• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Chemical Modification of Cyclen to Raise the Phase Transition Temperature of Its Perrhenic Compounds

    2022-08-09 03:50:02HEWenHuiYEXingWANGZiYuWEIZhenHongRAOWenJunCAIHu
    無機化學學報 2022年8期

    HE Wen-Hui YE Xing WANG Zi-Yu WEI Zhen-Hong RAO Wen-Jun CAI Hu

    (School of Chemistry and Chemical Engineering,Nanchang University,Nanchang 330031,China)

    Abstract:A methyl-substituted 1,4,7,10-tetraazacyclododecane(N-methyl-1,4,7,10-tetraazacyclododecane,Me-cyclen)was isolated by chemical modification of 1,4,7,10-tetraazacyclododecane(cyclen)with iodomethane.Reactions of cyclen and Me-cyclen with two equivalents of HReO4led to phase transition molecules(cyclen)(ReO4)2(1)and(Me-cyclen)(ReO4)2(2),respectively.Differential scanning calorimetry and dielectric studies revealed that compounds 1 and 2 show reversible phase transition with temperatures at 324 K for 1 and 384 K for 2.The research results demonstrate a way that the high-temperature phase transition organic-inorganic hybrid materials can be obtained by reducing molecular symmetry through chemical modification of organic amines.CCDC:2097827,1;2097829,2.

    Keywords:cyclic organic amine;perrhenic acid;phase transition;dielectric;chemical modification

    0 Introduction

    Phase transition materials usually have high latent heat and can absorb or release a large amount of heat energy during the phase transition process.The phase transition materials have the advantages of small volume change,good energy-saving effect,and easily controlled,and can be widely used in new energy and energy storage fields[1-8].For phase transition materials,besides the traditional inorganic materials,organicinorganic hybrid materials have attracted more and more attention from researchers due to their significant structural variability and high tunability[9-12].

    From a view of the application prospect,the aboveroom-temperature phase transition materials are more important due to the high phase transition temperature providing a wide operational temperature range and high stability for the production as key components in a variety of areas[13-15].At present,effective methods for the improvement of phase transition temperature have been extensively researched[16-18].On the one hand,the introduction of the deuterium effect or fluorine effect can greatly improve the phase transition temperature[19-24].On the other hand,reducing molecular symmetry by chemical substitution of organic templates can also achieve the purposes[25-29].However,the chemical modification method often requires us to deeply understand the relationship between structure and property.

    In the past few decades,several popular molecules with high phase transition points and other reversible physical properties have been successfully obtained using chemical modification[30-35].For example,in 2020,Fu et al.designed two enantiomeric phase transition molecules,[R-2-Me-H2dabco][TFSA]2and[S-2-Me-H2dabco][TFSA]2(Dabco=1,4-diazabicyclo[2.2.2]octane),by introducing a methyl group on the Dabco molecule[36].The obtained two enantiomers showed phase transition temperatures at 405.8 and 415.8 K,higher than other hybrids based on Dabco itself.The key to success is that by introducing methyl into the spherical molecule Dabco can reduce the symmetry of the target molecule and finally lead to high-temperature phase transition materials.

    On this basis,we envisioned adding methyl groups into the cyclic molecule 1,4,7,10-tetraazacyclododecane(cyclen)because cyclen has a crown etherlike ring structure and the four nitrogen atoms on the same side could be protonated.As shown in Scheme 1,the reactions of cyclen with methyl iodide produced an unsymmetric molecule Me-cyclen.Further treatment of cyclen and Me-cyclen with two equivalents of HReO4gave the corresponding compounds(cyclen)(ReO4)2(1)and(Me-cyclen)(ReO4)2(2)with high yields.Differential scanning calorimetry(DSC)measurement showed the phase transition temperatures of compounds 1 and 2 were at 324 and 384 K,respectively.Herein we report the synthesis,characterization,and phase transition of compounds 1 and 2.

    Scheme 1 Molecular structures of cyclen and Me-cyclen

    1 Experimental

    1.1 Instruments and materials

    Me-cyclen was prepared according to the literature[37].Cyclen(98%)and perrhenic acid(75%in H2O)were purchased from the Aladdin company and used without further purification.FT-IR spectra were recorded using KBr pellets in a range of 4 000-400 cm-1on an ALPHA spectrometer.Powder X-ray diffraction(PXRD)analysis was performed using a D8 ADVANCE diffractometer(CuKαgraphite,λ=0.154 06 nm)operated at 40 kV and 15 mA with aKβfoil filter,collecting data in a 2θrange of 5°-52°with a step size of 0.02°.NETZSCH DSC 200 F3 instrument was used to perform DSC measurement at a heating/cooling rate of 10 K·min-1.The temperature-dependent dielectric constant of the crystal powder sample was measured on the Tonghui TH2828 analyzer at the frequency of 1 MHz.

    1.2 Synthesis

    1.2.1 Synthesis of compound 1

    To a solution of cyclen(0.17 g,1.0 mmol)in 5 mL distilled water,perrhenic acid(0.72 g,2.0 mmol,75%)in 5 mL distilled water was added,and the mixture was stirred at room temperature(298 K)to give a clear solution.The colorless block crystals of 1 were finally obtained by evaporating the solution at room temperature for two days.Yield:0.53 g(59%).Anal.Calcd.for C8H22N4O8Re2(%):C 14.24,H 3.26,N 8.31;Found(%):C 14.44,H 3.36,N 8.67.IR(KBr,cm-1):3 893(m),3 736(w),3 427(w),3 305(s),3 097(s),2 914(s),2 863(s),2 631(m),2 358(m),2 121(m),1 863(m),1 712(m),1 575(s),1 445(s),1 267(m),1 088(m),911(vs),755(s),521(m).

    1.2.2 Synthesis of compound 2

    Me-cyclen(0.37 g,2.0 mmol)in 10 mL distilled water and HReO4(1.68 g,4.0 mmol,75%)in 5 mL distilled water were mixed and the obtained solution was being stirred at room temperature(298 K)for 15 min.The white columnar crystals of 2 were isolated by slowly evaporating the solvent at room temperature for two days.Yield:0.85 g(62%).Anal.Calcd.for C9H24N4O8Re2(%):C 15.70,H 3.51,N 8.14;Found(%):C 15.85,H 3.41,N 8.48.IR(KBr,cm-1):3 317(m),3 067(m),2 837(m),2 177(w),1 872(w),1 561(w),1 445(m),1 390(m),1 261(m),1 193(w),1 126(m),1 016(m),963(w),902(vs),867(vs),826(s),759(s).

    1.3 X-ray crystallography

    The single-crystal diffraction data of 1 and 2 were collected by MoKαradiation(λ=0.071 073 nm)using a Rigaku Saturn 924 diffractometer at room temperature.Empirical absorption correction was applied when the data processing was performed using the Crystalclear software package.The structures were solved by direct methods and refined with a full-matrix leastsquares technique(Olex2)[38-40].All nonhydrogen atoms were refined anisotropically,and the positions of all hydrogen atoms were generated geometrically.Crystallographic data and structure refinements are listed in Table 1.

    Table 1 Crystallographic data for compounds 1 and 2

    CCDC:2097827,1;2097829,2.

    2 Results and discussion

    2.1 Synthesis and characterization

    Compounds 1 and 2 are prepared according to the strict stoichiometry of cyclic amine with perrhenic acid of 1∶2.Excess or less perrhenic acid is easy to give impure products.The crystals of 1 and 2 with high purity were obtained by evaporating solvent at room temperature(298 K)and then washed with petroleum ether.The purity of compounds 1 and 2 was verified by PXRD,microanalysis,and IR.As shown in Fig.S1(Supporting information),it can be seen that the experimentally measured PXRD data of 1 and 2 were completely consistent with the simulated data obtained by their single-crystal X-ray diffraction,confirming the bulk phase purity.Besides,it can be seen from the IR spectra(Fig.S2)that the absorptive peaks at 3 097 and 3 305 cm-1belong to the N—H bonds stretching vibration,the absorption at 1 445 cm-1belongs to the C—N bonds stretching vibration,the absorption peaks at 2 914 and 2 863 cm-1belong to the C—H stretching vibration of methylene and methyl groups,and the absorptions near 911 and 755 cm-1are ascribed to the characteristic absorption peaks of ReO4-[41-43].

    2.2 Phase transition

    The DSC test can be used to determine whether the compound has a reversible phase transition during the heating and cooling processes[44-45].As shown in Fig.1,compounds 1 and 2 both exhibited a pair of reversible endothermic and exothermic peaks.Compound 1 had an endothermic peak at 324 K and a corresponding exothermic peak at 313 K;compound 2 had an endothermic peak at 384 K and a corresponding exothermic peak at 361 K.It can be seen that the chemical modification of cyclen with one methyl group on nitrogen atom could greatly increase the phase transition temperature of 60 K.This may be an effective way to improve the phase transition temperature of organic-inorganic hybrid compounds.

    Fig.1 DSC curves of 1(red)and 2(blue)in heating and cooling runs

    As shown in Table 2,to further study the thermal abnormal behavior of compounds 1 and 2,we have calculated the transformation enthalpy(H)and entropy(S)change of the corresponding compounds.According to the Boltzmann equation ΔS=RlnN(Ris the molar gas constant,Nis the ratio of the number of possible orientations of the entire disordered system),theNvalues of compounds 1 and 2 could be calculated to be 15.79 and 53.45,respectively.Generally speaking,the larger theNvalue of a substance is,the more serious order and disorder phase transition occurred in the substance[46-47].So,compound 2 proceeded a more serious order and disorder characteristics than compound 1 during the phase transition.

    Table 2 Thermal values in the phase transition of 1 and 2

    2.3 Dielectric properties

    Dielectric measurement is a simple and effective method for finding new phase transition materials by studying the dynamic behavior of polar molecules in these structures.The dielectric constant is generally closely related to the molecular structure of compounds themselves[48-50].It can be seen from Fig.2 that compounds 1 and 2 exhibited dielectric anomalies near the phase transition points,which were consistent with the thermal anomaly curves of DSC on heating and cooling.The dielectric anomaly of compound 1 was more obvious than that of compound 2.During the heating process,the real part of the dielectric constant of compound 1 gradually increased with the increase of temperature.When the temperature was close to 311 K,the dielectric constant showed a significant increase,and the value ofε'at 1 MHz gradually increased from 5.36 at 289 K to a maximum of 23.72 near the phase transition.Compared with 1,theε'value of 2 at 1 MHz increased by about 0.35 times from 335 K to the phase transition point,which is much lower than the 3.4-fold increase ofε'value of 1 at 1 MHz.During the cooling process,dielectric anomalies were also found in compounds 1 and 2 near the phase transition temperatures,which further indicates both compounds have undergone a reversible dielectric transition behavior.

    Fig.2 Temperature dependence of the real parts(ε')of 1 and 2 at 1 MHz upon heating and cooling

    2.4 Crystal structure analysis

    At room temperature,compound 1 crystallizes in the triclinic system,the space group isP,and the asymmetric unit of compound 1 is composed of one(cyclen)+cation and two perrhenate anions.While compound 2 crystallizes in the monoclinic system with the centrosymmetricP21/nspace group,the asymmetric unit is composed of one(Me-cyclen)+cation and two perrhenate anions.In both structures,two hydrogen atoms from perchloric acid have transferred to the nitrogen of cyclen or Me-cyclen.But due to the protonated hydrogen atoms being in a free state,two secondary nitrogen atoms in compounds 1 and 2 were randomly added with hydrogen atoms by the theoretical calculations.

    As shown in Fig.3,in both structures,the perrhenic anions ReO4-are located outside the cyclen ring and interlinked with cations by the classic intermolecular hydrogen bonds(N—H…O).The distances between the donor N atoms and acceptor O atoms are in a range of 0.296 9-0.323 1 nm for 1 and 0.287 4-0.314 7 nm for 2(Table S1 and S2).Besides the intermolecular hydrogen bonds,there are four intramolecular hydrogen bonds(N—H…N)that can be found in compounds 1 and 2.The distances between the donor N atoms and the acceptor N atoms are in a range of 0.279 7-0.290 1 nm for 1 and 0.281 9-0.294 4 nm for 2.To be noted,the four intramolecular hydrogen bonds force the nitrogen atoms in the cyclen ligand to be located on the same side of the ring(Table S1 and S2).As shown in Table S3 and S4,the bond angles in the cyclen and Me-cyclen rings are as large as possible,which may reduce the tension of the macrocycle to make the ring not fold and keep all atoms in one plane as can as possible.The average bond lengths of C—N in 1(0.147 7 nm)are longer than those in 2(0.146 8 nm),but the average bond lengths of C—C in 1(0.150 7 nm)are shorter than those in 2(0.152 7 nm).In both crystals,the Re—O bond lengths are about 0.171 0 nm,and the O—Re—O bond angles are near 109°28',indicating the ReO4-anions choose a slightly irregular tetrahedral structure.

    Fig.3 Crystal structures of 1(a)and 2(b)at room temperature,where the dashed lines represent the hydrogen bonds

    3 Conclusions

    In summary,adding a methyl group on the nitrogen atom of cyclen gave a low symmetric ligand Me-cyclen.Reactions of the twelve membered cyclic amine cyclen and Me-cyclen with two equivalents of perrhenic acid in an aqueous solution led to two-phase transition materials(cyclen)(ReO4)2(1)and(Me-cyclen)(ReO4)2(2).The IR,element analysis,and PXRD were carried out to prove their good purity.The DSC and dielectric measures showed the phase transition temperature of 2 at 384 K was much higher than that of compound 1 at 324 K.The analysis of the single-crystal structure reveals that the increase of the phase transition point in 2 is caused by the lower symmetric structure of Me-cyclen because the introduction of a methyl group on cyclen increases the internal steric hindrance of a new molecule.This discovery reveals that chemical modification is an effective way to improve the phase transition temperature.

    Acknowledgments:We thank the National Natural Science Foundation of China(Grants No.21865015,22071094,22075123)for financial support.

    Supporting information is available at http://www.wjhxxb.cn

    99热这里只有是精品在线观看| 国产极品粉嫩免费观看在线 | 肉色欧美久久久久久久蜜桃| 中文字幕人妻丝袜制服| 国产精品99久久久久久久久| 99热这里只有精品一区| 亚洲精品乱码久久久v下载方式| 丝袜在线中文字幕| 少妇 在线观看| 在线观看美女被高潮喷水网站| 各种免费的搞黄视频| 久久久午夜欧美精品| 18在线观看网站| 一区二区三区精品91| 欧美人与性动交α欧美精品济南到 | 欧美成人精品欧美一级黄| 久久久欧美国产精品| 中文字幕人妻丝袜制服| 2018国产大陆天天弄谢| 夜夜骑夜夜射夜夜干| 乱人伦中国视频| 不卡视频在线观看欧美| 观看av在线不卡| 在线观看美女被高潮喷水网站| 人妻系列 视频| 日韩欧美一区视频在线观看| 三级国产精品欧美在线观看| av在线观看视频网站免费| 制服丝袜香蕉在线| 亚洲精品av麻豆狂野| 99久国产av精品国产电影| 久久精品国产亚洲网站| 热re99久久精品国产66热6| 久久久久久久久久久丰满| 99久久精品一区二区三区| 美女中出高潮动态图| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 少妇高潮的动态图| 国产熟女欧美一区二区| 国产精品一区二区在线观看99| 久久久国产精品麻豆| 国产精品不卡视频一区二区| 日本黄色日本黄色录像| 99视频精品全部免费 在线| 亚洲欧美一区二区三区黑人 | 自线自在国产av| 国产日韩欧美在线精品| 国产又色又爽无遮挡免| 久久亚洲国产成人精品v| 黄色一级大片看看| 欧美日韩在线观看h| 在线观看美女被高潮喷水网站| 国产69精品久久久久777片| 日日摸夜夜添夜夜添av毛片| 国产一区二区在线观看日韩| videossex国产| 国产日韩欧美亚洲二区| 成人毛片60女人毛片免费| 亚洲av福利一区| 99久久精品国产国产毛片| videos熟女内射| a级片在线免费高清观看视频| 免费av不卡在线播放| 七月丁香在线播放| 免费大片18禁| 老司机影院成人| 日本黄色片子视频| 在线观看免费视频网站a站| 91精品三级在线观看| 在线天堂最新版资源| 亚洲av欧美aⅴ国产| 免费人妻精品一区二区三区视频| 九九久久精品国产亚洲av麻豆| 九色成人免费人妻av| 国产精品一国产av| 久久久久视频综合| 久久午夜综合久久蜜桃| 美女内射精品一级片tv| 亚洲国产精品成人久久小说| 蜜桃国产av成人99| 国产爽快片一区二区三区| 久久久久久久亚洲中文字幕| 美女中出高潮动态图| 精品少妇黑人巨大在线播放| 免费av不卡在线播放| 欧美精品一区二区大全| 晚上一个人看的免费电影| 久久久a久久爽久久v久久| 91精品一卡2卡3卡4卡| 日韩,欧美,国产一区二区三区| 精品人妻在线不人妻| 大陆偷拍与自拍| 成人国语在线视频| 少妇 在线观看| 国产毛片在线视频| 亚洲欧美精品自产自拍| 日韩av不卡免费在线播放| 亚洲av二区三区四区| 国产精品一区二区三区四区免费观看| 欧美日韩一区二区视频在线观看视频在线| 日韩av不卡免费在线播放| 成人国产麻豆网| 日韩中文字幕视频在线看片| 男女边吃奶边做爰视频| 久久青草综合色| a 毛片基地| 精品人妻一区二区三区麻豆| 国产精品人妻久久久久久| 成人免费观看视频高清| 国产精品国产三级专区第一集| 精品国产乱码久久久久久小说| 免费av中文字幕在线| 免费日韩欧美在线观看| 国产精品99久久久久久久久| 日韩三级伦理在线观看| 狂野欧美激情性bbbbbb| 国产探花极品一区二区| 精品久久久久久久久亚洲| 国产成人a∨麻豆精品| 乱码一卡2卡4卡精品| 亚洲国产精品一区二区三区在线| 亚洲国产精品一区三区| 亚洲少妇的诱惑av| 成人毛片a级毛片在线播放| 久久ye,这里只有精品| 国产一级毛片在线| 肉色欧美久久久久久久蜜桃| 一边亲一边摸免费视频| 亚洲av不卡在线观看| 最近中文字幕2019免费版| 亚洲综合色网址| 秋霞在线观看毛片| 99视频精品全部免费 在线| 少妇的逼好多水| 五月天丁香电影| 免费人成在线观看视频色| 婷婷色麻豆天堂久久| xxxhd国产人妻xxx| av在线老鸭窝| 中文欧美无线码| 毛片一级片免费看久久久久| 在线观看一区二区三区激情| 91aial.com中文字幕在线观看| 国产精品久久久久久av不卡| 成人综合一区亚洲| 欧美日韩精品成人综合77777| 欧美日韩国产mv在线观看视频| 黄色欧美视频在线观看| 亚洲美女黄色视频免费看| 美女福利国产在线| 国产成人精品一,二区| 人成视频在线观看免费观看| 啦啦啦视频在线资源免费观看| av黄色大香蕉| 在线观看免费日韩欧美大片 | 亚洲国产精品999| 国产欧美日韩综合在线一区二区| 美女cb高潮喷水在线观看| 日韩欧美一区视频在线观看| 日本wwww免费看| 日韩亚洲欧美综合| 中国美白少妇内射xxxbb| 少妇丰满av| 国产精品熟女久久久久浪| 国产不卡av网站在线观看| 日本av免费视频播放| 亚洲高清免费不卡视频| 亚洲三级黄色毛片| 少妇人妻 视频| 在现免费观看毛片| 国产在线免费精品| 一级a做视频免费观看| 妹子高潮喷水视频| 边亲边吃奶的免费视频| 一区二区三区免费毛片| 秋霞伦理黄片| 亚洲国产av影院在线观看| 日韩亚洲欧美综合| 欧美人与善性xxx| 99热网站在线观看| 在线观看www视频免费| 亚洲国产日韩一区二区| 欧美另类一区| 极品少妇高潮喷水抽搐| 亚洲精品,欧美精品| videossex国产| 精品人妻在线不人妻| 精品国产乱码久久久久久小说| 美女cb高潮喷水在线观看| 日韩成人伦理影院| 日韩三级伦理在线观看| 国产欧美日韩一区二区三区在线 | 丰满饥渴人妻一区二区三| 久久久久久久久久久免费av| 18禁在线播放成人免费| 久久精品熟女亚洲av麻豆精品| 日本av免费视频播放| 亚洲欧美清纯卡通| 久久久久国产网址| 国产视频首页在线观看| 国产高清三级在线| 欧美bdsm另类| 国产视频内射| 久久鲁丝午夜福利片| 最新中文字幕久久久久| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲高清免费不卡视频| 飞空精品影院首页| 亚洲第一av免费看| 中文字幕人妻丝袜制服| 久久久久久伊人网av| 亚洲成人手机| 免费黄网站久久成人精品| 日本黄色日本黄色录像| 欧美精品一区二区免费开放| 青春草亚洲视频在线观看| 九色亚洲精品在线播放| 久久国产精品男人的天堂亚洲 | 日产精品乱码卡一卡2卡三| 国产精品久久久久久av不卡| 在线精品无人区一区二区三| 一级a做视频免费观看| 精品99又大又爽又粗少妇毛片| 两个人的视频大全免费| 母亲3免费完整高清在线观看 | 午夜av观看不卡| 日本欧美国产在线视频| 伦精品一区二区三区| 亚洲一级一片aⅴ在线观看| 免费看av在线观看网站| 亚洲精品乱码久久久久久按摩| 毛片一级片免费看久久久久| 不卡视频在线观看欧美| 中国国产av一级| 在线观看人妻少妇| 少妇人妻 视频| 秋霞在线观看毛片| 男的添女的下面高潮视频| 免费观看无遮挡的男女| 精品人妻在线不人妻| 九九久久精品国产亚洲av麻豆| 国产日韩欧美视频二区| 成人毛片a级毛片在线播放| 精品少妇内射三级| 日本黄色日本黄色录像| 久久久久人妻精品一区果冻| 在线观看免费视频网站a站| 九九久久精品国产亚洲av麻豆| 国产日韩欧美视频二区| 天天躁夜夜躁狠狠久久av| 毛片一级片免费看久久久久| 日韩,欧美,国产一区二区三区| 黑人猛操日本美女一级片| 久久久久久久久久久丰满| 一区二区三区精品91| 国产精品熟女久久久久浪| 五月开心婷婷网| 国产亚洲最大av| 国产亚洲精品第一综合不卡 | 黄色怎么调成土黄色| 美女中出高潮动态图| 亚洲国产av新网站| 国产欧美日韩一区二区三区在线 | 内地一区二区视频在线| 男人操女人黄网站| 久久久精品区二区三区| 亚洲精品乱码久久久久久按摩| 婷婷色综合www| 久久久久国产网址| 狂野欧美激情性xxxx在线观看| 国产精品麻豆人妻色哟哟久久| av福利片在线| 免费看av在线观看网站| 只有这里有精品99| 少妇熟女欧美另类| 久久久亚洲精品成人影院| 春色校园在线视频观看| 亚洲人成77777在线视频| 18禁在线播放成人免费| kizo精华| 九色成人免费人妻av| 新久久久久国产一级毛片| 欧美人与性动交α欧美精品济南到 | 男女啪啪激烈高潮av片| videossex国产| 日本黄色日本黄色录像| 校园人妻丝袜中文字幕| 午夜福利,免费看| 国产亚洲午夜精品一区二区久久| 亚洲三级黄色毛片| 又粗又硬又长又爽又黄的视频| 久久精品国产鲁丝片午夜精品| 国产精品一国产av| 妹子高潮喷水视频| 亚洲美女黄色视频免费看| 狂野欧美白嫩少妇大欣赏| 肉色欧美久久久久久久蜜桃| 国语对白做爰xxxⅹ性视频网站| 黄色配什么色好看| 天美传媒精品一区二区| 在线精品无人区一区二区三| 天堂8中文在线网| 国产午夜精品一二区理论片| 夫妻午夜视频| 日韩视频在线欧美| 日韩三级伦理在线观看| 少妇精品久久久久久久| 爱豆传媒免费全集在线观看| tube8黄色片| 国产国语露脸激情在线看| a级毛色黄片| av网站免费在线观看视频| 一本大道久久a久久精品| 国产成人精品在线电影| 91精品国产国语对白视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲第一区二区三区不卡| 好男人视频免费观看在线| 亚洲在久久综合| av天堂久久9| 考比视频在线观看| 男女高潮啪啪啪动态图| 欧美变态另类bdsm刘玥| 一级毛片电影观看| 国产成人午夜福利电影在线观看| 午夜久久久在线观看| 国产一区有黄有色的免费视频| 色婷婷av一区二区三区视频| 亚洲国产精品国产精品| 极品人妻少妇av视频| 熟妇人妻不卡中文字幕| 九九久久精品国产亚洲av麻豆| 中文字幕亚洲精品专区| 少妇丰满av| 国产精品久久久久久久久免| av播播在线观看一区| 日韩一区二区三区影片| 一区二区三区精品91| 少妇人妻精品综合一区二区| 亚洲精品乱码久久久久久按摩| 国产精品久久久久久精品电影小说| 制服丝袜香蕉在线| a级毛片黄视频| 男女免费视频国产| 亚洲精品日本国产第一区| 久久人妻熟女aⅴ| 日韩免费高清中文字幕av| 人人妻人人澡人人爽人人夜夜| 国产黄片视频在线免费观看| 少妇高潮的动态图| 久久午夜福利片| 女性生殖器流出的白浆| 亚洲婷婷狠狠爱综合网| 在线天堂最新版资源| 一区二区三区乱码不卡18| 国产精品一区二区在线观看99| 少妇猛男粗大的猛烈进出视频| 大香蕉久久网| 精品国产国语对白av| 女人久久www免费人成看片| xxxhd国产人妻xxx| 国产精品.久久久| 国产高清有码在线观看视频| 国产白丝娇喘喷水9色精品| 亚洲精品av麻豆狂野| 九草在线视频观看| 丝袜美足系列| 色网站视频免费| 成人无遮挡网站| 亚洲人成77777在线视频| 好男人视频免费观看在线| 免费av不卡在线播放| av国产久精品久网站免费入址| 久久女婷五月综合色啪小说| 最近手机中文字幕大全| 日本黄大片高清| 一本一本综合久久| 国产精品 国内视频| 亚洲人与动物交配视频| 国产精品偷伦视频观看了| 国产乱来视频区| 久久99蜜桃精品久久| 99热这里只有是精品在线观看| 国产黄频视频在线观看| 久久久久久久大尺度免费视频| 观看av在线不卡| 中文字幕免费在线视频6| 搡女人真爽免费视频火全软件| 黑人巨大精品欧美一区二区蜜桃 | 性色avwww在线观看| 美女脱内裤让男人舔精品视频| 精品久久久精品久久久| 两个人的视频大全免费| 久久精品国产亚洲网站| 五月伊人婷婷丁香| 久久精品国产鲁丝片午夜精品| 亚洲av.av天堂| videos熟女内射| 国产一区亚洲一区在线观看| 日韩电影二区| 亚洲av电影在线观看一区二区三区| 午夜福利,免费看| 国产一区有黄有色的免费视频| 十分钟在线观看高清视频www| 又黄又爽又刺激的免费视频.| 精品午夜福利在线看| 夜夜爽夜夜爽视频| 亚洲精品国产色婷婷电影| 亚洲国产精品999| 午夜免费鲁丝| 久久女婷五月综合色啪小说| 大香蕉97超碰在线| 久久久亚洲精品成人影院| 国产精品国产三级国产专区5o| 欧美日韩成人在线一区二区| 纯流量卡能插随身wifi吗| 免费播放大片免费观看视频在线观看| 伊人久久国产一区二区| 一级片'在线观看视频| 久热这里只有精品99| 亚洲欧洲精品一区二区精品久久久 | 久久久午夜欧美精品| 国产69精品久久久久777片| 69精品国产乱码久久久| 极品少妇高潮喷水抽搐| 日本猛色少妇xxxxx猛交久久| 国产精品人妻久久久久久| 观看美女的网站| av有码第一页| 国产亚洲精品久久久com| 纵有疾风起免费观看全集完整版| 麻豆精品久久久久久蜜桃| 日本av免费视频播放| 中文字幕免费在线视频6| 色婷婷av一区二区三区视频| 精品一区二区三卡| 亚洲av电影在线观看一区二区三区| 十八禁网站网址无遮挡| videossex国产| 亚洲av日韩在线播放| 一级黄片播放器| 欧美人与性动交α欧美精品济南到 | 精品久久蜜臀av无| 午夜免费男女啪啪视频观看| 国产高清有码在线观看视频| 免费av不卡在线播放| 日本欧美国产在线视频| 国产女主播在线喷水免费视频网站| 久久久久久久久久人人人人人人| 日韩强制内射视频| 成年女人在线观看亚洲视频| 九九久久精品国产亚洲av麻豆| 国产精品久久久久久精品古装| 美女大奶头黄色视频| 2021少妇久久久久久久久久久| 国产成人freesex在线| 成人影院久久| 午夜福利视频在线观看免费| 成人国产麻豆网| 欧美亚洲日本最大视频资源| 日产精品乱码卡一卡2卡三| 简卡轻食公司| 国产成人精品久久久久久| 丰满少妇做爰视频| 亚洲中文av在线| 色视频在线一区二区三区| 国产精品不卡视频一区二区| 伦理电影免费视频| 成人午夜精彩视频在线观看| 校园人妻丝袜中文字幕| 中文字幕人妻丝袜制服| 麻豆乱淫一区二区| 搡女人真爽免费视频火全软件| 又黄又爽又刺激的免费视频.| 男女国产视频网站| av有码第一页| 中文乱码字字幕精品一区二区三区| 午夜日本视频在线| 中文字幕亚洲精品专区| 欧美精品国产亚洲| 99re6热这里在线精品视频| 午夜91福利影院| 22中文网久久字幕| 在线亚洲精品国产二区图片欧美 | 97在线人人人人妻| 激情五月婷婷亚洲| 精品酒店卫生间| 国产精品久久久久成人av| 亚洲激情五月婷婷啪啪| 免费黄网站久久成人精品| 中文精品一卡2卡3卡4更新| 尾随美女入室| 性色avwww在线观看| 亚洲精品乱码久久久久久按摩| 在线亚洲精品国产二区图片欧美 | 国产精品不卡视频一区二区| 久久午夜福利片| 精品人妻偷拍中文字幕| 中文字幕免费在线视频6| 啦啦啦在线观看免费高清www| 91精品一卡2卡3卡4卡| 精品少妇内射三级| a级毛片在线看网站| 国产精品蜜桃在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 高清视频免费观看一区二区| 春色校园在线视频观看| 91国产中文字幕| 精品亚洲成a人片在线观看| 精品一区在线观看国产| 久久女婷五月综合色啪小说| 最近的中文字幕免费完整| 又大又黄又爽视频免费| 秋霞伦理黄片| 91精品伊人久久大香线蕉| 美女大奶头黄色视频| 欧美成人精品欧美一级黄| 五月玫瑰六月丁香| 精品人妻熟女毛片av久久网站| 国产精品久久久久成人av| 久久99蜜桃精品久久| 91成人精品电影| 男女边吃奶边做爰视频| 久久精品人人爽人人爽视色| 狂野欧美激情性bbbbbb| 草草在线视频免费看| 秋霞伦理黄片| 国产精品久久久久久av不卡| 亚洲精品亚洲一区二区| 十八禁高潮呻吟视频| 欧美另类一区| 免费高清在线观看日韩| 丝袜脚勾引网站| 婷婷色综合大香蕉| 大又大粗又爽又黄少妇毛片口| av国产精品久久久久影院| 国产成人精品无人区| 嘟嘟电影网在线观看| 国产成人精品婷婷| 国产在线免费精品| 九色亚洲精品在线播放| 国产一区二区在线观看av| 国产成人午夜福利电影在线观看| 最后的刺客免费高清国语| 亚洲精品,欧美精品| 久久久a久久爽久久v久久| 久久综合国产亚洲精品| 永久网站在线| 美女视频免费永久观看网站| 啦啦啦在线观看免费高清www| 亚洲国产日韩一区二区| 精品人妻熟女av久视频| 草草在线视频免费看| 国产精品人妻久久久久久| 精品久久久精品久久久| 国产精品无大码| 日韩视频在线欧美| 国产免费视频播放在线视频| 亚洲激情五月婷婷啪啪| 精品亚洲成a人片在线观看| 亚洲情色 制服丝袜| 精品熟女少妇av免费看| 飞空精品影院首页| √禁漫天堂资源中文www| 波野结衣二区三区在线| 久久99热6这里只有精品| 免费不卡的大黄色大毛片视频在线观看| 高清视频免费观看一区二区| 亚洲精品日本国产第一区| 久久精品久久久久久噜噜老黄| 少妇被粗大的猛进出69影院 | 少妇人妻精品综合一区二区| 一级毛片 在线播放| 欧美人与善性xxx| 精品一区二区三区视频在线| 少妇人妻 视频| 国产精品不卡视频一区二区| 99久国产av精品国产电影| 精品国产乱码久久久久久小说| 午夜视频国产福利| 亚洲精品国产av成人精品| 一区在线观看完整版| 亚洲精品久久成人aⅴ小说 | 国产成人freesex在线| 水蜜桃什么品种好| 日韩制服骚丝袜av| 伦精品一区二区三区| av女优亚洲男人天堂| 日韩制服骚丝袜av| 亚洲,欧美,日韩| 国产精品一区www在线观看| 亚洲综合色惰| 十八禁网站网址无遮挡| 日韩 亚洲 欧美在线| 十分钟在线观看高清视频www| 伊人久久精品亚洲午夜| 日韩 亚洲 欧美在线| 日韩大片免费观看网站| 看免费成人av毛片| 午夜激情福利司机影院| 日韩三级伦理在线观看| 伦理电影大哥的女人| 亚洲精品成人av观看孕妇| 97超视频在线观看视频| 少妇高潮的动态图| 国产视频内射| 国产男女内射视频| 美女脱内裤让男人舔精品视频| 亚洲国产欧美日韩在线播放| 97在线视频观看| 精品熟女少妇av免费看| 免费黄网站久久成人精品| 亚洲情色 制服丝袜| av网站免费在线观看视频| 在线观看人妻少妇|