• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Solvent-Controlled Morphology of Ni-BTC and Ni-BDC Metal-Organic Frameworks for Supercapacitors

    2022-08-09 03:50:12NIUBaiTongXIAWangNanLAIZhaoQinGUOHongXuCHENZhangXu

    NIU Bai-TongXIA Wang-NanLAI Zhao-QinGUO Hong-Xu*,,CHEN Zhang-Xu

    (1College of Chemistry,Chemical Engineering,and Environment,Minnan Normal University,Zhangzhou,Fujian 363000,China)(2Fujian Provincial University Key Laboratory of Ecological Environment and Information Atlas,Putian University,Putian,Fujian 351100,China)

    Abstract:The performance of energy storage materials is substantially dependent on their nanostructures.Herein,Ni-1,3,5-benzenetricarboxylate(Ni-BTC)and Ni-1,4-benzoate(Ni-BDC)metal-organic frameworks with different morphologies were controllably synthesized using a facile solvothermal method by simply adjusting the solvent,including Ni-BTC blocks,nanospheres,and double-pyramid structures and Ni-BDC nanosheets,nanoflowers and blocks structures,and their electrochemical performance as supercapacitors was thoroughly investigated.Moreover,our study showed that the supercapacitor performance of the electrode materials obtained for Ni-BTC and Ni-BDC electrodes in pure N,N-dimethylformamide(DMF)solvent was better than those prepared with pure ethanol(EtOH)and DMF/EtOH(50∶50,V/V)as solvent.

    Keywords:supercapacitor;morphology tuning;solvothermal method;metal-organic frameworks

    0 Introduction

    Nowadays,the shortage of nonrenewable energy and increased environmental problems caused by developing the economy have aroused massive researchers devoted to new energy storage devices exploration,particularly rechargeable ion batteries,electrochemical water splitting,and supercapacitors(SCs)[1].SCs,a novel form of energy storage device between capacitors and batteries,provide the benefits of extended cycle life,rapid charge and discharge,high power density,and minimal environmental impact[2].As a result,they are widely used in a variety of sectors,such as backup power systems,hybrid electric vehicles,portable electronic equipment,and information technology.

    In recent years,metal-organic frameworks(MOFs)have been extensively developed as electrode materials for SCs[3-9].MOFs are composed of organic linkers and metal ions by strong chemical bonds[10].Owing to the diverse structure with large specific surface area and rich pore structure,MOFs are hot topics in novel functional materials,and they have aroused more and more concentration among plentiful researchers[11-15].Nevertheless,a large number of experiments indicate that the electrode materials can reach a high energy density depending not only on the composition but also on the shape and size[16].Various strategies have been discovered to control the morphologies of MOFs,such as altering the reaction temperature and time[17],tuning the proportion of metal ions[18],and adjusting the pH value[19].Then,the solvent-controlled morphology of MOFs with uniform shape and adjustable size is a convenient and feasible method to improve their electrochemical performance for supercapacitors[20].

    Herein,three kinds of Ni-BTC materials with different shapes and stable configurations were synthesized from the 1,3,5-benzenetricarboxylate(BTC3-)ligand,namely,Ni-BTC blocks,nanospheres,and double-pyramid structures.Furthermore,three kinds of Ni-BDC materials with different shapes and stable configurations were synthesized from the 1,4-benzoate(BDC2-)ligand,namely,Ni-BDC nanosheets,nanoflowers,and block structures.This solvent-adjustment method by changing the solvent is simple and controllable.Experiments revealed that the solvent-controlled morphology of MOFs is a convenient and feasible method to improve the electrochemical performance of supercapacitors.

    1 Experimental

    1.1 Reagent and characterization

    Unless otherwise specified,all chemical reagents used were of analytical grade and can be used without further purification.1,3,5-benzenetricarboxylic acid(H3BTC)and 1,4-dicarboxybenzene(H2BDC)were procured from Aladdin Chemistry Co.,Ltd(Shanghai,China).Ni(NO3)2·6H2O,ethanol(EtOH),andN,N-dimethylformamide(DMF)were procured from Xilong Chemical Reagent Co.Ltd(China).

    The powder X-ray diffraction(XRD)was performed on a Rigaku D/MAX-RB X-ray Diffractometer(Japan)using CuKαradiation(λ=0.154 06 nm)at 40 kV and 40 mA,and the XRD patterns were recorded in a 2θrange from 5°to 60°.FT-IR was measured on a NICOLET iS 10IR(USA)Fourier transform infrared spectrometer.The morphologies of the MOFs were characterized on a Hitachi SU8010 field-emission scanning electron microscopy(SEM,Japan)and the operating voltage was 5 kV.A Belsorp-MAX(USA)fully automatic multi-station specific surface,micro,and mesoporous porosity analyzer was used to conduct the nitrogen adsorption-desorption isotherms.

    1.2 Preparation of Ni-BTC MOF and Ni-BDC MOF materials

    Briefly,the Ni-BTC MOFs were prepared through a simple solvothermal method.For the synthesis of Ni-BTCEtOH,Ni(NO3)2·6H2O(0.436 g,1.5 mmol)was added to 60 mL of absolute ethanol,followed by the addition of H3BTC(0.294 g,1.4 mmol).After being stirred for 30 min,the obtained homogeneous solution was transferred into a 100 mL autoclave with a Teflon lining and heated at 180℃for 12 h.After cooling to room temperature,the resultant green precipitate was collected by centrifugation,washed with DMF,ethanol,and deionized water several times,and then dried at 80℃for 12 h.Similarly,Ni-BTCDMFand Ni-BTCDMF/EtOHwere synthesized following the same procedures by using DMF and DMF/EtOH(50∶50,V/V)as the solvent,respectively.

    The Ni-BDC MOFs were prepared through a simple solvothermal method.For the synthesis of Ni-BDCEtOH,Ni(NO3)2·6H2O(0.436 g,1.5 mmol)was added to 60 mL of absolute ethanol,followed by the addition of H2BDC(0.166 g,1.0 mmol).The same steps were taken to prepare Ni-BDCEtOH.Similarly,the Ni-BDCDMFand Ni-BDCDMF/EtOHwere synthesized following the same procedures by using DMF and DMF/EtOH(50∶50,V/V)as the solvent,respectively(Scheme 1).

    Scheme 1 Schematic illustration describing the synthesis of Ni-BTC and Ni-BDC MOFs with various morphologies through a simple solvothermal method with DMF,DMF/EtOH(50:50,V/V),and EtOH as the solvent,respectively

    1.3 Preparation of working electrode

    The production of a working electrode was done utilizing a slurry-forging technique by smearing the sample over the nickel foam(NF,1 cm×1 cm).In this regard,active material(Ni-BTC or Ni-BDC),polyvinylidene fluoride(PVDF),as well as acetylene black were ground together in a mass ratio of 8∶1∶1,followed by the addition of ethanol into the powder to create slurry conditions.Subsequently,the slurry was evenly smeared over the NF and dried for 12 h at 60℃.Before being used in the electrochemical analysis,the dried NF was subjected to 10 MPa stress testing for about 30 s.

    1.4 Electrochemical measurements

    The electrochemical tests were performed at room temperature.The detection of all electrochemical performances was performed on a CS2350H electrochemical workstation(CorrTest Instruments,Wuhan,China).

    In the supercapacitor test,the measurements were carried out in a standard three-electrode configuration by utilizing 3 mol·L-1KOH as the electrolyte,saturated calomel electrode(SCE)as the reference electrode,and platinum wire as the counter electrode.Electrochemical impedance spectroscopy(EIS)measurement was recorded in a range of 105to 0.01 Hz at opencircuit potential(OCP)by applying a perturbation signal of 10 mV.The specific capacitance of the supercapacitor was obtained by the following equation:Cs=IΔt/(mΔV),whereCs(F·g-1)denotes the specific capacitance,I(A)denotes the discharge current,Δt(s)denotes the discharge time,m(g)denotes the mass of active material,which is weighted separately,and ΔVdenotes the potential window.

    2 Results and discussion

    2.1 Structure and morphology analysis of Ni-BTC

    The XRD patterns of Ni-BTCDMF,Ni-BTCDMF/EtOH,Ni-BTCEtOH,and the corresponding simulation,as shown in Fig.1a.The XRD pattern of Ni-BTCDMF/EtOHhad a large and wide characteristic peak at 8.9°,15.1°,17.5°,18.6°,and 27.1°,which confirms that it is an amorphous structure.From the XRD patterns of Ni-BTCDMFand Ni-BTCEtOH,it can be seen that the main sharp peaks at 15.1°,17.5°,18.6°,22.0°,27.1°,28.5°,and 35.8°,corresponding to the(202),(23),(301),(41),(35),(51),and(108)crystal planes,respectively,are similar to the standard diffraction pattern of Ni3(BTC)2(CCDC:274177)[21].The FT-IR spectra of Ni-BTCEtOHand H3BTC are illustrated in Fig.1b to thoroughly examine the as-synthesized Ni-BTCEtOHchemical structure.According to the comparison results,nearly all the FT-IR bands were in close agreement with those of Ni-BTC earlier reported[22].The typical bands associated with the non-ionized carboxyl groups in BTC3-(i.e.,νOH=3 088 cm-1,νC=O=1 716 cm-1,andδC=O=536 cm-1)were not observed in Ni-BTCEtOH[23].Furthermore,the peaks at 1 622 and 1 556 cm-1are attributed to the asymmetric stretching vibrations of—COO-coordinated to the Ni2+ion in a bidentate mode,while the peaks at 1 435 and 1 368 cm-1are due to symmetric stretching vibrations[24].Meanwhile,the peaks between 880 and 680 cm-1indicate that H3BTC is experiencing bending vibrations from the benzene plane[25].Moreover,the 3 500-3 200 cm-1band corresponds to hydrogen bond H2O molecules.A stable Ni-BTC structure is formed by fixing scattered Ni active sites via covalent bonds in these chemical structures[26].

    Fig.1 (a)XRD patterns of Ni-BTCDMF,Ni-BTCDMF/EtOH,Ni-BTCEtOHand the corresponding simulation;(b)FT-IR spectra of Ni-BTCEtOHand H3BTC

    The SEM images of three Ni-BTC indicate that they were completely different in morphology and size.When only DMF was used as the solvent,Ni-BTCDMFdisplayed a block morphology with a particle size of 700-800 μm(Fig.2a,2b).After adding EtOH into DMF(50∶50,V/V),Ni-BTCDMF/EtOHdisplayed a spherical morphology with a particle size of 3-5 μm(Fig.2c,2d).Besides,the surface of Ni-BTCDMF/EtOHspheres was smooth.Interestingly,when EtOH completely replaced DMF as the solvent,the obtained Ni-BTCEtOHshowed a double-pyramid structure(Fig.2e,2f)with a particle size of 300-400 μm.

    Fig.2 (a)SEM images of(a,b)Ni-BTCDMF,(c,d)Ni-BTCDMF/EtOH,and(e,f)Ni-BTCEtOH

    Fig.3a shows the nitrogen adsorption-desorption isotherms of Ni-BTCDMF,Ni-BTCDMF/EtOH,and Ni-BTCEtOHmeasured at 77 K.The N2adsorption-desorption isotherm of Ni-BTC was type Ⅰ(H2)hysteresis loop,which is the principal characteristic of solids with micropores[27-28].The Brunauer-Emmett-Teller(BET)specific surface areas(SBET)of Ni-BTCDMF,Ni-BTCDMF/EtOH,and Ni-BTCEtOHwere determined to be 596,694,and 736 m2·g-1,respectively.From the pore size distribution curve in Fig.3b,it can be seen that the pore sizes of Ni-BTCDMF,Ni-BTCDMF/EtOH,and Ni-BTCEtOHwere mostly smaller than 5 nm.This indicates that it mainly has two kinds of pore sizes,micropores,and mesopores,which provide a channel for the transport of ions.

    Fig.3 Nitrogen adsorption-desorption isotherms and(b)pore size distribution curves of Ni-BTCDMF,Ni-BTCDMF/EtOH,and Ni-BTCEtOH

    2.2 Structure and morphology analysis of Ni-BDC

    Fig.4a shows the XRD patterns of Ni-BDCDMF,Ni-BDCDMF/EtOH,and Ni-BDCEtOH,which revealed good correspondence with[Ni3(OH)2(C8H4O4)2(H2O)4]·2H2O(CCDC:638866)reported in a previous article[29].From the XRD patterns of Ni-BDC,it can be seen that the major diffraction peaks were at 9.3°,11.9°,12.2°,15.6°,18.4°,18.7°,23.8°,28.1°,and 29.3°,corresponding to the(100),(010),(10),(10),(20),(200),(020),(21),and(01)crystal planes,respectively.XRD results show that the synthesized products had a good crystal structure and similar structural characteristics.The FT-IR spectra of Ni-BDCDMF,Ni-BDCDMF/EtOH,and Ni-BDCEtOHare shown in Fig.4b.The peaks at 550 cm-1are attributed to O—Ni—O vibrations[30].The peaks at 820 and 740 cm-1are characteristic of the paraaromatic C—H stretching bands.The strong bands at 1 560 and 1 370 cm-1are attributed to the asymmetric and symmetric stretching modes of the coordinated—COO-groups,respectively[31].Meanwhile,the peaks at 3 418 cm-1is corresponding to stretching vibrations of the H2O molecules[32].These results all are in good agreement with the XRD result,and further confirm that the synthesized Ni-BDC MOF is a kind of nickel hydroxyl-terephthalate-based compound[33].

    Fig.4 (a)XRD patterns of Ni-BDCDMF,Ni-BDCDMF/EtOH,Ni-BDCEtOHand the corresponding simulation;(b)FT-IR spectra of Ni-BDCDMF,Ni-BDCDMF/EtOH,and Ni-BDCEtOH

    The morphologies of Ni-BDCDMF,Ni-BDCDMF/EtOH,and Ni-BDCEtOHwere investigated by SEM.When only DMF was used as the solvent,Ni-BDCDMFdisplayed a nanosheet morphology with a particle size of 100-150 μm(Fig.5a,5b).After adding EtOH into DMF(50∶50,V/V),Ni-BDCDMF/EtOHdisplayed a nanoflowers morphology with a particle size of 50-80 μm(Fig.5c,5d).The flower-like structure was composed of 2D nanosheets assembled by disordered alignment[34].Interestingly,when EtOH completely replaced DMF as the solvent,the obtained Ni-BDCEtOHshowed an irregular bulk structure(Fig.5e,5f).

    Fig.5 SEM images of(a,b)Ni-BDCDMF,(c,d)Ni-BDCDMF/EtOH,and(e,f)Ni-BDCEtOH

    Fig.6a shows the nitrogen adsorption-desorption isotherms of Ni-BDCDMF,Ni-BDCDMF/EtOH,and Ni-BDCEtOHmeasured at 77 K.The nitrogen adsorption-desorption isotherm of Ni-BDC is type Ⅱ(H2)hysteresis loop,which is the principal characteristic of solids with micropores.TheSBETvalues of Ni-BDCDMF,Ni-BDCDMF/EtOH,and Ni-BDCEtOHwere determined to be 682,565,and 750 m2·g-1,respectively.From the pore size distribution curves in Fig.6b,it can be seen that the pore sizes of the samples were in a range of 1.6-2.5 nm,which shows that it has a uniform mesoporosity providing a channel for ion transmission.

    Fig.6 (a)Nitrogen adsorption-desorption isotherms and(b)pore size distribution curves of Ni-BDCDMF,Ni-BDCDMF/EtOH,and Ni-BDCEtOH

    2.3 Supercapacitor performance of Ni-BTC

    To investigate the electrochemical performance for capacitive energy storage,as-prepared Ni-BTC samples were tested in a three-electrode configuration in a 3 mol·L-1KOH aqueous electrolyte.The typical cyclic voltammetry(CV)curves of Ni-BTCDMFare shown in Fig.7a.The CV behavior of Ni-BTC is similar to that of the reported Ni-based MOF material tested in alkaline electrolytes.The charge-storage mechanism may be probably explained by the following redox reactions[35-36]:

    Fig.7 (a)CV curves of the Ni-BTCDMFelectrode at different scan rates;(b)CV curves of as-prepared Ni-BTC electrodes at a scan rate of 5 mV·s-1;(c)GCD curves of the Ni-BTCDMFelectrode at different current densities;(d)Specific capacitances of as-prepared Ni-BTC electrodes at different current densities

    The CV curves of the Ni-BTCDMF,Ni-BTCDMF/EtOH,and Ni-BTCEtOHelectrodes at a constant scan rate of 5 mV·s-1are shown in Fig.7b.All the electrodes exhibited a nonstandard rectangular shape with obvious redox peaks,suggesting typical pseudocapacitance performance.Fig.7c shows the galvanostatic charge-discharge(GCD)curves of Ni-BTCDMFcomposites at current densities of 1,2,4,6,8,and 10 A·g-1.The specific capacitances were 661.0,593.7,490.1,427.0,381.8,and 347.4 F·g-1,respectively.The specific capacitances calculated from the discharge curves are plotted in Fig.7d.The Ni-BTCDMFelectrode still retained a high specific capacitance of 347.4 F·g-1at 10 A·g-1,which was about 52.5%of the value of capacitance at 1 A·g-1,indicating the excellent rate capability.

    EIS was used to investigate the different materials' electroconductivity.The circle radius corresponding to Ni-BTCEtOHand Ni-BTCDMFin the high-frequency region was smaller,which means that they have a smaller charge transfer impedance,as illustrated in Fig.8a(the inset is an enlarged version of the highfrequency region).Table S1(Supporting information)lists the fitting values of equivalent circuit elements.It is noteworthy that Ni-BTCDMFrevealed a lower internal resistance than that of Ni-BTCDMF/EtOH(0.50 Ω)and Ni-BTCEtOH(0.47 Ω)obtained from the intercept of the Nyquist plots with the real axis,manifesting optimized electrode structures and interfacial connections within Ni-BTCEtOHelectrode.The corresponding equivalent electrical circuit for the Ni-BTCDMFelectrode is displayed in Fig.8b.In the equivalent circuit,Rsrepresents the internal resistance(ca.0.45 Ω),including the solution resistance,the active material(Ni-BDCDMF)intrinsic resistance,and the contact resistance between the active material and the current collector[37];Rctis the charge transfer resistance(ca.0.87 Ω),CPE is the constant phase element andWois the Warburg resistance[38].

    Fig.8 (a)Nyquist plots of as-prepared Ni-BTC electrodes in 3 mol·L-1KOH electrolyte;(b)Equivalent electrical circuit for the Ni-BTCDMFelectrode

    The cycling stability of the Ni-BTCDMF,Ni-BTCDMF/EtOH,and Ni-BTCEtOHelectrodes was tested by GCD at 4 A·g-1,as shown in Fig.9.When the solvent was pure DMF,the specific capacitance of the Ni-BTCDMFelectrode decreased from the initial 386.0 to 273.7 F·g-1after 2 000 cycles,and the capacitance retention rate was 70.9%.The specific capacitance of the Ni-BTCDMF/EtOHelectrode decreased from the initial 371.9 to 161.4 F·g-1,and the capacitance retention rate was only 43.4%.This may be related to the changes in the microstructure of the nickel-based MOF during charging and discharging,such as structural collapse.When the solvent was pure EtOH,the specific capacitance of the Ni-BTCEtOHelectrode decreased from the initial 301.8 to 280.7 F·g-1,and the capacitance retention rate was 93.0%.Although the specific capacitance of the Ni-BTCEtOHelectrode was smaller than that of the Ni-BTCDMFelectrode,its cycle performance was better than that of the Ni-BTCDMFelectrode.

    Fig.9 Cycling stability of as-prepared Ni-BTC electrodes at 4 A·g-1

    2.4 Supercapacitor performance of Ni-BDC

    To study the electrochemical property,the CV behaviors of as-prepared MOF electrodes were investigated at different scan rates(5,10,20,50,100 mV·s-1)in 3 mol·L-1KOH electrolytes using a three-electrodes test system.Fig.10a presents the CV curves of the Ni-BDCDMFelectrode at different scan rates in a potential range of 0-0.65 V(vs SCE).The CV behavior of Ni-BDC is similar to that of the reported Ni-based MOF material tested in alkaline electrolytes.This process might be represented by the following electrontransfer equation[33,39]:

    Fig.10 (a)CV curves of the Ni-BDCDMFelectrode at different scan rates;(b)CV curves of as-prepared Ni-BDC electrodes at a scan rate of 5 mV·s-1;(c)GCD curves of the Ni-BDCDMFelectrode at different current densities;(d)Specific capacitances of as-prepared Ni-BDC electrodes at different current densities

    The CV curves of the Ni-BDCDMF,Ni-BDCDMF/EtOH,and Ni-BDCEtOHelectrodes at a constant scan rate of 5 mV·s-1are exhibited in Fig.10b.A couple of distinct redox peaks were observable,indicating that the typical pseudo-capacitive behavior caused by surface Faradic redox reactions corresponds to the reversible intercalation and deintercalation of OH-ions.Fig.10c shows the GCD curves of the Ni-BDCDMFelectrode within a potential window of 0-0.46 V(vs SCE)at different current densities.The corresponding specific capacitance of the Ni-BDCDMFelectrode at 1 A·g-1was calculated to be 1 044.9 F·g-1.Fig.10d shows the specific capacitance as a function of discharge current density for the Ni-BDCDMF,Ni-BDCDMF/EtOH,and Ni-BDCEtOHelectrodes.The Ni-BDCDMFelectrode still retained a high specific capacitance of 509.4 F·g-1at 10 A·g-1,which was about 48.8%of the capacitance at 1 A·g-1,indicating the excellent rate capability.

    The electroconductivity of the Ni-BDCDMF,Ni-BDCDMF/EtOH,and Ni-BDCEtOHelectrodes was also investigated by EIS.As shown in Fig.11(the bottom inset shows an enlarged version of the high-frequency region),the radius of the circle corresponding to Ni-BDCDMFin the high-frequency region was smaller,which means that it has a smaller charge transfer impedance.The corresponding equivalent electrical circuit is displayed in the top inset of Fig.11.In the equivalent circuit for Ni-BDCDMF,Rswasca.0.36 Ω andRctwasca.0.71 Ω(Table S2).At the same time,it also shows that the Ni-BDCDMFelectrode is a host material for high electrolyte access,penetration,and ion diffusion,which is conducive to the rapid storage and release of energy and has good electrical conductivity.

    The cycling stability of the Ni-BDCDMF,Ni-BDCDMF/EtOH,and Ni-BDCEtOHelectrodes was tested by GCD at 4 A·g-1,as shown in Fig.12.The specific capacitance of the Ni-BDCDMFelectrode decreased from the initial 713.0 to 617.4 F·g-1after 2 000 cycles,and the capacitance retention rate was 85.9%.The specific capacitance of the Ni-BDCDMF/EtOHelectrode decreased from the initial 765.2 to 69.6 F·g-1,and the capacitance retention rate was only 9.1%.It shows that the stability of Ni-BDCDMF/EtOHwas very poor,which may be due to the collapse of the structure of Ni-based MOF during charging and discharging.In addition,the FT-IR spectrum after cycling is shown in Fig.S1,which further proves that poor cycling is caused by the structural collapse.The specific capacitance of the Ni-BDCEtOHelectrode decreased from the initial 434.8 to 356.5 F·g-1,and the capacitance retention rate was 82.0%.

    Fig.12 Cycling stability of as-prepared Ni-BDC electrodes at 4 A·g-1

    From the above results and discussion,the solvent has a significant effect on the electrochemical properties of the materials.The possible formation mechanism of Ni-BTCDMFor Ni-BDCDMFcan be narrated in terms as follows:DMF and EtOH have different viscosities,saturated vapor pressures,and polarities,which can affect the diffusion rate,supersaturation,nucleation,and crystal growth to some extent[40].When using DMF alone as the solvent,the deprotonation of H3BTC was fast and produced a crystal aggregate.H2BDC,which was stripped of protons,coordinated with free metal cations(Ni2+).The lamellar MOF structure was formed by confining the growth of the lamellar material to a 2D space because the proton and the metal cation leave simultaneously in the ion domain[34].Ni-BDCDMFis made up of many-layered micro-sheets,which means that there are thousands of nanochannels in the hierarchical architecture.What is more,thousands of nanochannels might largely improve the diffusion of ions and electrolytes,and the microbundle might offer a stable skeleton for ion intercalation-extraction.In short,the solvent effect leads to different morphologies of the products,which in turn affects the stability of their electrical storage properties.Moreover,the comparison with the reports in the literature is shown in Table 1.

    Table 1 Specific capacitances of some MOF-based materials

    3 Conclusions

    In conclusion,three kinds of Ni-BTC materials with different shapes and stable configurations were synthesized from the 1,3,5-benzenetricarboxylate ligand,namely Ni-BTC blocks,nanospheres,and double-pyramid structures.Furthermore,three kinds of Ni-BDC materials with different shapes and stable configurations were synthesized from the 1,4-benzoate ligand,namely Ni-BDC nanosheets,nanoflowers,and block structures.This solvent-adjustment method by changing the solvent is simple and controllable.The experimental results reveal that controlling the morphology of MOFs by the solvent is a convenient and feasible method to improve the electrochemical performance of supercapacitors.

    Supporting information is available at http://www.wjhxxb.cn

    亚洲18禁久久av| 精品久久久久久成人av| 免费一级毛片在线播放高清视频| 观看免费一级毛片| 麻豆成人av在线观看| 日韩精品青青久久久久久| 精品国产三级普通话版| 19禁男女啪啪无遮挡网站| 黄片大片在线免费观看| 久久久久精品国产欧美久久久| 午夜日韩欧美国产| 日本五十路高清| 国产一区二区在线av高清观看| 国产精品久久视频播放| 中文字幕最新亚洲高清| 动漫黄色视频在线观看| 天堂动漫精品| 美女cb高潮喷水在线观看 | 久久久成人免费电影| 国产精品一区二区精品视频观看| 搡老熟女国产l中国老女人| 国模一区二区三区四区视频 | 老司机午夜福利在线观看视频| 免费看日本二区| 色视频www国产| 亚洲欧美精品综合久久99| 欧美3d第一页| 午夜福利成人在线免费观看| 法律面前人人平等表现在哪些方面| 亚洲在线观看片| 91在线观看av| 国产精品乱码一区二三区的特点| 免费无遮挡裸体视频| 在线a可以看的网站| 亚洲国产高清在线一区二区三| 全区人妻精品视频| 999久久久精品免费观看国产| 此物有八面人人有两片| 我要搜黄色片| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧美精品综合一区二区三区| 宅男免费午夜| 午夜精品在线福利| 中文字幕高清在线视频| 嫩草影视91久久| 欧美日韩中文字幕国产精品一区二区三区| 欧美色欧美亚洲另类二区| 久久久久久久久中文| 精品一区二区三区视频在线观看免费| 麻豆成人av在线观看| 国产真实乱freesex| aaaaa片日本免费| 日本撒尿小便嘘嘘汇集6| 美女 人体艺术 gogo| 精品熟女少妇八av免费久了| 精品无人区乱码1区二区| 美女高潮的动态| 亚洲一区高清亚洲精品| 两性夫妻黄色片| 性色avwww在线观看| 精品一区二区三区视频在线 | 精品乱码久久久久久99久播| x7x7x7水蜜桃| 热99re8久久精品国产| 成人三级做爰电影| 黑人欧美特级aaaaaa片| 熟妇人妻久久中文字幕3abv| 国产精品一区二区精品视频观看| 男人舔女人的私密视频| 国产精品香港三级国产av潘金莲| 黄片小视频在线播放| 香蕉av资源在线| 在线免费观看的www视频| 亚洲18禁久久av| 成人特级av手机在线观看| 亚洲精品美女久久久久99蜜臀| 色综合亚洲欧美另类图片| 精品乱码久久久久久99久播| 88av欧美| 久久久久久大精品| 中亚洲国语对白在线视频| 亚洲色图 男人天堂 中文字幕| 欧美色欧美亚洲另类二区| 日本在线视频免费播放| 国产av麻豆久久久久久久| 亚洲专区字幕在线| 欧美日韩精品网址| 午夜两性在线视频| 午夜福利18| 国产欧美日韩精品亚洲av| 91久久精品国产一区二区成人 | 国产av在哪里看| 久久久久亚洲av毛片大全| 日韩 欧美 亚洲 中文字幕| 少妇人妻一区二区三区视频| avwww免费| 18禁国产床啪视频网站| 噜噜噜噜噜久久久久久91| 极品教师在线免费播放| 亚洲五月婷婷丁香| 亚洲一区高清亚洲精品| 丁香六月欧美| 在线十欧美十亚洲十日本专区| 亚洲专区国产一区二区| 好看av亚洲va欧美ⅴa在| 国产日本99.免费观看| 婷婷丁香在线五月| 熟女少妇亚洲综合色aaa.| 国产激情偷乱视频一区二区| 日本在线视频免费播放| 国产精品永久免费网站| 免费一级毛片在线播放高清视频| 少妇熟女aⅴ在线视频| 日本黄色视频三级网站网址| 男女午夜视频在线观看| 国产精品久久久人人做人人爽| 日本精品一区二区三区蜜桃| 黄频高清免费视频| www.www免费av| 99国产综合亚洲精品| 精品乱码久久久久久99久播| 亚洲九九香蕉| 亚洲欧美日韩卡通动漫| 色精品久久人妻99蜜桃| 国产美女午夜福利| 性欧美人与动物交配| 久久午夜综合久久蜜桃| 中文字幕高清在线视频| 国产亚洲精品久久久久久毛片| 18禁黄网站禁片免费观看直播| 麻豆国产97在线/欧美| 两性夫妻黄色片| av片东京热男人的天堂| 久久中文字幕一级| 桃色一区二区三区在线观看| 国产单亲对白刺激| 日韩欧美在线乱码| 变态另类成人亚洲欧美熟女| avwww免费| 精品免费久久久久久久清纯| 亚洲五月婷婷丁香| 欧洲精品卡2卡3卡4卡5卡区| 国产精品野战在线观看| 国产av一区在线观看免费| 视频区欧美日本亚洲| 亚洲在线自拍视频| 嫩草影院入口| 成人午夜高清在线视频| 高清毛片免费观看视频网站| 一级作爱视频免费观看| 国产av一区在线观看免费| 无限看片的www在线观看| 国产精品99久久99久久久不卡| 男人舔奶头视频| 他把我摸到了高潮在线观看| 欧美激情在线99| 精品熟女少妇八av免费久了| www.精华液| 免费在线观看视频国产中文字幕亚洲| 三级国产精品欧美在线观看 | 夜夜爽天天搞| 日本黄色片子视频| 国产av麻豆久久久久久久| 国产极品精品免费视频能看的| 少妇丰满av| 午夜福利免费观看在线| 国产高清有码在线观看视频| 欧美zozozo另类| 1024手机看黄色片| 精品99又大又爽又粗少妇毛片 | 99久久精品国产亚洲精品| 欧美色视频一区免费| 99在线人妻在线中文字幕| 亚洲国产欧美一区二区综合| 精品午夜福利视频在线观看一区| 可以在线观看毛片的网站| 亚洲人成网站在线播放欧美日韩| 午夜福利高清视频| 一区二区三区国产精品乱码| 神马国产精品三级电影在线观看| 男女下面进入的视频免费午夜| 日韩三级视频一区二区三区| 99久久无色码亚洲精品果冻| 精品无人区乱码1区二区| 两个人看的免费小视频| 天天一区二区日本电影三级| 国产一级毛片七仙女欲春2| 婷婷精品国产亚洲av在线| 午夜免费观看网址| 亚洲九九香蕉| 成人av在线播放网站| 观看免费一级毛片| 欧美激情久久久久久爽电影| avwww免费| 69av精品久久久久久| 国产美女午夜福利| 91老司机精品| 日本一本二区三区精品| 国产精品99久久99久久久不卡| 日韩人妻高清精品专区| 91麻豆精品激情在线观看国产| 久久久久久久精品吃奶| 亚洲成人久久爱视频| 精品国内亚洲2022精品成人| 每晚都被弄得嗷嗷叫到高潮| 床上黄色一级片| 男人和女人高潮做爰伦理| 国产久久久一区二区三区| 搡老熟女国产l中国老女人| 日本成人三级电影网站| 亚洲自拍偷在线| 97超视频在线观看视频| 亚洲aⅴ乱码一区二区在线播放| 男人和女人高潮做爰伦理| 亚洲欧洲精品一区二区精品久久久| 亚洲欧美日韩东京热| 五月伊人婷婷丁香| 久久精品91无色码中文字幕| 久久久久久久久免费视频了| 夜夜看夜夜爽夜夜摸| 香蕉av资源在线| 久久久久久久精品吃奶| 俺也久久电影网| 熟女人妻精品中文字幕| 天堂影院成人在线观看| 老熟妇乱子伦视频在线观看| 1000部很黄的大片| 亚洲国产欧美人成| 亚洲色图 男人天堂 中文字幕| 两个人看的免费小视频| 三级国产精品欧美在线观看 | 黄色片一级片一级黄色片| 久久国产精品人妻蜜桃| 麻豆一二三区av精品| 国产精品99久久99久久久不卡| 日本 av在线| 精品久久久久久久毛片微露脸| 两人在一起打扑克的视频| 国产伦精品一区二区三区四那| 国产高清视频在线播放一区| 国产欧美日韩精品亚洲av| 亚洲成人久久爱视频| 可以在线观看毛片的网站| 亚洲精品在线美女| 淫秽高清视频在线观看| 首页视频小说图片口味搜索| 又黄又爽又免费观看的视频| 欧美av亚洲av综合av国产av| 久久中文字幕人妻熟女| 日本黄色片子视频| 99久久精品一区二区三区| 亚洲熟女毛片儿| 欧美黑人欧美精品刺激| 可以在线观看的亚洲视频| 国产高清三级在线| 国产精品一区二区三区四区免费观看 | 国产高清视频在线播放一区| 午夜免费观看网址| 丝袜人妻中文字幕| 日韩欧美国产在线观看| 在线观看免费视频日本深夜| 亚洲18禁久久av| 成人性生交大片免费视频hd| 精品一区二区三区av网在线观看| 国产视频一区二区在线看| 午夜福利18| 国产精品日韩av在线免费观看| 免费看十八禁软件| 国产成人欧美在线观看| 国产熟女xx| 在线视频色国产色| 色吧在线观看| 九九久久精品国产亚洲av麻豆 | 欧美乱妇无乱码| 欧洲精品卡2卡3卡4卡5卡区| 国产亚洲精品久久久久久毛片| 黄色女人牲交| 国产亚洲av嫩草精品影院| 亚洲第一电影网av| 九九在线视频观看精品| 亚洲国产欧洲综合997久久,| 久久午夜亚洲精品久久| 亚洲国产中文字幕在线视频| 亚洲国产欧美网| 嫩草影视91久久| 久久久久久国产a免费观看| 男人和女人高潮做爰伦理| 中文字幕高清在线视频| 动漫黄色视频在线观看| 亚洲专区中文字幕在线| 男女床上黄色一级片免费看| 免费观看的影片在线观看| 国产精品永久免费网站| 久久香蕉精品热| 精品乱码久久久久久99久播| 麻豆国产av国片精品| 天堂网av新在线| 午夜视频精品福利| 亚洲狠狠婷婷综合久久图片| 亚洲精品美女久久av网站| 日本一二三区视频观看| 久久午夜综合久久蜜桃| 日韩国内少妇激情av| 亚洲精品在线观看二区| 亚洲av成人av| cao死你这个sao货| 亚洲欧洲精品一区二区精品久久久| 999久久久国产精品视频| 亚洲精品中文字幕一二三四区| 在线观看午夜福利视频| 欧美丝袜亚洲另类 | 亚洲无线观看免费| 色在线成人网| 国产成人精品无人区| 亚洲第一欧美日韩一区二区三区| 九九在线视频观看精品| 亚洲熟妇熟女久久| 国产成人啪精品午夜网站| 欧美日韩黄片免| 一个人免费在线观看的高清视频| 麻豆成人午夜福利视频| 一级毛片高清免费大全| 18禁观看日本| or卡值多少钱| 国产亚洲精品久久久com| 中文字幕高清在线视频| 久久人人精品亚洲av| 免费观看人在逋| 成人亚洲精品av一区二区| 国产精品一区二区三区四区免费观看 | 久久久国产成人免费| 亚洲 欧美一区二区三区| 婷婷精品国产亚洲av在线| 日韩高清综合在线| 欧美日本视频| 99国产综合亚洲精品| 中文字幕高清在线视频| 国产精品一区二区三区四区久久| 欧美3d第一页| 在线观看免费视频日本深夜| a级毛片a级免费在线| 成熟少妇高潮喷水视频| 国产黄片美女视频| 精品国产三级普通话版| 又大又爽又粗| 国产又黄又爽又无遮挡在线| 三级国产精品欧美在线观看 | 亚洲一区二区三区不卡视频| 中文字幕人成人乱码亚洲影| 午夜精品在线福利| 熟妇人妻久久中文字幕3abv| 极品教师在线免费播放| 熟妇人妻久久中文字幕3abv| 亚洲精品美女久久av网站| 狂野欧美激情性xxxx| 日韩中文字幕欧美一区二区| 床上黄色一级片| 精品一区二区三区四区五区乱码| 久久久久久久久中文| 日本五十路高清| 欧美xxxx黑人xx丫x性爽| 亚洲在线观看片| 精品人妻1区二区| 十八禁人妻一区二区| 国产探花在线观看一区二区| 99国产极品粉嫩在线观看| 免费搜索国产男女视频| 韩国av一区二区三区四区| 天天添夜夜摸| 成人一区二区视频在线观看| 男女下面进入的视频免费午夜| 国产淫片久久久久久久久 | 国内精品一区二区在线观看| 精品乱码久久久久久99久播| 欧美3d第一页| 免费在线观看视频国产中文字幕亚洲| 香蕉av资源在线| 一个人观看的视频www高清免费观看 | 日韩欧美国产在线观看| 最好的美女福利视频网| 国产亚洲av嫩草精品影院| 亚洲国产精品合色在线| 国产精品九九99| 亚洲天堂国产精品一区在线| 波多野结衣高清无吗| 亚洲国产欧美一区二区综合| 国产欧美日韩精品一区二区| 日韩欧美精品v在线| 中国美女看黄片| 精品久久久久久久人妻蜜臀av| 搡老岳熟女国产| 熟女人妻精品中文字幕| 婷婷亚洲欧美| 日韩三级视频一区二区三区| 色av中文字幕| 国语自产精品视频在线第100页| 最近视频中文字幕2019在线8| 久久国产精品人妻蜜桃| avwww免费| 97超级碰碰碰精品色视频在线观看| 日本成人三级电影网站| 中文字幕熟女人妻在线| 日本三级黄在线观看| 我的老师免费观看完整版| 搡老妇女老女人老熟妇| 欧美成人免费av一区二区三区| 夜夜看夜夜爽夜夜摸| 狠狠狠狠99中文字幕| 精品一区二区三区av网在线观看| 日本五十路高清| 男女视频在线观看网站免费| 国产人伦9x9x在线观看| 日本五十路高清| 非洲黑人性xxxx精品又粗又长| 久久久久久九九精品二区国产| 好男人在线观看高清免费视频| 精品一区二区三区视频在线观看免费| 又大又爽又粗| 小说图片视频综合网站| 99久久无色码亚洲精品果冻| 手机成人av网站| 亚洲欧美日韩卡通动漫| 好看av亚洲va欧美ⅴa在| 精品国产美女av久久久久小说| 久久久色成人| 无限看片的www在线观看| 日本精品一区二区三区蜜桃| 久久久久国产一级毛片高清牌| 亚洲熟女毛片儿| а√天堂www在线а√下载| xxx96com| 欧美在线黄色| 18禁黄网站禁片午夜丰满| 亚洲欧美精品综合一区二区三区| 国产黄a三级三级三级人| 成人三级做爰电影| 午夜福利在线观看免费完整高清在 | 啪啪无遮挡十八禁网站| 天堂av国产一区二区熟女人妻| 五月玫瑰六月丁香| 日本免费一区二区三区高清不卡| 国产成人系列免费观看| 久久午夜亚洲精品久久| 欧美日韩精品网址| 极品教师在线免费播放| 99国产精品99久久久久| 性色av乱码一区二区三区2| 欧美不卡视频在线免费观看| 日本一二三区视频观看| 日韩精品青青久久久久久| 欧美3d第一页| 他把我摸到了高潮在线观看| 99久久精品一区二区三区| 女生性感内裤真人,穿戴方法视频| 亚洲av成人精品一区久久| 色综合亚洲欧美另类图片| 亚洲一区高清亚洲精品| 又粗又爽又猛毛片免费看| 夜夜爽天天搞| 看黄色毛片网站| 精品乱码久久久久久99久播| 熟女少妇亚洲综合色aaa.| 12—13女人毛片做爰片一| 香蕉丝袜av| netflix在线观看网站| 美女高潮喷水抽搐中文字幕| 最新在线观看一区二区三区| 老熟妇仑乱视频hdxx| 国产欧美日韩一区二区精品| 人人妻人人澡欧美一区二区| 国产久久久一区二区三区| www.999成人在线观看| 亚洲成av人片在线播放无| 久久久久久久精品吃奶| 在线观看免费视频日本深夜| 亚洲五月天丁香| 国产毛片a区久久久久| 琪琪午夜伦伦电影理论片6080| 中文在线观看免费www的网站| 午夜影院日韩av| 日韩有码中文字幕| 亚洲午夜精品一区,二区,三区| av在线天堂中文字幕| 免费观看精品视频网站| 男人舔奶头视频| 亚洲欧美日韩高清专用| 国产精品99久久99久久久不卡| 国产精品av久久久久免费| 一级毛片女人18水好多| 亚洲精品美女久久久久99蜜臀| netflix在线观看网站| 亚洲黑人精品在线| 三级国产精品欧美在线观看 | 伊人久久大香线蕉亚洲五| 狂野欧美白嫩少妇大欣赏| 国内少妇人妻偷人精品xxx网站 | 夜夜看夜夜爽夜夜摸| 亚洲av熟女| 国产精品亚洲美女久久久| 亚洲精品色激情综合| 欧美一级毛片孕妇| 男人舔女人的私密视频| 亚洲五月婷婷丁香| 网址你懂的国产日韩在线| 18禁美女被吸乳视频| 亚洲一区二区三区不卡视频| or卡值多少钱| 少妇的逼水好多| 午夜福利免费观看在线| 亚洲国产欧美网| 亚洲国产欧美一区二区综合| 亚洲 国产 在线| 亚洲avbb在线观看| 麻豆国产97在线/欧美| 久久久久免费精品人妻一区二区| 精品国产乱码久久久久久男人| 欧美乱色亚洲激情| 一个人免费在线观看电影 | 久久精品aⅴ一区二区三区四区| 国产精品亚洲av一区麻豆| 白带黄色成豆腐渣| 最近最新中文字幕大全免费视频| 成人永久免费在线观看视频| 日韩欧美免费精品| 人妻丰满熟妇av一区二区三区| 丰满的人妻完整版| 久久草成人影院| 美女大奶头视频| 亚洲av电影不卡..在线观看| 午夜a级毛片| 国产高清videossex| a级毛片a级免费在线| 黄色日韩在线| x7x7x7水蜜桃| 91麻豆精品激情在线观看国产| 亚洲国产欧美网| 制服丝袜大香蕉在线| 婷婷亚洲欧美| 我要搜黄色片| 欧美成人免费av一区二区三区| 999久久久国产精品视频| 国产精品日韩av在线免费观看| 国产精品美女特级片免费视频播放器 | 亚洲午夜精品一区,二区,三区| 亚洲av第一区精品v没综合| 可以在线观看毛片的网站| 亚洲精品色激情综合| 精品99又大又爽又粗少妇毛片 | 88av欧美| 亚洲国产精品久久男人天堂| 日本与韩国留学比较| 国产真实乱freesex| 熟女电影av网| 亚洲av熟女| 少妇熟女aⅴ在线视频| 成人午夜高清在线视频| 国产成+人综合+亚洲专区| 制服丝袜大香蕉在线| 亚洲欧美日韩东京热| 嫩草影院入口| 亚洲电影在线观看av| 十八禁人妻一区二区| 网址你懂的国产日韩在线| 日本a在线网址| 看片在线看免费视频| 国产精品久久久久久精品电影| 两人在一起打扑克的视频| 日韩欧美 国产精品| 99热6这里只有精品| 亚洲美女黄片视频| 成熟少妇高潮喷水视频| 精华霜和精华液先用哪个| 国产久久久一区二区三区| 99热只有精品国产| 日日摸夜夜添夜夜添小说| 综合色av麻豆| 色综合婷婷激情| 午夜亚洲福利在线播放| 色综合婷婷激情| 中文字幕熟女人妻在线| 国产午夜精品论理片| 亚洲性夜色夜夜综合| 99国产精品一区二区三区| 国产精品 国内视频| 日本黄大片高清| 国产成人一区二区三区免费视频网站| 1000部很黄的大片| 亚洲欧美日韩高清专用| 久久精品91蜜桃| 亚洲欧美日韩高清专用| 1000部很黄的大片| 麻豆成人午夜福利视频| 亚洲专区中文字幕在线| 黄色片一级片一级黄色片| 悠悠久久av| 久9热在线精品视频| 每晚都被弄得嗷嗷叫到高潮| x7x7x7水蜜桃| 99riav亚洲国产免费| 色在线成人网| 亚洲 欧美一区二区三区| 18美女黄网站色大片免费观看| 国产野战对白在线观看| 免费观看精品视频网站| 亚洲av熟女| 999精品在线视频| 国产97色在线日韩免费| 国内揄拍国产精品人妻在线| 国产在线精品亚洲第一网站| 亚洲精品美女久久久久99蜜臀| 午夜日韩欧美国产| 观看美女的网站| 变态另类成人亚洲欧美熟女| 给我免费播放毛片高清在线观看| 每晚都被弄得嗷嗷叫到高潮|