and preserved vision acuity in ITON patients. Some patients had better preserved eyesight at their visit while some had poor vision such as NLP.However, we found that the prognostic association between time-dependent retinal vasculature alteration and the patients’post-injury eyesight was weak. For patients who had mild vision impairment (VA between 0.1 and 0.3), they usually had delayed hospital visit,

    at least 30d after injury, and OCTA findings suggested that they had worse retinal thickness and vessel density. This observation added evidence to that postinjury retinal degeneration was time-dependent, however the immediate effect of injury or the onset of the disease was not often reflected on the patients’ vision loss.

    The major limitation in this observational study was the inconsistency of follow-up timeframe among patients, which was due to several reasons: 1) varied lag-time between injury and initial hospital visit due to different severity of injuries;2) loss of follow-up after few months following optic canal decompression surgeries, whether they benefited vision recovery, especially for non-local patients who lived in rural regions. Due to the limited time of following-up after surgery(mean 83.32d), it is unclear whether surgical intervention is helpful for chronic recovery of microvasculature perfusion over a long-term period, it would be interesting to include patients for longer observation.

    In conclusion, OCTA is a useful ophthalmic examination tool for routine diagnostic and treatment indication, where it provides depth resolved images for evaluating retinal vascular changes in ITON eyes by assessing thickness of the RNFL and macular GCC. In present study, OCTA revealed that time-dependent retina thinning and vascular attenuation are physiological features of ITON due to insufficient retinal blood supply.

    ACKNOWLEDGEMENTS

    Supported by the High-level Hospital Construction Project (No.303010406); Natural Science Foundation of Guangdong Province, China (No.2019A1515010361).

    我說的是心里話,在這輛老掉牙的古典列車上,看到穿著維多利亞時代服裝的老婦人蹣跚走動,本身就有種夢幻般的感覺。

    None;

    None;

    None;

    None;

    None;

    None;

    None;

    None;

    None.

    1 Singman EL, Daphalapurkar N, White H, Nguyen TD, Panghat L,Chang J, McCulley T. Indirect traumatic optic neuropathy.

    2016;3:2.

    2 Lee V, Ford RL, Xing W, Bunce C, Foot B. Surveillance of traumatic optic neuropathy in the UK.

    2010;24(2):240-250.

    3 Anderson RL, Panje WR, Gross CE. Optic nerve blindness following blunt forehead trauma.

    1982;89(5):445-455.

    4 Warner N, Eggenberger E. Traumatic optic neuropathy: a review of the current literature.

    2010;21(6):459-462.

    5 Sarkies N. Traumatic optic neuropathy.

    2004;18(11):1122-1125.

    6 Gross CE, DeKock JR, Panje WR, Hershkowitz N, Newman J. Evidence for orbital deformation that may contribute to monocular blindness following minor frontal head trauma.

    1981;55(6):963-966.

    7 Lee AG. Traumatic optic neuropathy.

    2000;107(5):814.

    8 Tong J, Kedar S, Ghate D, Gu L. Indirect traumatic optic neuropathy induced by primary blast: a fluid-structure interaction study.

    2019. Epub ahead of print.

    9 Steinsapir KD, Goldberg RA. Traumatic optic neuropathy: an evolving understanding.

    2011;151(6):928-933.e2.

    10 Wu N, Yin ZQ, Wang Y. Traumatic optic neuropathy therapy: an update of clinical and experimental studies.

    2008;36(5):883-889.

    11 Crompton MR. Visual lesions in closed head injury.

    1970;93(4):785-792.

    12 Jang SY. Traumatic optic neuropathy.

    2018;14(1):1-5.

    13 Yu-Wai-Man P. Traumatic optic neuropathy-clinical features and management issues.

    2015;5(1):3-8.

    14 Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G.Optical coherence tomography angiography.

    2018;64:1-55.

    15 Spaide RF, Klancnik JM Jr, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography.

    2015;133(1):45-50.

    16 Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, Kraus MF, Subhash H, Fujimoto JG, Hornegger J, Huang D. Split-spectrum amplitudedecorrelation angiography with optical coherence tomography.

    2012;20(4):4710-4725.

    17 Kashani AH, Chen CL, Gahm JK, Zheng F, Richter GM, Rosenfeld PJ, Shi Y, Wang RK. Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications.

    2017;60:66-100.

    18 Choi W, Moult EM, Waheed NK, Adhi M, Lee B, Lu CD, de Carlo TE, Jayaraman V, Rosenfeld PJ, Duker JS, Fujimoto JG. Ultrahighspeed, swept-source optical coherence tomography angiography in nonexudative age-related macular degeneration with geographic atrophy.

    2015;122(12):2532-2544.

    19 Coscas GJ, Lupidi M, Coscas F, Cagini C, Souied EH. Optical coherence tomography angiography versus traditional multimodal imaging in assessing the activity of exudative age-related macular degeneration.

    2015;35(11):2219-2228.

    20 Akagi T, Iida Y, Nakanishi H, Terada N, Morooka S, Yamada H,Hasegawa T, Yokota S, Yoshikawa M, Yoshimura N. Microvascular density in glaucomatous eyes with hemifield visual field defects: an optical coherence tomography angiography study.

    2016;168:237-249.

    21 Chen CL, Zhang A, Bojikian KD, Wen JC, Zhang Q, Xin C,Mudumbai RC, Johnstone MA, Chen PP, Wang RK. Peripapillary retinal nerve fiber layer vascular microcirculation in glaucoma using optical coherence tomography-based microangiography.

    2016;57(9):OCT475-OCT485.

    22 Al-Sheikh M, Akil H, Pfau M, Sadda SR. Swept-source OCT angiography imaging of the foveal avascular zone and macular capillary network density in diabetic retinopathy.

    2016;57(8):3907-3913.

    23 Couturier A, Mané V, Bonnin S, Erginay A, Massin P, Gaudric A,Tadayoni R. Capillary plexus anomalies in diabetic retinopathy on optical coherence tomography angiography.

    2015;35(11):2384-2391.

    24 Zhang T, Xiao W, Ye H, Chen R, Mao Y, Yang H. Peripapillary and macular vessel density in dysthyroid optic neuropathy: an optical coherence tomography angiography study.

    2019;60(6):1863-1869.

    25 Augstburger E, Zéboulon P, Keilani C, Baudouin C, Labbé A. Retinal and choroidal microvasculature in nonarteritic anterior ischemic optic neuropathy: an optical coherence tomography angiography study.

    2018;59(2):870-877.

    26 Munemasa Y, Kitaoka Y. Autophagy in axonal degeneration in glaucomatous optic neuropathy.

    2015;47:1-18.

    27 Bernardo-Colón A, Vest V, Cooper ML, Naguib SA, Calkins DJ, Rex TS. Progression and pathology of traumatic optic neuropathy from repeated primary blast exposure.

    2019;13:719.

    28 Micieli JA, Newman NJ, Biousse V. The role of optical coherence tomography in the evaluation of compressive optic neuropathies.

    2019;32(1):115-123.

    29 Danesh-Meyer HV, Carroll SC, Foroozan R, Savino PJ, Fan J, Jiang Y, Vander Hoorn S. Relationship between retinal nerve fiber layer and visual field sensitivity as measured by optical coherence tomography in chiasmal compression.

    2006;47(11):4827-4835.

    30 Lee JY, Cho K, Park KA, Oh SY. Analysis of retinal layer thicknesses and their clinical correlation in patients with traumatic optic neuropathy.

    2016;11(6):e0157388.

    31 Chan JW, Hills NK, Bakall B, Fernandez B. Indirect traumatic optic neuropathy in mild chronic traumatic brain injury.

    2019;60(6):2005-2011.

    32 Li J, Shi W, Li M, Wang Z, He H, Xian J, Lv B, Yan F. Timedependent diffusion tensor changes of optic nerve in patients with indirect traumatic optic neuropathy.

    2014;55(7):855-863.

    33 Medeiros FA, Moura FC, Vessani RM, Susanna R Jr. Axonal loss after traumatic optic neuropathy documented by optical coherence tomography.

    2003;135(3):406-408.

    34 Vessani RM, Cunha LP, Monteiro ML. Progressive macular thinning after indirect traumatic optic neuropathy documented by optical coherence tomography.

    2007;91(5):697-698.

    猜你喜歡
    功名利祿蝦苗發(fā)電廠
    國學(xué)周周悟
    文萃報·周五版(2022年30期)2022-07-06 06:39:02
    2022蝦苗采購指南全新出爐!近50家優(yōu)秀苗企等您來挑選
    破壞發(fā)電廠
    不降價,不促銷,業(yè)務(wù)員僅3人,他們一年卻能賣出蝦苗50多個億
    2021蝦苗采購指南出爐了!近50家優(yōu)秀苗企等您來挑選
    發(fā)電廠的類型(二)
    從“土炮”起家到年銷60億一代苗,他如何念出獨特的“蝦苗經(jīng)”?
    冬·發(fā)心
    知足賦
    晚晴(2015年7期)2015-05-30 10:48:04
    午夜久久久在线观看| 看十八女毛片水多多多| 久久精品久久久久久久性| 久久人人爽av亚洲精品天堂| 一级毛片 在线播放| 日韩一卡2卡3卡4卡2021年| 又大又黄又爽视频免费| 十八禁高潮呻吟视频| 午夜两性在线视频| 丰满饥渴人妻一区二区三| 国产精品一区二区在线不卡| 满18在线观看网站| 精品亚洲成a人片在线观看| 亚洲欧美精品综合一区二区三区| 国产精品三级大全| 欧美人与性动交α欧美精品济南到| 日韩大码丰满熟妇| 女人久久www免费人成看片| 久久久久久久国产电影| 手机成人av网站| 国产精品 欧美亚洲| 亚洲人成电影免费在线| 成年av动漫网址| 亚洲成人国产一区在线观看 | 精品人妻1区二区| 国产精品久久久av美女十八| 纯流量卡能插随身wifi吗| 少妇人妻久久综合中文| 亚洲一码二码三码区别大吗| 国产免费又黄又爽又色| 丝袜脚勾引网站| 丁香六月欧美| 久久久久久亚洲精品国产蜜桃av| 成年人黄色毛片网站| 交换朋友夫妻互换小说| 丝瓜视频免费看黄片| 成年人午夜在线观看视频| 亚洲国产精品一区三区| 女人精品久久久久毛片| 日韩人妻精品一区2区三区| 欧美老熟妇乱子伦牲交| 精品国产超薄肉色丝袜足j| 国产精品熟女久久久久浪| 91老司机精品| 大片电影免费在线观看免费| 久久这里只有精品19| 久久99一区二区三区| 国产欧美亚洲国产| 亚洲国产精品999| 国产午夜精品一二区理论片| 三上悠亚av全集在线观看| 亚洲国产最新在线播放| 伦理电影免费视频| 国产成人免费观看mmmm| 在线观看免费日韩欧美大片| 亚洲av电影在线进入| 成人午夜精彩视频在线观看| 亚洲av成人不卡在线观看播放网 | 国产亚洲午夜精品一区二区久久| 久久久精品国产亚洲av高清涩受| 国产女主播在线喷水免费视频网站| 18禁国产床啪视频网站| 免费少妇av软件| 久久人人97超碰香蕉20202| 黄网站色视频无遮挡免费观看| 久久青草综合色| 久久免费观看电影| 久久久国产精品麻豆| 18禁国产床啪视频网站| 在线观看人妻少妇| netflix在线观看网站| 色综合欧美亚洲国产小说| 欧美日韩亚洲综合一区二区三区_| 男女午夜视频在线观看| 午夜激情av网站| 国产精品欧美亚洲77777| 免费看十八禁软件| avwww免费| 亚洲欧美一区二区三区国产| 国产成人91sexporn| 色94色欧美一区二区| 一二三四社区在线视频社区8| 久久精品熟女亚洲av麻豆精品| av线在线观看网站| 亚洲精品自拍成人| 午夜福利乱码中文字幕| 少妇粗大呻吟视频| 欧美成人精品欧美一级黄| 欧美日韩精品网址| 黄色a级毛片大全视频| 这个男人来自地球电影免费观看| 看十八女毛片水多多多| a级片在线免费高清观看视频| 成年动漫av网址| 悠悠久久av| 一区二区三区乱码不卡18| 国产免费视频播放在线视频| 亚洲情色 制服丝袜| 男的添女的下面高潮视频| tube8黄色片| 亚洲成人免费电影在线观看 | 三上悠亚av全集在线观看| 日韩一区二区三区影片| 99国产精品一区二区三区| 丰满迷人的少妇在线观看| 国产一区亚洲一区在线观看| 精品一区二区三区四区五区乱码 | 久久99精品国语久久久| 大香蕉久久网| 久热这里只有精品99| 精品人妻一区二区三区麻豆| 欧美亚洲日本最大视频资源| 国产片特级美女逼逼视频| 人人妻人人添人人爽欧美一区卜| 一级毛片电影观看| 777米奇影视久久| 美女扒开内裤让男人捅视频| 国产成人91sexporn| 男女边摸边吃奶| 欧美精品一区二区大全| 国产福利在线免费观看视频| 1024香蕉在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 一级a爱视频在线免费观看| 大码成人一级视频| 中国美女看黄片| 在线观看免费视频网站a站| 亚洲图色成人| 99久久人妻综合| 蜜桃国产av成人99| 免费日韩欧美在线观看| 久久久久久久久免费视频了| 国产福利在线免费观看视频| 精品亚洲乱码少妇综合久久| 精品国产超薄肉色丝袜足j| 亚洲欧美一区二区三区国产| 又紧又爽又黄一区二区| 欧美少妇被猛烈插入视频| 最新在线观看一区二区三区 | 91精品三级在线观看| 侵犯人妻中文字幕一二三四区| 国产男女内射视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人91sexporn| 一区二区av电影网| 日本色播在线视频| 日本一区二区免费在线视频| 欧美日韩一级在线毛片| 日本午夜av视频| 国产精品亚洲av一区麻豆| 久久久久久亚洲精品国产蜜桃av| 极品人妻少妇av视频| 91麻豆av在线| 亚洲欧洲日产国产| 欧美久久黑人一区二区| 色播在线永久视频| 又黄又粗又硬又大视频| 老司机在亚洲福利影院| 性色av一级| 日本91视频免费播放| 午夜福利视频在线观看免费| 国产日韩欧美在线精品| 人妻 亚洲 视频| 亚洲 国产 在线| 日韩 欧美 亚洲 中文字幕| 亚洲国产中文字幕在线视频| 大型av网站在线播放| 满18在线观看网站| 一级片免费观看大全| 国产淫语在线视频| 亚洲精品国产av蜜桃| 亚洲精品在线美女| 亚洲精品国产区一区二| 午夜福利乱码中文字幕| 丰满迷人的少妇在线观看| 在线观看国产h片| 久久久精品94久久精品| 一本色道久久久久久精品综合| 久久久久久亚洲精品国产蜜桃av| 熟女少妇亚洲综合色aaa.| 狂野欧美激情性xxxx| 国产麻豆69| 亚洲人成电影观看| 免费看十八禁软件| 操美女的视频在线观看| 亚洲成国产人片在线观看| 成年女人毛片免费观看观看9 | 丝袜在线中文字幕| av天堂在线播放| 欧美在线黄色| 黄片小视频在线播放| 国产伦理片在线播放av一区| 大香蕉久久网| 精品国产乱码久久久久久男人| 国产成人精品久久二区二区91| 久久免费观看电影| 69精品国产乱码久久久| 色婷婷av一区二区三区视频| 91麻豆av在线| 一级毛片女人18水好多 | 欧美黑人精品巨大| 国产真人三级小视频在线观看| 捣出白浆h1v1| 男女免费视频国产| 一级片免费观看大全| 母亲3免费完整高清在线观看| 欧美精品一区二区免费开放| 大香蕉久久成人网| 国产成人av教育| 亚洲国产欧美在线一区| 欧美精品av麻豆av| 91精品国产国语对白视频| 欧美精品啪啪一区二区三区 | 一级,二级,三级黄色视频| 日本av免费视频播放| 亚洲伊人久久精品综合| 精品欧美一区二区三区在线| 久久人人爽av亚洲精品天堂| 精品少妇内射三级| 亚洲欧美一区二区三区国产| 水蜜桃什么品种好| 老司机靠b影院| 国产在线一区二区三区精| 美女午夜性视频免费| www.999成人在线观看| 黄频高清免费视频| 青草久久国产| 老司机午夜十八禁免费视频| 亚洲综合色网址| 日日夜夜操网爽| 亚洲精品日本国产第一区| 亚洲欧美激情在线| 国产亚洲精品第一综合不卡| 18禁国产床啪视频网站| 叶爱在线成人免费视频播放| 亚洲国产欧美一区二区综合| 亚洲av成人精品一二三区| 两人在一起打扑克的视频| 亚洲欧洲日产国产| 国产1区2区3区精品| 午夜激情av网站| 黄色 视频免费看| 无遮挡黄片免费观看| 国产又色又爽无遮挡免| 国产高清不卡午夜福利| 久久久久久久久久久久大奶| 青草久久国产| 国产一区二区在线观看av| 亚洲av电影在线观看一区二区三区| 99久久综合免费| 国产精品99久久99久久久不卡| 久久久久久久国产电影| 久久久国产欧美日韩av| 少妇被粗大的猛进出69影院| 少妇被粗大的猛进出69影院| 久久鲁丝午夜福利片| 亚洲欧美精品自产自拍| 青草久久国产| 99久久精品国产亚洲精品| 亚洲精品国产色婷婷电影| 王馨瑶露胸无遮挡在线观看| 久久久国产欧美日韩av| 精品人妻熟女毛片av久久网站| 久久精品久久久久久噜噜老黄| 天天躁日日躁夜夜躁夜夜| 国产主播在线观看一区二区 | 欧美日韩一级在线毛片| 亚洲色图综合在线观看| 十八禁高潮呻吟视频| 亚洲人成77777在线视频| 1024视频免费在线观看| 久久热在线av| 激情视频va一区二区三区| 国产精品香港三级国产av潘金莲 | 我的亚洲天堂| 在线 av 中文字幕| 国产xxxxx性猛交| 久久精品国产亚洲av高清一级| 在线天堂中文资源库| 色网站视频免费| 天天躁夜夜躁狠狠久久av| 美女主播在线视频| av网站在线播放免费| 亚洲欧美日韩高清在线视频 | 亚洲国产毛片av蜜桃av| 赤兔流量卡办理| 色94色欧美一区二区| 亚洲精品日韩在线中文字幕| 色婷婷av一区二区三区视频| 国产成人啪精品午夜网站| 少妇猛男粗大的猛烈进出视频| 国产爽快片一区二区三区| 人妻 亚洲 视频| 看十八女毛片水多多多| 亚洲精品久久久久久婷婷小说| 亚洲免费av在线视频| 久久99热这里只频精品6学生| a 毛片基地| 国产在线观看jvid| 黄色一级大片看看| 大型av网站在线播放| 免费在线观看黄色视频的| 国产精品欧美亚洲77777| 午夜福利视频精品| 一边摸一边做爽爽视频免费| 精品人妻1区二区| 亚洲成人国产一区在线观看 | 丁香六月欧美| 热re99久久精品国产66热6| 涩涩av久久男人的天堂| 精品人妻在线不人妻| 中文字幕另类日韩欧美亚洲嫩草| 日本av免费视频播放| 国产精品三级大全| 国产精品一区二区免费欧美 | 老司机影院成人| 久久精品国产a三级三级三级| 久久精品国产亚洲av涩爱| 久久久久久久久久久久大奶| 视频区图区小说| 看免费av毛片| 水蜜桃什么品种好| 国产深夜福利视频在线观看| 欧美激情 高清一区二区三区| 久久精品国产亚洲av高清一级| 日韩制服骚丝袜av| 亚洲欧美日韩高清在线视频 | 国产精品九九99| 亚洲精品日韩在线中文字幕| 亚洲成国产人片在线观看| 国产av国产精品国产| 国产精品久久久久久精品古装| 两个人免费观看高清视频| 欧美日韩亚洲综合一区二区三区_| bbb黄色大片| 少妇的丰满在线观看| 国产免费福利视频在线观看| 亚洲欧美日韩另类电影网站| 一区二区三区激情视频| 精品人妻1区二区| 亚洲成色77777| 日韩伦理黄色片| 人人澡人人妻人| 99久久综合免费| 晚上一个人看的免费电影| 午夜福利一区二区在线看| 天天添夜夜摸| 亚洲人成电影免费在线| 爱豆传媒免费全集在线观看| 久久 成人 亚洲| 精品国产超薄肉色丝袜足j| 成年动漫av网址| 香蕉丝袜av| 日本vs欧美在线观看视频| 国产高清国产精品国产三级| 欧美精品亚洲一区二区| 97精品久久久久久久久久精品| 国产91精品成人一区二区三区 | 精品国产一区二区久久| 高潮久久久久久久久久久不卡| 男人舔女人的私密视频| 中文字幕另类日韩欧美亚洲嫩草| 中国国产av一级| 午夜免费成人在线视频| 叶爱在线成人免费视频播放| 国产视频首页在线观看| 欧美日韩黄片免| 亚洲av在线观看美女高潮| 国产熟女欧美一区二区| 99精品久久久久人妻精品| 激情五月婷婷亚洲| 成人18禁高潮啪啪吃奶动态图| 老司机亚洲免费影院| 精品人妻一区二区三区麻豆| 日韩,欧美,国产一区二区三区| 亚洲五月婷婷丁香| 人人澡人人妻人| 热re99久久精品国产66热6| 亚洲国产日韩一区二区| 久久国产精品大桥未久av| 午夜av观看不卡| 国产成人av激情在线播放| 国产精品一二三区在线看| kizo精华| 免费高清在线观看视频在线观看| 夫妻午夜视频| 少妇 在线观看| 国产亚洲av片在线观看秒播厂| 色网站视频免费| bbb黄色大片| 精品卡一卡二卡四卡免费| 亚洲伊人色综图| 视频区欧美日本亚洲| 国产成人一区二区三区免费视频网站 | 国产不卡av网站在线观看| 欧美亚洲 丝袜 人妻 在线| 黄片播放在线免费| 另类精品久久| 亚洲成av片中文字幕在线观看| 丝袜人妻中文字幕| 中国国产av一级| 热re99久久精品国产66热6| 欧美老熟妇乱子伦牲交| 麻豆av在线久日| 日韩av免费高清视频| 曰老女人黄片| 久久毛片免费看一区二区三区| 亚洲人成电影观看| 校园人妻丝袜中文字幕| 亚洲国产成人一精品久久久| 19禁男女啪啪无遮挡网站| 久久久精品国产亚洲av高清涩受| 99九九在线精品视频| 国产精品麻豆人妻色哟哟久久| 亚洲一码二码三码区别大吗| 国产激情久久老熟女| 天堂俺去俺来也www色官网| av视频免费观看在线观看| 色精品久久人妻99蜜桃| 国产亚洲午夜精品一区二区久久| 成年人午夜在线观看视频| 国产精品国产av在线观看| 18在线观看网站| 我的亚洲天堂| 成年av动漫网址| 国产成人精品久久二区二区91| 黑人猛操日本美女一级片| 啦啦啦啦在线视频资源| 国产欧美亚洲国产| 99久久精品国产亚洲精品| 久久久久网色| 1024香蕉在线观看| 中文字幕人妻熟女乱码| 丝袜美足系列| 日韩 欧美 亚洲 中文字幕| 久久久久久久久久久久大奶| 9色porny在线观看| 亚洲国产成人一精品久久久| 久久中文字幕一级| 又粗又硬又长又爽又黄的视频| 97精品久久久久久久久久精品| 亚洲精品美女久久久久99蜜臀 | 亚洲精品在线美女| 久久鲁丝午夜福利片| 日本vs欧美在线观看视频| 欧美 亚洲 国产 日韩一| av欧美777| 波多野结衣一区麻豆| 老司机亚洲免费影院| 18禁国产床啪视频网站| av福利片在线| 咕卡用的链子| 国产又爽黄色视频| 亚洲av成人精品一二三区| 秋霞在线观看毛片| 电影成人av| 亚洲欧美一区二区三区久久| 精品国产一区二区三区久久久樱花| 丁香六月欧美| 亚洲,欧美,日韩| 国产日韩一区二区三区精品不卡| 久久亚洲精品不卡| 最新在线观看一区二区三区 | 乱人伦中国视频| 亚洲九九香蕉| 国产精品人妻久久久影院| 久久久久久免费高清国产稀缺| 国产精品一区二区在线观看99| 亚洲精品国产一区二区精华液| 在线亚洲精品国产二区图片欧美| 久久99一区二区三区| 99久久综合免费| 一区二区日韩欧美中文字幕| 日韩一卡2卡3卡4卡2021年| 一区二区三区激情视频| 亚洲一码二码三码区别大吗| 搡老乐熟女国产| 国产亚洲精品第一综合不卡| 欧美精品人与动牲交sv欧美| 欧美大码av| 国产亚洲av片在线观看秒播厂| 18在线观看网站| 亚洲成人手机| 男女午夜视频在线观看| 久久天躁狠狠躁夜夜2o2o | 午夜免费观看性视频| 亚洲免费av在线视频| 久久人人爽人人片av| 一级,二级,三级黄色视频| 久久国产亚洲av麻豆专区| 国产午夜精品一二区理论片| 极品人妻少妇av视频| 国产成人免费无遮挡视频| 好男人电影高清在线观看| 国产黄色免费在线视频| 又黄又粗又硬又大视频| 19禁男女啪啪无遮挡网站| 丰满迷人的少妇在线观看| 乱人伦中国视频| 亚洲色图 男人天堂 中文字幕| av不卡在线播放| 精品免费久久久久久久清纯 | 国产精品 欧美亚洲| 老汉色∧v一级毛片| 人人妻人人澡人人爽人人夜夜| 男女边吃奶边做爰视频| www.自偷自拍.com| 色精品久久人妻99蜜桃| 好男人视频免费观看在线| 亚洲五月婷婷丁香| 亚洲成国产人片在线观看| 999久久久国产精品视频| 亚洲人成电影观看| 精品福利观看| 叶爱在线成人免费视频播放| 亚洲 欧美一区二区三区| 午夜免费男女啪啪视频观看| 久久久久久亚洲精品国产蜜桃av| 国产无遮挡羞羞视频在线观看| 国产女主播在线喷水免费视频网站| 亚洲中文日韩欧美视频| 中文字幕人妻丝袜一区二区| 欧美国产精品一级二级三级| 无遮挡黄片免费观看| 亚洲国产看品久久| 久久久久精品人妻al黑| 国产精品一区二区在线不卡| 女人高潮潮喷娇喘18禁视频| 婷婷色综合大香蕉| 久久人人97超碰香蕉20202| 国产精品成人在线| 下体分泌物呈黄色| 黄频高清免费视频| 国产成人a∨麻豆精品| 久久av网站| 男女高潮啪啪啪动态图| 国产在线观看jvid| 午夜老司机福利片| 晚上一个人看的免费电影| 男人操女人黄网站| 侵犯人妻中文字幕一二三四区| 亚洲国产精品一区二区三区在线| 高清欧美精品videossex| 色网站视频免费| 欧美日韩国产mv在线观看视频| 色94色欧美一区二区| 9191精品国产免费久久| 女人久久www免费人成看片| 国产av国产精品国产| 亚洲成av片中文字幕在线观看| 久久久精品94久久精品| 在线观看人妻少妇| 国产一区二区在线观看av| 飞空精品影院首页| 亚洲一区二区三区欧美精品| 曰老女人黄片| 丝袜美腿诱惑在线| 色播在线永久视频| 国产欧美日韩精品亚洲av| 久久久久久久久免费视频了| 国产主播在线观看一区二区 | 国产成人a∨麻豆精品| 精品人妻熟女毛片av久久网站| 高潮久久久久久久久久久不卡| 国产91精品成人一区二区三区 | 宅男免费午夜| 中文字幕最新亚洲高清| 两个人免费观看高清视频| 免费久久久久久久精品成人欧美视频| 精品亚洲成a人片在线观看| 99精品久久久久人妻精品| 热re99久久精品国产66热6| 久久性视频一级片| 久久99热这里只频精品6学生| 99国产精品免费福利视频| 两个人看的免费小视频| 亚洲国产精品国产精品| 国产成人av教育| 自线自在国产av| 午夜老司机福利片| 国产深夜福利视频在线观看| 国产成人av教育| 成人国产一区最新在线观看 | 国产精品国产三级国产专区5o| 中文欧美无线码| 亚洲av综合色区一区| 婷婷色综合大香蕉| 欧美日韩黄片免| 在线观看免费日韩欧美大片| 国产黄色视频一区二区在线观看| 黑丝袜美女国产一区| 亚洲av片天天在线观看| 久久鲁丝午夜福利片| 啦啦啦视频在线资源免费观看| 精品少妇黑人巨大在线播放| 夫妻午夜视频| 美女中出高潮动态图| 高清av免费在线| av在线老鸭窝| 亚洲欧美成人综合另类久久久| 伊人久久大香线蕉亚洲五| 少妇人妻 视频| 亚洲少妇的诱惑av| 国产成人欧美在线观看 | 久久人人97超碰香蕉20202| 久久久精品国产亚洲av高清涩受| 韩国精品一区二区三区| 国产成人91sexporn| 无遮挡黄片免费观看| 自拍欧美九色日韩亚洲蝌蚪91| av欧美777| 亚洲av电影在线观看一区二区三区| 国产91精品成人一区二区三区 | 国产午夜精品一二区理论片| 国产精品欧美亚洲77777|